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Abstract

We propose an effective and easy-to-implement method
for simultaneously performing landmark detection in im-
ages and obtaining an ingenious uncertainty measurement
for each landmark. Uncertainty measurements for land-
marks are particularly useful in medical imaging applica-
tions: rather than giving an erroneous reading, a landmark
detection system is more useful when it flags its level of
confidence in its prediction. When an automated system
is unsure of its predictions, the accuracy of the results can
be further improved manually by a human. In the medi-
cal domain, being able to review an automated system’s
level of certainty significantly improves a clinician’s trust
in it. This paper obtains landmark predictions with un-
certainty measurements using a three stage method: 1) We
train our network on one-hot heatmap images, 2) We cali-
brate the uncertainty of the network using temperature scal-
ing, 3) We calculate a novel statistic called ‘Expected Ra-
dial Error’ to obtain uncertainty measurements. We find
that this method not only achieves localization results on
par with other state-of-the-art methods but also an uncer-
tainty score which correlates with the true error for each
landmark thereby bringing an overall step change in what
a generic computer vision method for landmark detection
should be capable of. In addition we show that our uncer-
tainty measurement can be used to classify, with good accu-
racy, what landmark predictions are likely to be inaccurate.
Code available at: https://github.com/jfm15/
ContourHuggingHeatmaps.git

1. Introduction
Automatic landmark detection from images is an impor-

tant task in a number of applications from monitoring a
driver’s vital signs [3] to medical imaging applications on
numerous body parts including the knee, spine and lungs
[4–6]. Most modern approaches to landmark detection use
a deep learning pipeline and obtain impressive localization
results. However these deep learning methods always detect
some landmarks erroneously during testing. Take, for ex-

(a) Gaussian distributions out-
put by Kumar et al. [1] - LU-
VLi Landmarks.

(b) Gaussian distributions out-
put by LEE et al. [2] which
uses a Bayesian CNN.

(c) Contours of the heatmaps output by our method. The dark blue
dots are the predicted landmark points and the bright green dots are
the ground truth. We call our heatmaps contour hugging because of
the way they bend around the edges (in this case of the head). Our
probability distributions are not restricted to being symmetrical and
uni-modal.

Figure 1. Images demonstrating the difference in how our method
quantifies the uncertainty of its landmark positions compared to
previous approaches.
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ample, the task of cephalometric landmark detection from
x-rays of the head. These landmarks are used to compute
clinically useful angles and measurements from which clin-
icians can diagnose patients [7]. However, even the lat-
est deep learning approaches detect at least 13% of land-
marks outside the clinically accepted range (greater than
2mm error) [8, 9] so it could be dangerous to build these
systems into safety-critical clinical workflows, especially if
there was no human expert supervision. In this paper we
address this problem by formulating the task of landmark
detection as a classification task over all pixels in an image.
This allows us to obtain more expressive and interpretable
heatmaps as shown in Figure 1c. These heatmaps can be
calibrated (Section 3.3) and then analysed using our novel
statistic called Expected Radial Error ERE (Section 3.4).
This statistic correlates well with the true localization er-
ror and can be used to flag potentially erroneous predictions
(Section 5.3.1).

2. Background
In recent literature, fully convolutional neural networks

(CNNs) have established themselves as the state of the art
in landmark detection overtaking previous approaches such
as random forests [10, 11]. This began with Tompson et
al. [12] who used a CNN to regress target heat maps achiev-
ing state of the art performance on the human pose detec-
tion problem. Shortly afterwards, fully convolutional net-
works [13], including the U-Net [14], became very popular
for segmentation tasks and its encoder-decoder architecture
began to be applied to landmark detection as well, such as in
Payer et al. [15]. More recent architectures in the area have
stacked or cascaded models like this sequentially [16,17] or
in more complicated configurations [18]. However there is
still evidence that the standard U-Net can perform at a high
level when its hyper-parameters are tuned correctly in both
segmentation [19] and landmark detection problems [20].

