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Abstract

The challenging task of multi-object tracking (MOT) re-
quires simultaneous reasoning about track initialization,
identity, and spatio-temporal trajectories. We formulate
this task as a frame-to-frame set prediction problem and
introduce TrackFormer, an end-to-end trainable MOT ap-
proach based on an encoder-decoder Transformer archi-
tecture. Our model achieves data association between
frames via attention by evolving a set of track predictions
through a video sequence. The Transformer decoder ini-
tializes new tracks from static object queries and autore-
gressively follows existing tracks in space and time with
the conceptually new and identity preserving track queries.
Both query types benefit from self- and encoder-decoder
attention on global frame-level features, thereby omitting
any additional graph optimization or modeling of mo-
tion and/or appearance. TrackFormer introduces a new
tracking-by-attention paradigm and while simple in its de-
sign is able to achieve state-of-the-art performance on the
task of multi-object tracking (MOT17) and segmentation
(MOTS20). The code is available at https://github.
com/timmeinhardt/trackformer

1. Introduction
Humans need to focus their attention to track objects in

space and time, for example, when playing a game of ten-
nis, golf, or pong. This challenge is only increased when
tracking not one, but multiple objects, in crowded and real
world scenarios. Following this analogy, we demonstrate
the effectiveness of Transformer [50] attention for the task
of multi-object tracking (MOT) in videos.

The goal in MOT is to follow the trajectories of a set of
objects, e.g., pedestrians, while keeping their identities dis-
criminated as they are moving throughout a video sequence.
Due to the advances in image-level object detection [7, 38],
most approaches follow the two-step tracking-by-detection
paradigm: (i) detecting objects in individual video frames,
and (ii) associating sets of detections between frames and
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Figure 1. TrackFormer jointly performs object detection and
tracking-by-attention with Transformers. Object and autoregres-
sive track queries reason about track initialization, identity, and
spatiotemporal trajectories.

thereby creating individual object tracks over time. Tra-
ditional tracking-by-detection methods associate detections
via temporally sparse [22, 25] or dense [18, 21] graph opti-
mization, or apply convolutional neural networks to predict
matching scores between detections [8, 23].

Recent works [4,6,28,66] suggest a variation of the tradi-
tional paradigm, coined tracking-by-regression [12]. In this
approach, the object detector not only provides frame-wise
detections, but replaces the data association step with a con-
tinuous regression of each track to the changing position of
its object. These approaches achieve track association im-
plicitly, but provide top performance only by relying either
on additional graph optimization [6, 28] or motion and ap-
pearance models [4]. This is largely due to the isolated and
local bounding box regression which lacks any notion of
object identity or global communication between tracks.

In this work, we introduce the tracking-by-attention
paradigm which not only applies attention for data associ-
ation [11, 67] but jointly performs tracking and detection.
As shown in Figure 1, this is achieved by evolving a set of
tracks from frame to frame forming trajectories over time.
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We present a first straightforward instantiation of
tracking-by-attention, TrackFormer, an end-to-end train-
able Transformer [50] encoder-decoder architecture. It
encodes frame-level features from a convolutional neural
network (CNN) [17] and decodes queries into bounding
boxes associated with identities. The data association is
performed through the novel and simple concept of track
queries. Each query represents an object and follows it in
space and time over the course of a video sequence in an
autoregressive fashion. New objects entering the scene are
detected by static object queries as in [7, 68] and subse-
quently transform to future track queries. At each frame,
the encoder-decoder computes attention between the input
image features and the track as well as object queries, and
outputs bounding boxes with assigned identities. Thereby,
TrackFormer performs tracking-by-attention and achieves
detection and data association jointly without relying on
any additional track matching, graph optimization, or ex-
plicit modeling of motion and/or appearance. In contrast
to tracking-by-detection/regression, our approach detects
and associates tracks simultaneously in a single step via at-
tention (and not regression). TrackFormer extends the re-
cently proposed set prediction objective for object detec-
tion [7, 47, 68] to multi-object tracking.

We evaluate TrackFormer on the MOT17 [29] bench-
mark where it achieves state-of-the-art performance for
public and private detections. Furthermore, we demonstrate
the extension with a mask prediction head and show state-
of-the-art results on the Multi-Object Tracking and Seg-
mentation (MOTS20) challenge [51]. We hope this simple
yet powerful baseline will inspire researchers to explore the
potential of the tracking-by-attention paradigm.

