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Abstract

Recent legislation has led to interest in machine un-
learning, i.e., removing specific training samples from a
predictive model as if they never existed in the training
dataset. Unlearning may also be required due to cor-
rupted/adversarial data or simply a user’s updated pri-
vacy requirement. For models which require no train-
ing (k-NN), simply deleting the closest original sample
can be effective. But this idea is inapplicable to models
which learn richer representations. Recent ideas leveraging
optimization-based updates scale poorly with the model di-
mension d, due to inverting the Hessian of the loss function.
We use a variant of a new conditional independence coeffi-
cient, L-CODEC, to identify a subset of the model parame-
ters with the most semantic overlap on an individual sample
level. Our approach completely avoids the need to invert a
(possibly) huge matrix. By utilizing a Markov blanket selec-
tion, we premise that L-CODEC is also suitable for deep un-
learning, as well as other applications in vision. Compared
to alternatives, L-CODEC makes approximate unlearning
possible in settings that would otherwise be infeasible, in-
cluding vision models used for face recognition, person re-
identification and NLP models that may require unlearn-
ing samples identified for exclusion. Code is available at
https://github.com/vsingh-group/LCODEC-
deep-unlearning

1. Introduction
As personal data becomes a valuable commodity, legisla-

tive efforts have begun to push back on its widespread col-
lection/use particularly for training ML models. Recently,
a focus is the “right to be forgotten” (RTBF), i.e., the right
of an individual’s data to be deleted from a database (and
derived products). Despite existing legal frameworks on
fair use, industry scraping has led to personal images being
used without consent, e.g. [20]. Large datasets are not only
stored for descriptive statistics, but used in training large
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models. While regulation (GDPR, CCPA) has not specified
the extent to which data must be forgotten, it poses a clear
question: is deletion of the data enough, or does a model
trained on that data also needs to be updated?

Recent work by [6, 7] has identified scenarios where
trained models are vulnerable to attacks that can reconstruct
input training data. More directly, recent rulings by the Fed-
eral Trade Commission [12, 24] have ordered companies to
fully delete and destroy not only data, but also any model
trained using those data. While deletion and (subsequent)
full model retraining without the deleted samples is possi-
ble, most in-production models require weeks of training
and review, with extensive computational/human resource
cost. With additional deletions, it is infeasible to retrain
each time a new delete request comes in. So, how to update
a model ensuring the data is deleted without retraining?

Task. Given a set of input data S : {zi}ni=1 ∼ D of
size n, training simply identifies a hypothesis ŵ ∈ W via
an iterative scheme wt+1 = wt − g(ŵ, z′) until conver-
gence, where g(·, z′) is a stochastic gradient of a fixed loss
function. Once a model at convergence is found, machine
unlearning aims to identify an update to ŵ through an anal-
ogous one-shot unlearning update:

w′ = ŵ + gŵ (z′) , (1)

for a given sample z′ ∈ S that is to be unlearned.
Contributions. We address several computational issues
with existing approximate formulations for unlearning by
taking advantage of a new statistical scheme for sufficient
parameter selection. First, in order to ensure that a sample’s
impact on the model predictions is minimized, we propose
a measure for computing conditional independence called
L-CODEC which identifies the Markov Blanket of param-
eters to be updated. Second, we show that the L-CODEC
identified Markov Blanket enables unlearning in previously
infeasible deep models, scaling to networks with hundreds
of millions of parameters. Finally, we demonstrate the abil-
ity of L-CODEC to unlearn samples and entire classes on
networks, from CNNs/ResNets to transformers, including
face recognition and person re-identification models.
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Figure 1. Large deep learning networks typically associate specific subsets of network parameters, blocks (blue), to specific samples in the
input space. Traditional forward or backward passes may not reveal these blocks: high correlations among features may not distinguish
important ones. Input perturbations can be used to identify them in a probabilistic, distribution-free manner. These blocks can then be
unlearned together in an efficient block-coordinate style update (right, blue lines), approximating an update to the full network which
requires a costly/infeasible full Hessian inverse (red line).