The works mentioned so far produce landmark predic-
tions but do not produce any value of how ‘sure’ or how ‘un-
certain’ their model is in that prediction. One reason for this
is that the majority of existing approaches train networks on
synthetically generated heatmaps created by a Gaussian dis-
tribution [9, 15, 21]. This has the disadvantage that the net-
work is being trained on heatmaps which do not represent
the uncertainty of where that landmark could realistically be
placed, and so, the output of those models is not calibrated
either [1]. This is illustrated in Fig 2a.

2.1. Uncertainty Estimation Methods

Recent works which aim to address this problem include
Lee et al. [2], which uses a Bayesian CNN to output 2D
Gaussian probability distributions for each landmark repre-
senting the probabilities of where that landmark could be
placed and Kumar et al. [1], which regresses the position

(a) This heatmap is a Gaussian dis-
tribution like most recent methods.
However it isn’t representative of
the position of the landmark be-
cause this point at the end of a chin
is unlikely to be placed within the
chin itself or out in space. It is more
likely to be placed along the con-
tour of the chin by a human.

(b) Our network outputs a multi-
modal distribution heatmap for the
landmark in the center of this im-
age. This nuance would not be cap-
tured by previous approaches which
encode the uncertainty as Gaussian
distributions.

Figure 2. (a) Shows a commonly used method for generating tar-
get heatmaps. (b) Shows how our network trained on one-hot
heatmaps can express a multi-modal distribution in its output.

of the landmark as well as the values of a covariance ma-
trix representing the uncertainty of its position. The prob-
lem with these approaches is that they restrict their output
probability distribution to a Gaussian distribution, which is
unrealistic for many real world tasks because it is uni-modal
and symmetric.

2.2. Our Work

We address this disadvantage by formulating the prob-
lem of landmark detection as a classification problem over
all pixels in the image to obtain output heatmaps which are
not restricted. We theorize that we can make these out-
put heatmaps well calibrated using a temperature scaling
method described in Guo et al. [22] and thus provide ac-
curate heatmaps. We validate these heatmaps by assessing
their calibration using reliability diagrams and measuring
the Expected Calibration Error (ECE) in Section 5.2.

In addition, we propose a statistic called Expected
Radial Error (ERE) to summarize how uncertain our model
is based on the heatmap output. We firstly validate this
statistic by showing there is a correlation between it and
localization error. Then, secondly, we perform experiments
to see whether we can filter landmarks, on an individual
basis, using this statistic by applying a threshold to it to flag
up when our model is likely to have made an inaccurate
prediction (Section 5.3.1). This is relevant in real world
applications: an AI system which can flag up when an
error in its output is likely to occur is most valuable. Such
functionality also leads to increasing users’ trust in the
system.
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(a) Shows a full cephalometric images
with boxes to highlight where 3b and 3c
are cropped from.

(b) The model is more uncertain on the po-
sitioning of the 2 landmarks in the left of
this patch, which is reflected in the higher
ERE scores.

(c) The model is reasonably certain on the
positioning of these landmarks although
the spread out heatmaps have slightly
higher ERE scores.

Figure 3. Output heatmaps displayed with their Expected Radial
Error (ERE) statistics.

2.3. Contributions

Our innovations are to:

1. Present a reproducible network which achieves
performance comparable to the state-of-the-art on
the cephalometric landmark detection task, and
can run on a modest 8GB GPU. We share the
code at: https : / / github . com / jfm15 /
ContourHuggingHeatmaps.git.

2. Show that it is possible to obtain near SOTA localiza-
tion performance by formulating the landmark detec-
tion task as a classification task (Table 1).

3. Demonstrate that the probabilities in the output
heatmaps can be calibrated using temperature scaling
(Section 5.2.1).

4. Show that our novel Expected Radial Error (ERE)
statistic correlates with the localization error (Sec-
tion 5.3) and build a binary classifier based on ERE
to flag up potential erroneous predictions with a good
degree of accuracy (Section 5.3.1).

3. Method
The principal novelty in this work comes from how we

have formulated the problem of landmark detection as a
classification problem and how we have validated the utility
of the output heatmaps in a qualitative and quantitative way.
This work uses the well-established U-Net as the main net-
work architecture, as described in the subsequent section.