In summary, we make the following contributions:

• An end-to-end trainable multi-object tracking ap-
proach which achieves detection and data association
in a new tracking-by-attention paradigm.

• The concept of autoregressive track queries which em-
bed an object’s spatial position and identity, thereby
tracking it in space and time.

• The TrackFormer model which obtains state-of-the-
art results on two challenging multi-object tracking
(MOT17) and segmentation (MOTS20) benchmarks.

2. Related work
In light of the recent trend in MOT to look beyond

tracking-by-detection, we categorize and review methods
according to their respective tracking paradigm.

Tracking-by-detection approaches form trajectories by
associating a given set of detections over time.

Graphs have been used for track association and long-
term re-identification by formulating the problem as a max-
imum flow (minimum cost) optimization [3] with distance
based [20, 36, 62] or learned costs [24]. Other methods
use association graphs [45], learned models [22], and mo-
tion information [21], general-purpose solvers [61], multi-
cuts [48], weighted graph labeling [18], edge lifting [19],
or trainable graph neural networks [6,54]. However, graph-
based approaches suffer from expensive optimization rou-
tines, limiting their practical application for online tracking.

Appearance driven methods capitalize on increasingly
powerful image recognition backbones to track objects by
relying on similarity measures given by twin neural net-
works [23], learned reID features [32, 41], detection candi-
date selection [8] or affinity estimation [10]. Similar to re-
identification, appearance models struggle in crowded sce-
narios with many object-object-occlusions.

Motion can be modelled for trajectory prediction [1, 25,
42] using a constant velocity assumption (CVA) [2, 9] or
the social force model [25, 34, 43, 58]. Learning a motion
model from data [24] accomplishes track association be-
tween frames [63]. However, the projection of non-linear
3D motion [49] into the 2D image domain still poses a chal-
lenging problem for many models.

Tracking-by-regression refrains from associating detec-
tions between frames but instead accomplishes tracking by
regressing past object locations to their new positions in the
current frame. Previous efforts [4, 14] use regression heads
on region-pooled object features. In [66], objects are rep-
resented as center points which allow for an association by
a distance-based greedy matching algorithm. To overcome
their lacking notion of object identity and global track rea-
soning, additional re-identification and motion models [4],
as well as traditional [28] and learned [6] graph methods
have been necessary to achieve top performance.

Tracking-by-segmentation not only predicts object
masks but leverages the pixel-level information to mitigate
issues with crowdedness and ambiguous backgrounds.
Prior attempts used category-agnostic image segmenta-
tion [30], applied Mask R-CNN [16] with 3D convolu-
tions [51], mask pooling layers [37], or represented objects
as unordered point clouds [57] and cost volumes [56].
However, the scarcity of annotated MOT segmentation data
makes modern approaches still rely on bounding boxes.

Attention for image recognition correlates each element
of the input with respect to the others and is used in Trans-
formers [50] for image generation [33] and object detec-
tion [7, 68]. For MOT, attention has only been used to as-
sociate a given set of object detections [11,67], not tackling
the detection and tracking problem jointly.
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In contrast, TrackFormer casts the entire tracking objec-
tive into a single set prediction problem, applying attention
not only for the association step. It jointly reasons about
track initialization, identity, and spatio-temporal trajecto-
ries. We only rely on feature-level attention and avoid addi-
tional graph optimization and appearance/motion models.

3. TrackFormer
We present TrackFormer, an end-to-end trainable multi-

object tracking (MOT) approach based on an encoder-
decoder Transformer [50] architecture. This section de-
scribes how we cast MOT as a set prediction problem and
introduce the new tracking-by-attention paradigm. Further-
more, we explain the concept of track queries and their ap-
plication for frame-to-frame data association.

3.1. MOT as a set prediction problem

Given a video sequence with K individual object iden-
tities, MOT describes the task of generating ordered tracks
Tk = (bkt1 , b

k
t2 , . . . ) with bounding boxes bt and track iden-

tities k. The subset (t1, t2, . . . ) of total frames T indicates
the time span between an object entering and leaving the
the scene. These include all frames for which an object is
occluded by either the background or other objects.