2. Problem Setup for Unlearning
Let A be an algorithm that takes as input a training set

S and outputs a hypothesis w ∈ W , defined by a set of
d parameters Θ. An unlearning scheme U takes as input
a sample z′ ∈ S used as input to A, and ideally, outputs
an updated hypothesis w′ ∈ W where z′ has been deleted
from the model. An unlearning algorithm should output a
hypothesis that is close or equivalent to one that would have
been learned had the input to A been S \ z′. A framework
for this goal was given by [13] as,

Definition 1 ((ϵ, δ)− forgetting). For all sets S of size n,
with a “delete request” z′ ∈ S, an unlearning algorithm U
is (ϵ, δ)−forgetting if

P(U(A(S), z′) ∈ W) ≤ eϵP(A(S \ z′) ∈ W) + δ (2)

In essence, for an existing model w, a good unlearning
algorithm for request z′ ∈ S will output a model ŵ close to
the output of A(S \ z′) with high probability.

Remark 1. Definition 1 is similar to the standard defini-
tions of differential privacy. The connection to unlearning
is: if an algorithm is (ϵ, δ)−forgetting for unlearning, then
it is also differentially private.

If A is an empirical risk minimizer for the loss f , let

A : (S, f) → ŵ (3)

ŵ = argminF (w) and F (w) = 1
n

∑n
i=1 f(w, zi). Re-

call g(z′) from (1): our unlearning task essentially involves
identifying the form of g(z′) for which the update in (1) is
(ϵ, δ)-forgetting. If an oracle provides this information, we
have accomplished the unlearning task.

The difficulty, as expected, tends to depend on f and A.
Recent unlearning results have identified forms of f and
A where such a g(z′) exists. The authors in [30] define
g(z′) = 1

n−1H
′−1∇f(ŵ, z′), where

H ′ =
1

n− 1

(
n∇2F (ŵ)−∇2f(ŵ, z′)

)
, (4)

with additive Gaussian noise w′ = w′ + N(0, σ2) scaling
as a function of n, ϵ, δ, and the Lipschitz and (strong) con-
vexity parameters of the loss f . We can interpret the update
using (4) from the optimization perspective as a trajectory
“reversal”: starting at a random initialization, the first or-
der (stochastic gradient) trajectory of w (possibly) with z′

is reversed using residual second order curvature informa-
tion (Hessian) at the optimal ŵ in (4), achieving unlearning.
This is shown to satisfy Def. 1, and only incurs an additive
error that scales by O(

√
d/n2) in the gap between F (w′)

and the global minimizer F (w∗) over the ERM F (ŵ).
Rationale for approximate schemes. From the reversal

of w optimization perspective, it is clear that there may be
other choices to achieve unlearning. For a practitioner in-
terested in unlearning, the aforementioned algorithm (as in
(4)) can be directly instantiated if one has extensive com-
putational resources. Indeed, in settings where it is not di-
rectly possible to compute the Hessian inverse necessary for
H ′−1∇f(ŵ, z′), we must consider alternatives.

A potential idea. Our goal is to identify a form of g(z′)
that approximates H ′−1∇f(ŵ, z′). Let us consider the
Newton-style update suggested by (4) as a smoothing of
a traditional first order gradient step. The inverse Hessian
is a weighting matrix, appropriately scaling the gradients
based on the second order difference between the training
set mean point F (ŵ) and at the sample of interest f(ŵ, z′).
This smoothing can also be seen from an information per-
spective: the Hessian in this case corresponds to a Fisher-
style information matrix, and its inverse as a conditional co-
variance matrix [14, 16]. It is not hard to imagine that from
this perspective, if there are specific set of parameters that
have small gradients at f(ŵ, z′) or if the information matrix
is zero or small, then we need not consider their effect.

Examples of this intuition in vision. [3,11,32] and oth-
ers have shown that models trained on complex tasks tend to
delegate subnetworks to specific regions of the input space.
That is, parameters and functions within networks tend to
(or can be encouraged to) act in blocks. For example, activa-
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tion maps for different filters in a trained (converged) CNN
model show differences for different classes, especially for
filters closer to the output layer. We formalize this observa-
tion as an assumption for samples in the training set.

Assumption 1. For all subsets of training samples S ⊂ S ,
there exists a subset of trained model parameters P ∗ ⊂ Θ
such that

f(S)⊥w∗
Θ\P |w∗

P (5)

Due to the computational issues discussed above, if we
could make such a simple/principled selection scheme prac-
tical, it may offer significant benefits.