3.1. Architecture

We perform all experiments using a U-Net [14] with a
ResNet-34 encoder pretrained on ImageNet [23]. The U-
Net architecture is chosen because it is easy to implement,
reproducible and has evidence of obtaining good results on
landmark detection problems [20]. Our decoder has 5 lev-
els of upsampling with 256, 128, 64, 32 and 32 channels in
each of the levels from the bottom level to the top.1 After
each convolution there is a batch normalisation layer and a
ReLU activation function. We then have a final 1×1 con-
volutional layer to squash the 32 channels in the top layer
into N channels each of which represents the heatmap for
one of the landmarks, N being the number of landmarks
to be detected. This is implemented using the pytorch
segmentation models library.2

We then apply a 2D softmax activation function to each
of these channels3 to convert them into a probability distri-
bution over all pixels in the image. Formally our network

1We ran our experiments on a 8GB GPU and were quite restricted in
how many channel each layer could have.

2https://github.com/qubvel/segmentation_models.
pytorch

3Unless we are performing temperature scaling, see Section 3.3, in
which case we scale each channel by a temperature parameter first.
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outputs a tensor comprised of n channels: {c1, c2, ..., cn},
cl ∈ Rw×h where w and h are the width and height of
the input images. The 2D softmax function works on each
channel independently such that:

σl(i, j) =
ecl(i,j)∑w

s=1

∑h
t=1 e

cl(s,t)
(1)

where tensor σl(·, ·) is calculated for each channel, l∈[1..n].
We use a negative log likelihood loss4 to train the network.
At test time we obtain predicted landmark points by select-
ing the hottest point in the heatmap or, in other words, the
mode of the output distribution.

3.2. Heatmap Generation

As mentioned in Section 2.2 we formulate the landmark
detection task as a classification problem. We do this by
training our model on heatmaps which contain a single 1
spike at the ground-truth point, with 0s at every other posi-
tion. Formally this is defined as:

H(i, j) =

{
1, if i = x and j = y

0, otherwise
(2)

Where H(i, j) denotes the pixel value of the heatmap at
each point (i, j), and (x, y) denotes the coordinates of the
ground truth landmark point.

3.3. Temperature Scaling

An advantage of formulating landmark detection as a
classification problem is that we can perform temperature
scaling to calibrate the heatmap probabilities. Temperature
scaling is well described in Guo et al. [22]. After we train
our model using the heatmaps described in Section 3.2 we
add an additional parameter T for each landmark to the
model such that each channel pixel cl(·, ·) is divided by
scalar Tl before being put through the softmax activation
function. So the softmax output becomes:

σl(i, j) =
ecl(i,j)/Tl∑w

s=1

∑h
t=1 e

cl(s,t)/Tl

(3)

We freeze all the other parameters in our trained network
and fine tune our network to optimize the Tl parameters us-
ing the same the negative log likelihood loss. This does not
change the localization accuracy of the network because the
hottest points will remain the same no matter what values Tl

takes. Section 5.2.1 shows how Tl calibrates the network.

4https : / / pytorch . org / docs / stable / generated /
torch.nn.NLLLoss.html

3.4. Uncertainty Estimation

We obtain an uncertainty measurement for each land-
mark by calculating a statistic we call the Expected Radial
Error (ERE). This statistic is calculated using the following
equation:

EREσl
=

w∑
i=1

h∑
j=1

σl(i, j)
√

(i− x̃)2 + (j − ỹ)2 (4)

Where w and h are the width and height of the image;
σl(·, ·) is the probability distribution output by Eq 3 for each
heatmap l∈[1..n]; and (x̃, ỹ) are the coordinates of the pre-
dicted landmark, or in other words, the hottest point in σl.

It is worth noting that σl should be pre-processed before
ERE is calculated. This pre-processing consists of convert-
ing all values in σl which are below 5% of the hottest point
to 0 and then re-normalizing σl by dividing by the sum of
its values. This is done because pixels far away from the
landmark have tiny (10−6) heatmap values, thereby adding
noise to the ERE calculation. Zeroing values less than 5%
(chosen empirically) of the maximum helps increase the
correlation between the ERE statistic and the true radial er-
ror in our experiments from 0.9 to 0.96 (see Figure 5).