In order to cast MOT as a set prediction problem, we
leverage an encoder-decoder Transformer architecture. Our
model performs online tracking and yields per-frame object
bounding boxes and class predictions associated with iden-
tities in four consecutive steps:

(i) Frame-level feature extraction with a common CNN
backbone, e.g., ResNet-50 [17].

(ii) Encoding of frame features with self-attention in a
Transformer encoder [50].

(iii) Decoding of queries with self- and encoder-decoder at-
tention in a Transformer decoder [50].

(iv) Mapping of queries to box and class predictions using
multilayer perceptrons (MLP).

Objects are implicitly represented in the decoder queries,
which are embeddings used by the decoder to output bound-
ing box coordinates and class predictions. The decoder al-
ternates between two types of attention: (i) self-attention
over all queries, which allows for joint reasoning about
the objects in a scene and (ii) encoder-decoder attention,
which gives queries global access to the visual information
of the encoded features. The output embeddings accumu-
late bounding box and class information over multiple de-
coding layers. The permutation invariance of Transformers
requires additive feature and object encodings for the frame
features and decoder queries, respectively.

3.2. Tracking-by-attention with queries

The total set of output embeddings is initialized with two
types of query encodings: (i) static object queries, which
allow the model to initialize tracks at any frame of the video,
and (ii) autoregressive track queries, which are responsible
for tracking objects across frames.

The simultaneous decoding of object and track queries
allows our model to perform detection and tracking in a uni-
fied way, thereby introducing a new tracking-by-attention
paradigm. Different tracking-by-X approaches are defined
by their key component responsible for track generation.
For tracking-by-detection, the tracking is performed by
computing/modelling distances between frame-wise object
detections. The tracking-by-regression paradigm also per-
forms object detection, but tracks are generated by regress-
ing each object box to its new position in the current frame.
Technically, our TrackFormer also performs regression in
the mapping of object embeddings with MLPs. However,
the actual track association happens earlier via attention in
the Transformer decoder. A detailed architecture overview
which illustrates the integration of track and object queries
into the Transformer decoder is shown in the appendix.

Track initialization. New objects appearing in the scene
are detected by a fixed number of Nobject output embeddings
each initialized with a static and learned object encoding
referred to as object queries [7]. Intuitively, each object
query learns to predict objects with certain spatial proper-
ties, such as bounding box size and position. The decoder
self-attention relies on the object encoding to avoid dupli-
cate detections and to reason about spatial and categorical
relations of objects. The number of object queries is ought
to exceed the maximum number of objects per frame.

Track queries. In order to achieve frame-to-frame track
generation, we introduce the concept of track queries to the
decoder. Track queries follow objects through a video se-
quence carrying over their identity information while adapt-
ing to their changing position in an autoregressive manner.

For this purpose, each new object detection initializes
a track query with the corresponding output embedding of
the previous frame. The Transformer encoder-decoder per-
forms attention on frame features and decoder queries con-
tinuously updating the instance-specific representation of an
object‘s identity and location in each track query embed-
ding. Self-attention over the joint set of both query types al-
lows for the detection of new objects while simultaneously
avoiding re-detection of already tracked objects.

In Figure 2, we provide a visual illustration of the track
query concept. The initial detections in frame t = 0
spawn new track queries following their corresponding ob-
jects to frame t and beyond. To this end, Nobject ob-
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Figure 2. TrackFormer casts multi-object tracking as a set prediction problem performing joint detection and tracking-by-attention. The
architecture consists of a CNN for image feature extraction, a Transformer [50] encoder for image feature encoding and a Transformer
decoder which applies self- and encoder-decoder attention to produce output embeddings with bounding box and class information. At
frame t = 0, the decoder transforms Nobject object queries (white) to output embeddings either initializing new autoregressive track queries
or predicting the background class (crossed). On subsequent frames, the decoder processes the joint set of Nobject +Ntrack queries to follow
or remove (blue) existing tracks as well as initialize new tracks (purple).

ject queries (white) are decoded to output embeddings for
potential track initializations. Each valid object detec-
tion {b00, b

1
0, . . . } with a classification score above σobject,

i.e., output embedding not predicting the background class
(crossed), initializes a new track query embedding. Since
not all objects in a sequence appear on the first frame, the
track identities Kt=0 = {0, 1, . . . } only represent a sub-
set of all K. For the decoding step at any frame t > 0,
track queries initialize additional output embeddings asso-
ciated with different identities (colored). The joint set of
Nobject+Ntrack output embeddings is initialized by (learned)
object and (temporally adapted) track queries, respectively.