3. Related Work
To contextualize our contributions, we briefly review ex-

isting proposals for machine unlearning.
Naı̈ve, Exact Unlearning. A number of authors have pro-
posed methods for exact unlearning, in the case where
(ϵ = 0, δ = 0). SVMs by [23, 28], Naı̈ve Bayes Classifiers
by [5], and k-means methods by [13] have all been studied.
But these algorithms do not translate to stochastic models
with millions of parameters.
Approximate Unlearning. With links to fields such as
robustness and privacy, we see more developments in ap-
proximate unlearning under Definition 1. The so-called ϵ-
certified removal by [19] puts forth similar procedures when
δ = 0, and the model has been trained in a specific man-
ner. [19, 22] provide updates to linear models and the last
layers of networks, and [15, 16] provide updates based on
linearizations that work over the full network, and follow-
up work by [14] presents a scheme to unlearn under an as-
sumption that some samples will not need to be removed.

Other recent work has taken alternative views of unlearn-
ing, which do not require/operate under probabilistic frame-
works, see [4, 25]. These schemes present good guaran-
tees in the absolute privacy setting, but they require more
changes to pipelines (sharding/aggregating weaker models)
and scale unsatisfactorily in large deep learning settings.

4. Randomized Markovian Block Coordinate
Unlearning

If there exist entries of the vector g(z′) =
H ′−1∇f(ŵ, z′) that we can, through some procedure,
identify as zero, then we can simply avoid computing such
zero coordinates. Not only can we zero out those particular
entries in the inverse and the gradient, but we can take
advantage of the blockwise inverse to completely remove
those parameters from all computations. If possible, it
would immediately change the complexity from O(d3) to
O(p3), where p ≪ d is the size of the subset of parameters
that we know are sufficient to update.

Let P ⊆ Θ := {1, . . . , d} be the index set of the param-
eters that are “sufficient” to update. A direct procedure may
be to identify this subset P with

P = argmin
P∈P(Θ)

||w̃ − w̃P ||, (6)

where P(Θ) is the power set of the elements in Θ and w̃P

is the subset of the parameters we are interested in updat-
ing. Note that a simple solution to this problem does exist:
choosing the p = |P | parameters with the largest change
will minimize this distance for typical norms. This can be
achieved by thresholding the updates g(z′) for ŵ. However,
this requires computing the full update for g(z′). We want a
preprocessing procedure that performs the selection before
computation of g(z′) is needed.
A probabilistic angle for selection. We interpret a deep
network W as a functional on the input space D. This per-
spective is common in statistics for variable selection (e.g.,
LASSO), albeit used after the entire optimization procedure
is performed i.e., at the optimal solution. The only differ-
ence here is that we use it at approximately optimal solu-
tions as given by ERM minimization. Importantly, this view
allows us to identify regions in W that contain the most in-
formation about a query sample z′. We will formalize this
intuition using recent results for conditional independence
(CI) testing. Finding wP above should also satisfy

z′⊥wΘ\P |wP (7)

This CI formulation is well studied within graphical mod-
els. Many measures and hypothesis tests have been pro-
posed to evaluate it. The coefficient of conditional depen-
dence (CODEC) in [1], along with their algorithm for “fea-
ture ordering”, FOCI, at first seems to offer a solution to
(7), and in fact, can be implemented “as is” for shallow net-
works. (Review of other CI tests are in the appendix.)

Using CODEC directly for Deep Unlearning is ineffi-
cient. There are two issues: First, when applying CODEC
to problems with a very large n with discrete values, the cost
of tie-breaking for computing nearest neighbors can become
prohibitive. Second, z′ is not a random variable for which
we have a number of instances. We defer discussion of the
second issue to Section 5, and address the first issue here.

Consider the case where a large number of elements have
an equal value. With an efficient implementation using
kd−trees, identifying the nearest-neighbor as required by
CODEC would still require expanding the nodes of all ele-
ments with equal value. As an example, if we are looking
for the nearest neighbor to a point at the origin and there
are a large number of elements on the surface of a sphere
centered at the origin, we still require checking all entries
and expanding their nodes in the tree, even when we know
that they are all equal for this purpose.
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Figure 2. A sample is perturbed and passed through the network.
Activations are aggregated alongside losses and fed to L-FOCI.
Selected rows represent slices of the corresponding layer that are
sufficient for unlearning.