In Section 5 we hypothesize that a high ERE score can
be used to flag up erroneous predictions, which we validate
in Section 5.3.1. Examples of ERE scores next to heatmaps
are given in Figure 3.

4. Experiments
4.1. Dataset

We perform our experiments on a publicly available
cephalometric dataset, originally released for a grand chal-
lenge at the IEEE ISBI conference in 2015 [24]. The dataset
contains 400 x-rays, split into 150 training images and two
test sets, Test Set 1 and Test Set 2, comprised of 150 and 100
images respectively. Each image in the dataset has a reso-
lution of 1935×2400 where each pixel represents a 0.1mm
square and each comes with two sets of ground truth anno-
tations for 19 landmarks, one from a senior clinician and
one from a junior clinician. These experts placed ground
truth landmarks manually on each image according to strict
medical definitions. As in previous works [24] we take the
average of the landmark points given by the two clinicians
as our ground truth landmark points which we train and test
on. Before passing these images into our network for train-
ing or testing we resize them to 640×800 pixels.

4.2. Training The Network

We train our U-Net architecture by passing down-
sampled cephalometric x-ray images of size 640×800
through our network and 2D Softmax function (Eq 1) to

20600



Test Set 1 Test Set 2

Model MRE
(mm)

SDR (%) MRE
(mm)

SDR (%)
2mm 2.5mm 3mm 4mm 2mm 2.5mm 3mm 4mm

N
o

un
ce

rt
ai

nt
ie

s Ibragimov et al. [10] 1.87 71.70 77.40 81.90 88.00 - 62.74 70.47 76.53 85.11
Lindner et al. [11] 1.67 74.95 80.28 84.56 89.68 - 66.11 72.00 77.63 87.42
Arik et al. [8] - 75.37 80.91 84.32 88.25 - 67.68 74.16 79.11 84.63
Yao et al. [20] 1.24 84.84 90.52 93.75 97.40 1.61 71.89 80.63 86.36 93.68
Chen et al. [25] 1.17 86.67 92.67 95.54 98.53 1.48 75.05 82.84 88.53 95.05
Zhong et al. [9] 1.12 86.91 91.82 94.88 97.90 1.42 76.00 82.90 88.74 94.32
Ours (with uncertainty) 1.20 83.47 89.16 92.60 96.49 1.46 74.63 83.58 87.21 93.79

Table 1. Localization results for our method compared to existing methods (lower MRE is better and a higher SDR percentages are better).
Our method reports results which improve on old methods and are on a par with recent SOTA methods whilst having the significant benefits
of being a simpler architecture and outputting an uncertainty measurement. It is worth noting that Lee et al. [2] also localize landmarks
on cephalometric data and produce uncertainty measurements; however those results do not belong in the table because their test set is a
combination of Test Sets 1 and 2. When we performed the same experiment, our method obtained a MRE of 1.30 compared to their 1.54.

obtain predicted heatmaps. We then use a negative log like-
lihood function against our ground-truth heatmaps to gener-
ate a loss. We train the network using the Adam optimizer
with an initial learning rate of 0.001 and a batch size of 4.
We step down the learning rate by a factor of 0.1 at epochs
4, 6 and 8.

A large amount of data augmentation is implemented
using the imgaug library.5 We implement the following
augmentations: X and Y translation by a maximum of 10
pixels, intensity scaling of all pixels by a random factor be-
tween 1 and 0.5, scale up or down the image so that it is
between 0.95 and 1.05 of its original scale, rotate the image
either anti-clockwise or clockwise at most 3◦, and finally
elastically transform each image. As no validation set was
given with the dataset we optimized our hyper-parameters
by holding out 30 images from the training set to use as
a validation set. Then, once we had found the best hyper-
parameters, we trained on the whole of the training set for
15 epochs (15 epochs was chosen because localization re-
sults plateaued after epoch 15 on the validation set) to obtain
our final models.

5. Evaluation
We evaluate our model not just on the accuracy of its

predicted points but also on how well-calibrated its output
heatmaps are and whether they can be used to flag up erro-
neous results. Given a particular computer vision applica-
tion, these measurements can quantify its real-life utility.