The Transformer decoder transforms the entire set of
output embeddings at once and provides the input for the
subsequent MLPs to predict bounding boxes and classes for
frame t. The number of track queries Ntrack changes be-
tween frames as new objects are detected or tracks removed.
Tracks and their corresponding query can be removed ei-
ther if their classification score drops below σtrack or by
non-maximum suppression (NMS) with an IoU threshold of
σNMS. A comparatively high σNMS only removes strongly
overlapping duplicate bounding boxes which we found to
not be resolvable by the decoder self-attention.

Track query re-identification. The ability to decode an
arbitrary number of track queries allows for an attention-
based short-term re-identification process. We keep decod-
ing previously removed track queries for a maximum num-
ber of Ttrack-reid frames. During this patience window, track
queries are considered to be inactive and do not contribute
to the trajectory until a classification score higher than
σtrack-reid triggers a re-identification. The spatial information
embedded into each track query prevents their application
for long-term occlusions with large object movement, but,

nevertheless, allows for a short-term recovery from track
loss. This is possible without any dedicated re-identification
training; and furthermore, cements TrackFormer’s holistic
approach by relying on the same attention mechanism as
for track initialization, identity preservation and trajectory
forming even through short-term occlusions.

3.3. TrackFormer training

For track queries to work in interaction with object
queries and follow objects to the next frame, TrackFormer
requires dedicated frame-to-frame tracking training. As in-
dicated in Figure 2, we train on two adjacent frames and
optimize the entire MOT objective at once. The loss for
frame t measures the set prediction of all output embed-
dings N = Nobject +Ntrack with respect to the ground truth
objects in terms of class and bounding box prediction.

The set prediction loss is computed in two steps:

(i) Object detection on frame t − 1 with Nobject object
queries (see t = 0 in Figure 2).

(ii) Tracking of objects from (i) and detection of new ob-
jects on frame t with all N queries.

The number of track queries Ntrack depends on the number
of successfully detected objects in frame t−1. During train-
ing, the MLP predictions ŷ = {ŷj}Nj=1 of the output embed-
dings from step (iv) are each assigned to one of the ground
truth objects y or the background class. Each yi represents
a bounding box bi, object class ci and identity ki.

Bipartite matching. The mapping j = π(i) from ground
truth objects yi to the joint set of object and track query pre-
dictions ŷj is determined either via track identity or costs
based on bounding box similarity and object class. For the
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former, we denote the subset of ground truth track identi-
ties at frame t with Kt ⊂ K. Each detection from step (i)
is assigned to its respective ground truth track identity k
from the set Kt−1 ⊂ K. The corresponding output embed-
dings, i.e., track queries, inherently carry over the identity
information to the next frame. The two ground truth track
identity sets describe a hard assignment of the Ntrack track
query outputs to the ground truth objects in frame t:

Kt ∩Kt−1: Match by track identity k.

Kt−1 \Kt: Match with background class.

Kt \Kt−1: Match by minimum cost mapping.

The second set of ground truth track identities Kt−1 \ Kt

includes tracks which either have been occluded or left the
scene at frame t. The last set Kobject = Kt \ Kt−1 of pre-
viously not yet tracked ground truth objects remains to be
matched with the Nobject object queries. To achieve this, we
follow [7] and search for the injective minimum cost map-
ping σ̂ in the following assignment problem,

σ̂ = argmin
σ

∑
ki∈Kobject

Cmatch(yi, ŷσ(i)), (1)

with index σ(i) and pair-wise costs Cmatch between ground
truth yi and prediction ŷi. The problem is solved with a
combinatorial optimization algorithm as in [47]. Given the
ground truth class labels ci and predicted class probabilities
p̂i(ci) for output embeddings i, the matching cost Cmatch

with class weighting λcls is defined as

Cmatch = −λclsp̂σ(i)(ci) + Cbox(bi, b̂σ(i)). (2)

The authors of [7] report better performance without loga-
rithmic class probabilities. The Cbox term penalizes bound-
ing box differences by a combination of ℓ1 distance and
generalized intersection over union (IoU) [39] cost Ciou,

Cbox = λℓ1 ||bi − b̂σ(i)||1 + λiouCiou(bi, b̂σ(i)), (3)

with weighting parameters λℓ1 , λiou,∈ ℜ. In contrast to ℓ1,
the scale-invariant IoU term provides similar relative errors
for different box sizes. The optimal cost mapping σ̂ deter-
mines the corresponding assignments in π(i).