Interestingly, this problem has a relatively elegant solu-
tion. We introduce a randomized version of CODEC, L-
CODEC. For variables A,B,C:

TL := T
(
B̃, C̃|Ã

)
, (8)

where B̃ = B + N(0, σ2), and similarly for C̃, Ã. This
additive noise can simply be scaled to the inverse of the
largest distance between any points in the set. By requiring
this noise to be smaller than any distance between items in
the set, the ranking will remain the same between unique
discrete values, and will be perturbed slightly for equal
ones. In expectation, this will still lead to the true de-
pendence measure. The noise addition is consistent with
the Randomization criterion for conditional independence –
for random variables A,B,C in Borel spaces, A⊥B|C iff
A

a.s.
= h(B,U) for some measurable function h and uniform

random variable U ∼ Uniform(0, 1) which is independent
of (B,C) as in [26].

Remark 2. An altered version of this setup also gives us a
form of explainability, where we can apply sensitivity anal-
ysis to each input feature or pixel and estimate its effect on
the output via a similarly randomized version of the Chat-
terjee rank coefficient T (A,B), proposed by [8].

4.1. Efficient Subset Selection that is also Sufficient
for Predictive Purposes

The above test is good for (7) if we know which subset
P ∈ P(Θ) to test. Recent work by [36] proposes a selection
procedure using an iterative scheme to slowly build the suf-
ficient set, adding elements which maximally increase the
information explained in the outcome of interest. While it
is efficient (polynomial in size), we must know the maximal
degree. A priori, we may have no knowledge of what this
size is, and for parameter subsets it may be very high.

When using L-CODEC, we can use a more straight-
forward Markov Blanket identification procedure adapted
from [1]. FOCI more directly selects which variables are
valuable for explaining z′, and in fact, is proven to identify
the sufficient set (Markov Blanket) with a reasonable num-
ber of samples. Briefly, in our L-FOCI, the sufficient set

is built incrementally with successive calls to L-CODEC,
moving the most “dependent” feature from the independent
set to the sufficient set. See appendix for details.

Summary. This procedure alleviates the first issue in
terms of sufficient subset or Markov Blanket selection;
compared to existing methods using information-theoretic
measures that require permutation testing, L-FOCI directly
estimates the change in variance when considering a pro-
posal to add to the set. Now, we discuss how this selection
can help identify sets of parameters that can be updated.

5. Deep Unlearning via L-FOCI Hessians
Our input samples to scrub z′ are not random variables

for which we have samples or distributional assumptions,
nor are our parameters. In this case, a perturbation-based
scheme may be useful when attempting to generate samples
for unknown distributions.

Considering Assump. 1, when only some parameters are
useful for the final outcome on an input sample z′ ∈ S, the
effect of those parameters can be measured through activa-
tions due to the forward pass of a model. We estimate the
conditional independence test in (5) through activations as

f(z′)⊥a∗Θ\P |a∗P , (9)

where aP for some parameter subset P ⊆ Θ is defined as
the linear activations generated by the forward pass through
the model. This formulation relates to a generalized ver-
sion of the solution in §3 of [36], where conditional mutual
information is estimated via feature mappings.

As an example, if a network has linear layers L, a sim-
ple linear layer l ∈ L with parameters wl ∈ Ra×b would
have activations al ∈ Rb, with al = wlal−1. For each entry
al,j in the vector al, the associated parameters in the layer
are wl[:, j]. Thus, we break up the network into influential
slices. These slices can be seen as a finer view of the pa-
rameter space compared to typical layerwise selection, but
coarser than a fully discrete one. Next, L now refers to the
collection of these slices, with a specific slice as l.

The tuple of variables we need samples from is now

{a1, . . . a|L|,L(z′)} (10)

We can obtain samples from this set by perturbing the in-
put and consecutively collecting activations along all weight
slices during the computation of the loss. For a particular
perturbation ξj ∼ N(0, σ2),

xj
i = xi + ξj ; lj , ajL = {l(xj

i ), a
j
1, . . . a

j
|L|} (11)

The tuples (lj , ajL) serve as samples for our conditional in-
dependence test,

(P ⊆ Θ) = L-FOCI((lj , ajL)
m
j=1) (12)

10425



for J := {j ∈ 1, . . . ,m} perturbations (see Figure 2).
In Alg. 1, the activations are collected using hooks within

the forward pass. First, gradients at the last and penultimate
epoch for full training are stored during the original train-
ing pass. Given a sample to unlearn, we compute L-FOCI
over the perturbed activations and losses generated by the
forward pass, and identify which parameter sets will be up-
dated. We compute the approximate Hessian over these pa-
rameters via finite differences for both the full model and
for the model only over the sample of interest. Finally, we
apply the blockwise Newton update to the subset of param-
eters as in (1) with appropriate DP noise as in [30].