5.1. Localization Results

Once an image is put through the trained network, scaled
by the temperature parameters and passed through the 2D
softmax layer, we select the hottest point on the heatmap

5https://imgaug.readthedocs.io/en/latest/

as our final predicted heatmap position. To validate the
accuracy of these positions we used statistics established
since the cephalometric dataset was released [7]. These
are the Mean Radial Error (MRE), which is the average
Euclidean distance between the predicted landmark points
and the ground-truth landmark points measured in mm, and
the Success Detection Rate (SDR) for 4 thresholds: 2mm,
2.5mm, 3mm and 4mm. The SDR is the percentage of
points predicted with an MRE less than a given threshold.
We compare our results both to methods proposed when the
dataset was originally released [10,11] and to state of the art
methods with novel deep learning architecures [9, 20, 25].
The results are presented in Table 1.

5.2. Validating Our Heatmaps

The qualitative analysis of our heatmaps (examples
shown in Figure 3b and Figure 3c) is particularly appealing
because the heatmaps hug the contours of the feature (the
head, in this case); they offer realistic potential locations of
where each landmark could be placed.

Additional to this geometric consideration, we also show
numerically that these heatmaps are realistic. To do this we
demonstrate that the probabilities in the heatmap are well
calibrated by using a reliability diagram (Figure 4c).

5.2.1 Reliability Diagrams

To assess the calibration of our model after training we pro-
duce reliability diagrams like in Guo et al. [22]. The reli-
ability diagrams are histograms which show accuracy as a
function of confidence. In our case we define confidence to
be the probability at the hottest point in the output heatmap,
or, in other words, the value at our predicted landmark point.

To produce the histograms shown in Figure 4 we put
each predicted landmark into a bin. There are 10 bins, each
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(a) Reliability graph for a landmark detection
model trained with Gaussian heatmaps, like in
most existing approaches. We can see that the
model is under-confident in the 0.09-0.1 bin.

(b) Reliability graph for the confidences of our
model pre-temperature scaling. When com-
pared to (c) we can see that temperature scaling
improves the calibration of the model.

(c) The reliability graph for the confidences
of our model after temperature scaling. The
model’s uncertainties are generally well cali-
brated.

Figure 4. (a) displays a poorly calibrated model trained on Gaussian heatmaps (σ=1). (b) displays another poorly calibrated model trained
on one-hot heatmaps but with no temperature scaling. (c) is our model trained on one-hot heatmaps and temperature scaled (Sec. 3.2).
Temperate scaling a model trained on Gaussian heatmaps does not make it more calibrated, unlike a model trained on one-hot heatmaps.

of equal width, such that the first bin will contain predicted
points with confidences between 0 and M

10 , the second will
contain points with confidences between M

10 and 2M
10 etc.

Where M is the maximum confidence of any prediction in
the validation set. The confidence for each bin is defined as
the average confidence of predictions in that bin. We then
define the accuracy of each bin as the percentage of correct
predictions in that bin; in this case a prediction is correct
when the hottest point on the output heatmap is at exactly
the same coordinate as the ground-truth point (at the aver-
age position between our expert human annotations).

If the network is perfectly calibrated we would expect
the confidence of each bin to be exactly the same as the
accuracy for that bin. We display this information in relia-
bility diagrams which overlays two histograms, one plotting
the accuracy of each bin and the second plotting its confi-
dence. These diagrams make it easy to see if the network
is underestimating or overestimating the confidence in its
predictions for each bin. If it is underestimating then the
accuracy of a bin will be higher than its confidence so we
will be able to see a solid blue piece at the top of the bar in
that bin in the diagram. If it is overestimating we will see
a solid lime green piece at that top of that bar for a bin the
diagram.