Set prediction loss. The final MOT set prediction loss is
computed over all N = Nobject +Ntrack output predictions:

LMOT(y, ŷ, π) =

N∑
i=1

Lquery(y, ŷi, π). (4)

The output embeddings which were not matched via track
identity or σ̂ are not part of the mapping π and will be as-
signed to the background class ci = 0. We indicate the

ground truth object matched with prediction i by yπ=i and
define the loss per query

Lquery =

{
−λcls log p̂i(cπ=i) + Lbox(bπ=i, b̂i), if i ∈ π

−λcls log p̂i(0), if i /∈ π.

The bounding box loss Lbox is computed in the same fash-
ion as (3), but we differentiate its notation as the cost term
Cbox is generally not required to be differentiable.

Track augmentations. The two-step loss computation,
see (i) and (ii), for training track queries represents only
a limited range of possible tracking scenarios. Therefore,
we propose the following augmentations to enrich the set
of potential track queries during training. These augmen-
tations will be verified in our experiments. We use three
types of augmentations similar to [66] which lead to pertur-
bations of object location and motion, missing detections,
and simulated occlusions.

1. The frame t− 1 for step (i) is sampled from a range of
frames around frame t, thereby generating challeng-
ing frame pairs where the objects have moved substan-
tially from their previous position. Such a sampling
allows for the simulation of camera motion and low
frame rates from usually benevolent sequences.

2. We sample false negatives with a probability of pFN
by removing track queries before proceeding with
step (ii). The corresponding ground truth objects in
frame t will be matched with object queries and trig-
ger a new object detection. Keeping the ratio of false
positives sufficiently high is vital for a joined training
of both query types.

3. To improve the removal of tracks, i.e., by background
class assignment, in occlusion scenarios, we comple-
ment the set of track queries with additional false pos-
itives. These queries are sampled from output embed-
dings of frame t−1 that were classified as background.
Each of the original track queries has a chance of pFP
to spawn an additional false positive query. We chose
these with a large likelihood of occluding with the re-
spective spawning track query.

Another common augmentation for improved robust-
ness, is to applying spatial jittering to previous frame
bounding boxes or center points [66]. The nature of track
queries, which encode object information implicitly, does
not allow for such an explicit perturbation in the spatial do-
main. We believe our randomization of the temporal range
provides a more natural augmentation from video data.
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4. Experiments
In this section, we present tracking results for

TrackFormer on two MOTChallenge benchmarks, namely,
MOT17 [29] and MOTS20 [51]. Furthermore, we verify
individual contributions in an ablation study.

4.1. MOT benchmarks and metrics

Benchmarks. The MOT17 [29] benchmark consists of a
train and test set, each with 7 sequences and pedestrians
annotated with full-body bounding boxes. To evaluate the
tracking (data association) robustness independently, three
sets of public detections with varying quality are provided,
namely, DPM [15], Faster R-CNN [38] and SDP [59].

MOTS20 [51] provides mask annotations for 4 train and
test sequences of MOT17 but without annotations for small
objects. The corresponding bounding boxes are not full-
body, but based on the visible segmentation masks.

Metrics. Different aspects of MOT are evaluated by a
number of individual metrics [5]. The community focuses
on two compound metrics, namely, Multiple Object Track-
ing Accuracy (MOTA) and Identity F1 Score (IDF1) [40].
While the former focuses on object coverage, the identity
preservation of a method is measured by the latter. For
MOTS, we report MOTSA which evaluates predictions with
a ground truth matching based on mask IoU.

Public detections. The MOT17 [29] benchmark is eval-
uated in a private and public detection setting. The latter
allows for a comparison of tracking methods independent
of the underlying object detection performance. MOT17
provides three sets of public detections with varying qual-
ity. In contrast to classic tracking-by-detection methods,
TrackFormer is not able to directly produce tracking out-
puts from detection inputs. Therefore, we report the results
of TrackFormer and CenterTrack [66] in Table 1 by filter-
ing the initialization of tracks with a minimum IoU require-
ment. For more implementation details and a discussion on
the fairness of such a filtering, we refer to the appendix.