Algorithm 1: Unlearning via Conditional Depen-
dence Block Selection

Data: A trained model ŵ, gradient vectors
∇1F (ŵ),∇2F (ŵ), sample z′ ∈ S to unlearn.

Result: model w′ with z′ removed.
1. for j ∈ {1, . . . ,m} perturbations do

ξj ∼ N(0, σ2)
z′,j = z′ + ξj

lj , aj = f(z′,j)
end
2. Compute P∗ = L-FOCI(lJ , aJ).
3. Compute ∇2

PF (ŵ, z′) via finite differences.
4. Update:

H ′
P =

1

n− 1

(
n∇2

PF (ŵ)−∇2
P f(ŵ, z′)

)
(13)

w′
P = ŵP +

1

n− 1
H ′−1

P ∇f(ŵ, z′)P (14)

w′
Θ\P = ŵΘ\P (15)

Computational Gains. A direct observation is that now we
are doing sampling, which adds a linear computational load.
However, directly updating all parameters requires O(d3)
computation due to matrix inversion, while this procedure
requires O(md + dm logm + p3), for the forward passes,
FOCI algorithm, and subsequent subsetted matrix inversion.
For any reasonable setting, we have p ≪ d, and so this
clearly offers significant practical advantages.

5.1. Theoretical Analysis

By definition, any neural network as described above is
actually a Markov Chain: we know that the output of a layer
is conditionally independent of the penultimate one given
the previous one, and clearly a change in one layer will
propagate forward through the rest of the network. How-
ever, when trained for a task with a large number of sam-
ples, the influence or “memory” of the network with respect
to a specific sample may not be clear. While the output of
the layers may follow a Markov Chain, the parameters in

the layers themselves do not, and their influence on a sam-
ple through the forward pass may be highly dependent or
correlated. Practically, we would hope that unlearning sam-
ples at convergence does not cause too much damage to the
model’s performance on the rest of the input samples. Fol-
lowing traditional unlearning analysis, we can bound the
residual gradient norm to relieve this tension.

Lemma 1. The gap between the gradient residual norm of
the FOCI Unlearning update in Algorithm 1 and a full un-
learning update via (4),

||∇F (w−
Foci, D

′)||2 − ||∇F (w−
Full, D

′)||2 (16)

shrinks as O(1/n2).

Proof. The full proof is in the appendix. Main idea: Be-
cause we only update a subset of parameters, the gradients
for the remainder should not change too much. Any change
to a selected layer only propagates to other layers by 1/n,
and a Taylor expansion about the new activation for that
layer gives the result.

How L-CODEC achieves acceleration for Unlearning?
Sampling with weights proportional to the Lipschitz con-
stant of individual filters/layers is an established approach
in optimization, see [17]. We argue that L-CODEC com-
putes an approximation to optimal sampling probabilities.
Under a mild assumption that the sampling probabilities
have full support, it turns out that correctness of our ap-
proximate (layer/filter selection) procedure can be guaran-
teed for unlearning purposes using recently developed opti-
mization tools, see [18]. By adapting results from [17], we
can show the following, summarizing the main result of our
slice-based unlearning procedure.

Theorem 1. Assume that layer-wise sampling probabilities
are nonzero. Given unlearning parameters ϵ, δ, the un-
learning procedure in Alg 1 is (ϵ′, δ′)−forgetting where
ϵ′ > ϵ, δ′ > δ represent an arbitrary precision (hyper-
parameter) required for unlearning. Moreover, iteratively
applying our algorithm converges exponentially fast (in ex-
pectation) w.r.t. the precision gap, that is, takes (at most)
O(log 1

gϵ
log 1

gδ
) iterations to output such a solution where

gϵ = ϵ′ − ϵ > 0,gδ = δ′ − δ > 0 are gap parameters.