From these diagrams we can calculate an Expected Cali-
bration Error (ECE) which is the difference between the ac-
curacy and confidence in each bin, weighted proportionally
to how many landmarks are in each bin and then summed
together. The lower the ECE the more calibrated the model.
Figure 4c shows the reliability diagram for our model after
temperature scaling and its ECE score of 0.7. For com-
parison we also show the reliability diagram for our model

before temperature scaling in Figure 4b and a model trained
on Gaussian heatmaps (like in Figure 2a) in Figure 4a. Both
of which were also trained on the cephalometric dataset. We
found that the model trained on Gaussian heatmaps was un-
der confident in it’s predictions, especially in the 0.09-0.1
bin as shown in Figure 4a.

5.3. Validating The ERE Statistic

We show that our ‘Expected Radial Error’ score corre-
lates with the ‘True Radial Error’ in Figure 5 where the True
Radial Error is the distance between the predicted landmark
location and its ground truth location (average of the 2 clin-
icians placements) over Test Set 1. This graph is created
by putting each predicted landmark into a bin depending on
its ERE score. We chose each bin to contain 36 landmarks
because this bin size was used in Kumar et al. [1]. The 36
landmarks with the lowest ERE scores are placed into one
bin, then the next biggest 36 are put into another, etc. Once
the landmarks are put into the bins we calculate the average
ERE score (x axis value) and the average True Radial Error
(y axis value) of all landmarks in the bin and plot that data
point. We find there is a strong correlation between the ERE
and True Radial Error which means ERE can be used as a
good indicator for how accurate a prediction is likely to be.

5.3.1 Flagging Up Potential Bad Readings Using The
ERE Score

The final part of this work is to show that the ERE score
(Eq. 4) calculated from our heatmaps has a practical util-
ity. We know that there is a high correlation between the
ERE score and potential accuracy of the landmark position

20602



Figure 5. Correlation between the ERE statistic and the true radial
error for bins of 36 landmarks over the cephalometric Test Set 1.
The radial error is the Euclidean distance between the predicted
and the ground truth point. The True Radial Error is slightly higher
on average than the ERE score because of the pre-processing step
discussed in Section 3.4.

(Figure 5) so we hypothesize that if we apply a threshold to
the ERE score of a landmark when it is calculated we can
filter out predictions which are likely to be inaccurate or
‘erroneous’. This is valuable because the model can flag up
when it is unsure of its prediction this way – a particularly
desirable feature in medical applications where it is better
to be cautious.

The experiment we conduct to test this hypothesis con-
sists of the following steps:

1. Apply the model to all images in Test Set 1 to obtain
heatmaps representing landmark locations.

2. Take the hottest points of these heatmaps to obtain pre-
dicted landmark points and calculate ERE scores for
each landmark like in Figures 3b and 3c.

3. Compare the predicted landmark points to the ground
truth points and classify each point as ‘good’ if its lo-
calization error is < 2mm, or ‘erroneous’ if its local-
ization error is > 2mm. We chose 2mm as the thresh-
old because this is the clinically accepted successful
detection range [8].

4. Plot a Receiver Operating Characteristic (ROC) curve
which describes how well different threshold values
applied to the ERE scores can discriminate between
‘good’ or ‘erroneous’ predictions.

Our ROC curve is shown in Figure 6. A true positive
is when the classifier (thresholding the value of the ERE
for a landmark) predicted a localization error of over 2mm
and the predicted point was incorrectly placed by at least
2mm. A false positive is when the classifier predicted a
localization error of over 2mm but the predicted point was
within 2mm of the ground truth.

Once we have obtained the ROC curve we can choose
what True Positive Rate (TPR) we would like for our appli-
cation; in this work we choose a rate of 0.5 to demonstrate
the technique of ERE thresholding. This TPR corresponds
to a threshold of 1.414. In other words, if our model out-
puts a heatmap for a landmark which has a ERE score of
over 1.414 (such as two landmarks shown in Fig. 3b) we
classify it as erroneous and ‘flag it up’.

When we apply this threshold to Test Set 2 we find
that it has classified 1610 landmarks (85%) as ‘good’ and
290 landmarks (15%) as ‘erroneous’. The MRE and SDRs
statistics for each group are in Table 2. The MREs of the
‘good’ and ‘erroneous’ groups are 1.30 and 2.43 respec-
tively which makes it clear that the ‘erroneous’ group con-
tains landmarks which have been detected significantly less
accurately that the other group thus proving that threshold-
ing the ERE value to discriminate between accurately and
inaccurately predicted landmarks is reasonably effective.