4.2. Implementation details

TrackFormer follows the ResNet50 [17] CNN feature ex-
traction and Transformer encoder-decoder architecture pre-
sented in Deformable DETR [68]. For track queries, the de-
formable reference points for the current frame are dynam-
ically adjusted to the previous frame bounding box centers.
Furthermore, for the decoder we stack the feature maps of
the previous and current frame and compute cross-attention
with queries over both frames. Queries are able to discrim-
inate between features from the two frames by applying a
temporal feature encoding as in [55]. For more detailed hy-
perparameters, we refer to the appendix.

Decoder Queries. By design, TrackFormer can only de-
tect a maximum of Nobject objects. To detect the maximum
number of 52 objects per frame in MOT17 [29], we train
TrackFormer with Nobject = 500 learned object queries. For
optimal performance, the total number of queries must ex-
ceed the number of ground truth objects per frame by a large
margin. The number of possible track queries is adaptive
and only practically limited by the abilities of the decoder.

Simulate MOT from single images. The encoder-
decoder multi-level attention mechanism requires substan-
tial amounts of training data. Hence, we follow a similar ap-
proach as in [66] and simulate MOT data from the Crowd-
Human [44] person detection dataset. The adjacent training
frames t−1 and t are generated by applying random spatial
augmentations to a single image. To generate challenging
tracking scenarios, we randomly resize and crop of up to
20% with respect to the original image size.

Training procedure. All trainings follow [68] and ap-
ply a batch size of 2 with initial learning rates of 0.0002
and 0.00002 for the encoder-decoder and backbone, respec-
tively. For public detections, we initialize with the model
weights from [68] pretrained on COCO [27] and then fine-
tune on MOT17 for 50 epochs with a learning rate drop af-
ter 10 epochs. The private detections model is trained from
scratch for 85 epochs on CrowdHuman [44] with simulated
adjacent frames and we drop the initial learning rates after
50 epochs. To avoid overfitting to the small MOT17 dataset,
we then fine-tune for additional 40 epochs on the combined
CrowdHuman and MOT17 datasets. The fine-tuning starts
with the initial learning rates which are dropped after 10
epochs. By the nature of track queries each sample has a
different number of total queries N = Nobject + Ntrack. In
order to stack samples to a batch, we pad the samples with
additional false positive queries. The training of the private
detections model takes around 2 days on 7 × 32GB GPUs.

Mask training. TrackFormer predicts instance-level ob-
ject masks with a segmentation head as in [7] by gener-
ating spatial attention maps from the encoded image fea-
tures and decoder output embeddings. Subsequent upscal-
ing and convolution operations yield mask predictions for
all output embeddings. We adopt the private detection train-
ing pipeline from MOT17 but retrain TrackFormer with the
original DETR [7] attention. This is due to the reduced
memory consumption for single scale feature maps and in-
ferior segmentation masks from sparse deformable atten-
tion maps. Furthermore, the benefits of deformable atten-
tion vanish on MOTS20 as it excludes small objects. After
training on MOT17, we freeze the model and only train the
segmentation head on all COCO images containing persons.
Finally, we fine-tune the entire model on MOTS20.
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Method Data FPS ↑ MOTA ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓

Public

O
ffl

in
e

jCC [21] – – 51.2 54.5 493 872 25937 247822 1802
FWT [18] – – 51.3 47.6 505 830 24101 247921 2648
eHAF [45] – – 51.8 54.7 551 893 33212 236772 1834
TT [63] – – 54.9 63.1 575 897 20236 233295 1088
MPNTrack [6] M+C – 58.8 61.7 679 788 17413 213594 1185
Lif T [19] M+C – 60.5 65.6 637 791 14966 206619 1189

O
nl

in
e

FAMNet [10] – – 52.0 48.7 450 787 14138 253616 3072
Tracktor++ [4] M+C 1.3 56.3 55.1 498 831 8866 235449 1987
GSM [28] M+C – 56.4 57.8 523 813 14379 230174 1485
CenterTrack [66] – 17.7 60.5 55.7 580 777 11599 208577 2540
TMOH [46] – – 62.1 62.8 633 739 10951 201195 1897
TrackFormer – 7.4 62.3 57.6 688 638 16591 192123 4018