Our result differs from Nesterov’s acceleration: we do
not use previous iterates in a momentum or ODE-like fash-
ion; rather, here we are closer to primal-dual algorithms
where knowing nonzero coordinates at the dual optimal so-
lution can be used to accelerate primal convergence, see [9].
Moreover, since our approach is randomized, the dynamics
can be better modeled using the SDE framework for un-
learning purposes, as in [31]. Here, we do not compute
anything extra, although it is feasible for future extensions.
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Remark 3. Our approach to estimate the Lipschitz constant
is different from [10] where an SDP must be solved – quite
infeasible for unlearning applications. Our approach can
be interpreted as solving a simplified form of the SDP pro-
posed there, when appropriate regularity conditions on the
feasible set of the SDP are satisfied.

A note on convexity. Existing methods for guaranteeing
removal and performance depend on models being con-
vex. Practical deep learning applications however involve
highly nonconvex functions. The intuitions of unlearning
for convex problems directly apply to nonconvex unlearn-
ing with one more technical assumption: minimizers of the
learning problem satisfy Second Order Sufficiency (SOS)
conditions. SOS guarantees that ∇2F̂ (ŵ), Ĥ in eq (7) of
[28] are PSD, and that the update (8) is an ascent direc-
tion w.r.t. the loss function on U , making unlearning pos-
sible. Guarantees for nonconvex unlearning involve explic-
itly characterizing a subset of SOS points (so-called “basin
of attraction” of population loss), i.e., which points gradient
descent can converge to, see §1.3 in [33]. So, will minimiz-
ers from first order methods satisfy SOS conditions? Gen-
erally, this is not true, e.g., when the Hessian is indefinite,
Ĥ ̸⪰ 0, the update itself may not be an ascent direction
w.r.t. negative of the loss. Here, standard Hessian modifi-
cation schemes are applicable [35], subsequently using the
Newton’s step in [30] with a diagonally modified Hessian.

We fix weight decay during training, acting as ℓ2 regu-
larization and giving us an approximate λ-strong convexity.
We also take advantage of this property to smooth our Hes-
sian prior to inversion, intuitively extending the natural lin-
earization about a strongly-convex function. Interestingly,
this exactly matches a key conclusion from [2]: weight-
decay heavily affects the quality of the measured influence,
consistent with our nonconvexity discussion.
Implementation Details. As we only need a subset of the
Hessian, we compute the finite difference among the pa-
rameters within the blocks selected. For large models, even
subsets of model parameters may lead to large Hessian com-
putations, so we move parameters as needed to the CPU for
parameter updates. Pairwise distance computations for CI
testing via nearest neighbor are carried out on the GPU [37].
Our code although not explicitly optimized achieves reason-
able run-time for unlearning for deep models, e.g., one un-
learning step for person re-identification task on a ResNet50
model with roughly 24M parameters takes about 3 minutes.

6. L-FOCI in Generic ML Settings
We begin with understanding the value of L-CODEC and

L-FOCI for Markov Blanket Identification and progress to
applications in typical unlearning tasks involving large neu-
ral networks previously infeasible with existing scrubbing
tools. See appendix for additional details.

Figure 3. L-CODEC vs CODEC run time comparison for identi-
fying sufficient subsets for each CelebA attribute separately (pairs
of columns, details in supplement).

Raw Data Feature Maps
Method TPR FPR Time (s) TPR FPR Time (s)
[36] 0.75 0.50 5124.22 0.875 0.00 516.19
L-CODEC + CIT 1.00 0.50 402.10 0.75 0.00 117.29
L-CODEC + L-FOCI N/A 0.833 0.50 0.464

Table 1. 3D-Bullseye Markov Blanket identification. CIT repre-
sents the model in [36]. Both L-CODEC and L-FOCI run much
faster than recent Markov Blanket identification schemes. L-FOCI
is not applicable to the multi-dimensional raw data setting.