Set # land-
marks

MRE
(mm)

SDR (%)
2mm 2.5mm3mm 4mm

Overall 1900 1.46 74.63 83.58 87.21 93.79
Good 1610 1.30 78.26 85.59 89.50 95.90
Erroneous 290 2.43 57.24 66.55 72.76 84.48

Table 2. Results of our model over Test Set 2, and over Test Set 2
again, after it has been split by thresholding the ERE value of each
landmark’s heatmap (ERE > 1.414 means a landmark is put into
the Erroneous group). MRE is the Mean Radial Error and SDR
is the Success Detection Rate over all the landmarks in the group
as described in Section 5.1. A lower MRE score, and higher SDR
percentages, signify that the ‘Good’ set of landmarks are localized
more accurately than the ‘Erroneous’ set.

6. Conclusion
We have shown that formulating the problem of land-

mark detection as a classification task, by using one-hot
heatmaps during training, has several practical advantages.
The heatmaps output by the model are more easily inter-
pretable and visually intuitive because they hug the con-
tours of objects; they are more expressive than previous ap-
proaches because they can be multi-modal or asymmetric.
We have shown that near state of the art localization perfor-
mance can be achieved when formulating the problem this
way, even with a U-Net architecture.

20603



Figure 6. The ROC curve created by measuring the TPR and FPR
as we increase the threshold for the ERE score to be for its land-
mark to be classified as ‘erroneous’. Area Under the Curve mea-
sures how well our ERE statistic discriminates between ‘good’ and
‘erroneous’ predictions, 1 being the best achievable score.

We then went on to validate the output heatmaps quanti-
tatively, by showing that they were well calibrated using re-
liability diagrams, and that an Expected Radial Error (ERE)
statistic could be calculated from them which is well corre-
lated with the true radial error and thus can be thresholded to
create a classifier which can ‘flag up’ potentially erroneous
results.

Our approach to landmark detection should be valuable
to the Computer Vision research community.

7. Future Work
This work can be extended in several ways. (1) Instead

of simply having a one-hot value at the average ground truth
position, should multiple-clinician ground truth be avail-
able, we could generate more expressive training heatmaps.
For example, in the case where 2 sets of ground truth are
available we could put a value of 0.5 in the training heatmap
at each ground truth. H(i, j) could be redefined for this pur-
pose. (2) A more sophisticated calibration method could be
used to validate the probabilities in the output heatmaps.
(3) In addition, a current limitation of the approach is how
the expressive heatmap must be condensed into a single
statistic (in this case ERE) for its classification as a ‘good’
or ‘erroneous’ prediction. Instead of taking a single statistic
we could take multiple statistics or even pass the heatmaps
into another CNN which would classify more accurately.

(4) More complicated deep learning architectures could also
be used to improve the localization accuracy and uncer-
tainty measurements. (5) In the short term, we plan to
validate the heatmaps produced using this method more
thoroughly by comparing them against measurements taken
by multiple clinicians, as well as experimenting on more
datasets.

8. Compliance with Ethical Standards
The aim of this research is to improve the safety and ac-

curacy of existing landmark detection systems. However,
when bringing this technology into contact with the general
public it is always important to carefully check what data
the system is handling and to make sure that the system has
a suitable amount of human supervision. It is also important
to consider how such a system could be tampered with, for
example via an adversarial attack, and to take measures to
stop that from happening.

This research study was conducted using human subject
data from publicly available sources, which are known to
have had ethical approval for using the data for research.
There are no conflicts of interest to declare.
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Bulat Ibragimov, Tomaž Vrtovec, Olaf Ronneberger, et al.
A benchmark for comparison of dental radiography analysis
algorithms. Medical image analysis, 31:63–76, 2016. 4

[25] Runnan Chen, Yuexin Ma, Nenglun Chen, Daniel Lee, and
Wenping Wang. Cephalometric landmark detection by at-
tentive feature pyramid fusion and regression-voting. In In-
ternational Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI), pages 873–881.
Springer, 2019. 5

20605