Private

O
nl

in
e

TubeTK [31] JTA – 63.0 58.6 735 468 27060 177483 4137
GSDT [54] 6M – 73.2 66.5 981 411 26397 120666 3891
FairMOT [64] CH+PD – 73.7 72.3 1017 408 27507 117477 3303
PermaTrack [49] CH+PD – 73.8 68.9 1032 405 28998 115104 3699
GRTU [53] CH+6M – 75.5 76.9 1158 495 27813 108690 1572
TLR [52] CH+6M – 76.5 73.6 1122 300 29808 99510 3369

CTracker [35] – – 66.6 57.4 759 570 22284 160491 5529
CenterTrack [66] CH 17.7 67.8 64.7 816 579 18498 160332 3039
QuasiDense [32] – – 68.7 66.3 957 516 26589 146643 3378
TraDeS [56] CH – 69.1 63.9 858 507 20892 150060 3555
TrackFormer CH 7.4 74.1 68.0 1113 246 34602 108777 2829

Table 1. Comparison of multi-object tracking methods on
the MOT17 [29] test set. We report private as well as pub-
lic detection results and separate between online and offline ap-
proaches. Both TrackFormer and CenterTrack filter tracks by re-
quiring a minimum IoU with public detections. For a detailed dis-
cussion on the fairness of such a filtering, we refer to the appendix.
We indicated additional training Data: CH=CrowdHuman [44],
PD=Parallel Domain [49] (synthetic), 6M=6 tracking datasets
as in [64], JTA [13] (synthetic), M=Market1501 [65] and
C=CUHK03 [26]. Runtimes (FPS) are self-measured.

4.3. Benchmark results

MOT17. Following the training procedure described
in Section 4.2, we evaluate TrackFormer on the
MOT17 [29] test set and report results in Table 1.

First of all, we isolate the tracking performance and
compare results in a public detection setting by applying
a track initialization filtering similar to [66]. However to
improve fairness, we filter not by bounding box center dis-
tance as in [66] but a minimum IoU as detailed in the ap-
pendix. TrackFormer performs on-par with state-of-the-art
results in terms of MOTA without pretraining on Crowd-
Human [44]. Our identity preservation performance is only
surpassed by [46] and offline methods which benefit from
the processing of entire sequences at once.

On private detections, we achieve a new state-of-the-art
both in terms of MOTA (+5.0) and IDF1 (1.7) for meth-
ods only trained on CrowdHuman [44]. Only the meth-
ods [49, 52, 53] which follow [64] and pretrain on 6 addi-
tional tracking datasets (6M) surpass our performance. In

Method TbD sMOTSA ↑ IDF1 ↑ FP ↓ FN ↓ ID Sw. ↓

Train set (4-fold cross-validation)

MHT DAM [22] × 48.0 – – – –
FWT [18] × 49.3 – – – –
MOTDT [8] × 47.8 – – – –
jCC [21] × 48.3 – – – –
TrackRCNN [51] 52.7 – – – –
MOTSNet [37] 56.8 – – – –
PointTrack [57] 58.1 – – – –
TrackFormer 58.7 – – – –

Test set

Track R-CNN [51] 40.6 42.4 1261 12641 567
TrackFormer 54.9 63.6 2233 7195 278

Table 2. Comparison of multi-object tracking and segmentation
methods evaluated on the MOTS20 [51] train and test sets. Meth-
ods indicated with TbD first perform tracking-by-detection with-
out segmentation on SDP [60] public detections and then predict
apply a Mask R-CNN [16] fine-tuned on MOTS20.

contrast to our public detection model not only the detec-
tion but tracking performance are greatly improved. This is
due to the additional tracking data provided by simulating
adjacent frames on CrowdHuman which satisfies the large
data requirements of Transformers.

Our tracking-by-attention approach achieves top perfor-
mance via global attention between encoded input pix-
els and decoder queries without relying on additional mo-
tion [4, 10] or appearance models [4, 8, 10]. Further-
more, the frame to frame association with track queries
avoids post-processing with heuristic greedy matching pro-
cedures [66] or additional graph optimization [28]. Our pro-
posed TrackFormer represents the first application of Trans-
formers to the MOT problem and could work as a blueprint
for future research in this promising direction. In particu-
lar, we expect great potential for methods going beyond the
two-frame training/inference regime.