L-CODEC Evaluation. To assess speedup gained in the
discrete setting when running L-CODEC, we construct the
Markov Blanket for specific attributes provided as side in-
formation with the CelebA dataset. Fig. 3 shows the wall-
clock times for Markov Blanket Selection via FOCI and L-
FOCI for each attribute.
Markov Blanket Identification. We replicate the experi-
mental setup in Sec 5.3 of [36], where a high dimensional
distribution over a ground truth graph is generated, and fea-
ture mappings are used to reduce the dimension and map
to a latent space. Table 1 summarizes subset identification
efficacy and runtime. Replacing conditional mutual infor-
mation (CMI) with L-CODEC, we see a clear improvement
in both runtime and Markov Blanket identification over the
raw data, and comparable results in the latent feature space.
Using L-FOCI directly in the feature space, we identify an
additional spurious feature not part of the Markov Blanket,
but runtime is significantly faster.
Spurious Feature Regularization. This Markov Blanket
(MB) identification scheme can be used to address spuri-
ous feature effects on traditional NN models. A straight-
forward approach would be to directly add a loss term for
each potentially important feature over which we would like
to regularize, L(θ) +∑

S∈S RS(θ). However, with a large
number of outside factors S, this can adversely effect train-
ing. We instead use L-FOCI to identify the set of minimal
factors that, when conditioned, make the rest conditionally
independent. Then it is only necessary to include regulariz-
ers over S ∈ MB(Y ).

We evaluate a simple attribute image classification set-
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Figure 4. Validation accuracies after training to predict “No
Beard” in the CelebA dataset. (L to R) regularization for all fea-
tures, for a random subset, and via FOCI. Green indicates accuracy
on the data with that feature, red, without.

ting using the CelebA dataset. We run L-FOCI over the at-
tributes as in our L-CODEC evaluation, and regularize us-
ing a Gradient Reversal Layer for a simple accuracy term
over those attributes. Results in Fig. 4 clearly show that
selection with FOCI provides the best result, maintaining
high overall accuracy but also preserving high accuracy on
sets of samples with/without correlated attributes.

7. L-FOCI for Machine Unlearning
7.1. Compare to Full Hessian Computation

For simple regressors, we can compute the full Hessian
and compare results generated by a traditional unlearning
update, our L-FOCI update, and a random selection up-
date. To reduce variance and show the best possible ran-
dom selection, we run our L-FOCI and randomly choose a
set of the same size for each random selection. Fig. 5 (left)
shows validation and residual accuracies for 1000 random
removals from MNIST (average over 10 runs).
Are we selecting reasonable subsets? A natural question
is whether the subset selection via L-FOCI is any better
than random, given that we are effectively taking a smaller
global step. We answer this in the affirmative with a sim-
ple comparison with a random selection of size equal to the
set selected by L-FOCI. Fig. 5 (left) shows that the sam-
ple gradient norm for selections made by L-FOCI are larger
than those of a random selection: the subset of the model
scrubbed of this specific sample has a larger impact on its
final loss, and thus the gradient norm post-removal is large.
Does the formulation scale? We scrub random samples
from various CIFAR-10 models, and evaluate performance
for the same set of hyperparameters. When the models are
larger than logistic regression, it is infeasible to estimate the
full Hessians, so we must use our L-FOCI selection update.
Fig. 5 (right) shows removal performance over many typical
models with varying sizes. Models that have higher base ac-
curacies tend to support more removals before performance

drops. This matches results for differentially private mod-
els: models that generalize well may not have overfit and
thus may already be private, allowing “fast” forgetting.
Tradeoff vs Retraining. While our focus is the setting in
which retraining is not feasible, where we can retrain we
compare validation accuracies as a function of number of
removals. Using a subset of MNIST, we train to conver-
gence and iteratively remove samples using our construc-
tion, retraining fully at each step for comparison. With 1000
training samples from each class and reasonable settings
of privacy parameters (ϵ = 0.1, δ = 0.01), we support a
large percentage of removals until validation accuracy drops
more than a few percent, see Fig. 6.

7.2. Removal in NLP models

We now scrub samples from transformer based models
using LEDGAR [34], a multilabel corpus of legal provi-
sions in contracts. We use the prototypical subset which
contains 110156 provisions pertaining to 13 most com-
monly used labels based on frequency. Our model is a fine-
tuned DistilBERT [29] and uses the [CLS] token as an input
to the classification head. Table. 7b shows results of scrub-
bing the provisions from two different classes; Governing
Laws and Terminations which have the highest/lowest sup-
port in the test set. As expected with increasing ϵ, i.e.,
lower privacy guarantees, we can support more number of
removals based on the Micro F1 score of the overall model.
The Micro F1 scores, for the removed class fall off rapidly,
while the change in overall scores is more gradual.

7.3. Removal from Pretrained Models

The above settings show settings where a sample from
one specific source may be removed. A more direct appli-
cation of unlearning is completely removing samples from
a specific class; a compelling use case is face recognition.

We utilize the VGGFace dataset and model, pretrained
from the original work in [21, 27]. The model uses a to-
tal of approximately 1 million images to predict the identity
of 2622 celebrities in the dataset. Using a reconstructed
subset of 100 images from each person, we first fine-tune
the model on this subset for 5 epochs, and use the resultant
models as estimates of the Hessian. In this setting, the VG-
GFace model is very large, including a linear layer of size
25088 × 4096. Selecting even a few slices from this layer
results in a Hessian matrix unable to fit in typical memory.
For this reason, we run a “cheap” version of L-FOCI: we
select only one slice that results in the largest conditional
dependence on the output loss.

Fig. 7a show results for scrubbing consecutive images
from one individual in the dataset for a strong privacy guar-
antee of ϵ = 10−5. As the number of samples scrubbed
increases, the performance on that class drops faster than
on the residual set, exactly as desired.
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Figure 5. (Left) Residual Accuracies & Sample Gradient Norm of removal for an MNIST Logistic Regressor. Averaged over 10 runs.
(Right) Residual accuracies and sample gradient norms for various CIFAR-10 models.

Figure 6. MNIST Retraining comparison averaged over 8 runs.
Validation accuracies and residual gradient norms.

# Supported Removals
ϵ Governing Laws Terminations
0.1 > 100 > 100
0.01 > 100 > 100
0.001 18 21
0.0005 6 7

Figure 7. (Left) Scrubbed and Residual Accuracies (every 10 re-
movals) for ϵ = 1e−5. The accuracy drop for the residual set is
gradual up to a certain number of removals. (Right) Scrubbing
transformer model for provision classification.

7.4. Removal from Person re-identification model

As a natural extension to our experiments on face recog-
nition, we evaluate unlearning of deep neural networks
trained for person re-identification. Here, the task is to as-
sociate the images pertaining to a particular individual but
collected in diverse camera settings, both belonging to the
same camera or from multiple cameras. In our experiments,
we use the Market-1501 dataset [38] and a Resnet50 archi-
tecture which was trained for the task. We unlearn sam-
ples belonging to a particular person, one at a time, and
check the performance of the model. Experimental results
are in agreement with results reported for the transformer
model as well as the VGGFace model. With very small
values of ϵ i.e. 0.0005 the number of supported removals
is limited to less than 10 depending on the person id be-
ing removed. However, with a larger value of ϵ, e.g., 0.1,
all potential samples can be removed without a noticeable
degradation in model performance in terms of mAP scores.
In Fig. 8, we clearly see that after scrubbing a model for a
particular person, its predictions for that particular individ-
ual become meaningless whereas the predictions on other

Figure 8. Activation maps from a model scrubbed for the person
on the left (right set is not scrubbed). For each triplet, from (L to
R) are the original image, the activation map and its image over-
lay. Note the effect of scrubbing: activations change significantly
for the scrubbed sample (compare column 2 to 3) whereas remain
stable for the non-scrubbed sample (compare column 5 to 6).

classes are still possible with confidence, as desired. Ad-
ditional experiments with different datasets, model archi-
tectures and other ablations for deep unlearning for person
re-identification models are presented in the appendix.

8. Conclusion

Our selection scheme identifies a subset of parameters
to update and significantly reduces compute requirements
for standard Hessian unlearning. For smaller networks with
a large number of removals, retraining may be effective,
but when full training sets are not available or retraining
is costly, unlearning in some form is needed. We show the
ability to approximately unlearn for large models prevalent
in vision, a capability that has not so far been demonstrated.

Social Impact. Indiscriminate use of personal data in
training large AI models is ethically questionable and some-
times illegal. We need mechanisms to ensure that AI mod-
els operate within boundaries specified by society and le-
gal guardrails. As opt-out laws get implemented, compli-
ance on the service-provider end will entail costs. While
our contributions cannot guarantee perfect forgetting, with
additional validation they can become a part of a suite of
methods for unlearning.
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