MOTS20. In addition to object detection and tracking,
TrackFormer is able to predict instance-level segmentation
masks. As reported in Table 2, we achieve state-of-the-
art MOTS results in terms of object coverage (MOTSA)
and identity preservation (IDF1). All methods are evalu-
ated in a private setting. A MOTS20 test set submission
is only recently possible, hence we also provide the 4-fold
cross-validation evaluation established in [51] and report
the mean best epoch results over all splits. TrackFormer sur-
passes all previous methods without relying on a dedicated
tracking formulation for segmentation masks as in [57].
In Figure 3, we present a qualitative comparison of Track-
Former and Track R-CNN [51] on two test sequences.
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Figure 3. We compare TrackFormer segmentation results with the popular Track R-CNN [51] on selected MOTS20 [51] test sequences.
The superiority of TrackFormer in terms of MOTSA in Table 2 can be clearly observed by the difference in pixel mask accuracy.

Method MOTA ↑ ∆ IDF1 ↑ ∆

TrackFormer 71.3 73.4
————— w\o ————— ———————————–
Pretraining on CrowdHuman 69.3 -2.0 71.8 -1.6
Track query re-identification 69.2 -0.1 70.4 -1.4
Track augmentations (FP) 68.4 -0.8 70.0 -0.4
Track augmentations (Range) 64.0 -4.4 59.2 -10.8
Track queries 61.0 -3.0 45.1 -14.1

Table 3. Ablation study on TrackFormer components. We report
MOT17 [29] training set private results on a 50-50 frame split. The
last row without (w\o) all components is only trained for object
detection and associates tracks via greedy matching as in [66].

4.4. Ablation study

The ablation study on the MOT17 and MOTS20 training
sequences are evaluated in a private detection setting with a
50-50 frame and 4-fold cross-validation split, respectively.

TrackFormer components. We ablate the impact of dif-
ferent TrackFormer components on the tracking perfor-
mance in Table 3. Our full pipeline including pretraining
on the CrowdHuman dataset provides a MOTA and IDF1
of 71.3 and 73.4, respectively. The baseline without (w\o)
pretraining reduces this by -2.0 and -1.6 points, an effect
expected to even more severe for the generalization to test.
The attention-based track query re-identification has a neg-
ligible effect on MOTA but improves IDF1 by 1.4 points.

If we further ablate our false positives (FP) and frame
range track augmentations, we see another drop of -5.2
MOTA and -11.2 IDF1 points. Both augmentations provide
the training which rich tracking scenarios and prevent an
early overfitting. The false negative track augmentations are
indispensable for a joint training of object and track queries,
hence we refrain from ablating these.

Our baseline without any tracking components and track
queries is only trained for object detection. Data association
is performed via greedy center distance matching as in [66]
resulting in a huge drop of -3.0 MOTA and -14.1 IDF1. This

Method Mask training MOTA ↑ IDF1 ↑

TrackFormer
× 61.9 56.0

61.9 54.8

Table 4. We demonstrate the effect of jointly training for track-
ing and segmentation on a 4-fold split on the MOTS20 [51] train
set. We evaluate with regular MOT metrics, i.e., matching to
ground truth with bounding boxes instead of masks.

version represents previous post-processing and matching
methods and demonstrates the benefit of jointly addressing
track initialization, identity and trajectory forming in our
unified TrackFormer formulation.

Mask information improves tracking. This ablation
studies the synergies between segmentation and tracking
training. Table 4 only evaluates bounding box tracking
performance and shows a +1.2 IDF1 improvement when
trained jointly with mask prediction. The additional mask
information does not improve track coverage (MOTA) but
resolves ambiguous occlusion scenarios during training.

5. Conclusion
We have presented a unified tracking-by-attention

paradigm for detection and multi-object tracking with
Transformers. As an example of said paradigm, our end-
to-end trainable TrackFormer architecture applies autore-
gressive track query embeddings to follow objects over a
sequence. We jointly tackle track initialization, identity and
trajectory forming with a Transformer encoder-decoder ar-
chitecture and not relying on additional matching, graph op-
timization or motion/appearance modeling. Our approach
achieves state-of-the-art results for multi-object tracking as
well as segmentation. We hope that this paradigm will fos-
ter future work in Transformers for multi-object tracking.
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