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Figure 1. The proposed unpaired cartoon image synthesis method is able to convert diverse source photos (portrait in left, scene in right)
into cartoon images with controllable cartoon styles as the corresponding exemplars. Source face credits: FFHQ [15] and Seeprettyface [2].

Abstract

In this paper, we present a general-purpose solution to
cartoon image synthesis with unpaired training data. In
contrast to previous works learning pre-defined cartoon
styles for specified usage scenarios (portrait or scene), we
aim to train a common cartoon translator which can not
only simultaneously render exaggerated anime faces and
realistic cartoon scenes, but also provide flexible user con-
trols for desired cartoon styles. It is challenging due to the
complexity of the task and the absence of paired data. The
core idea of the proposed method is to introduce gated cy-
cle mapping, that utilizes a novel gated mapping unit to
produce the category-specific style code and embeds this
code into cycle networks to control the translation process.
For the concept of category, we classify images into differ-
ent categories (e.g., 4 types: photo/cartoon portrait/scene)
and learn finer-grained category translations rather than
overall mappings between two domains (e.g., photo and
cartoon). Furthermore, the proposed method can be eas-
ily extended to cartoon video generation with an auxiliary
dataset and a new adaptive style loss. Experimental results
demonstrate the superiority of the proposed method over the
state of the art and validate its effectiveness in the brand-
new task of general cartoon image synthesis.

1. Introduction

Cartoon is a popular art form that can be widely used
in diverse scenes such as advertising, animation production,
and the creation of virtual characters. Artists aim to build
a vivid cartoon world in a simplified or exaggerated way
based on real-world persons and scenarios. However, man-
ually recreating the real world in cartoon styles is labor in-
tensive and requires substantial professional skills.

Recently, inspired by the power of Generative Adver-
sarial Networks (GANs) [10] in image-to-image transla-
tion tasks, a series of GAN-based methods have been pro-
posed to achieve photo-to-cartoon (P2C) translation. These
methods can be roughly categorized as scene cartooniza-
tion [6, 7, 31] and portrait cartoonization [26, 28, 33, 34],
which are tailored to different use cases. For the former,
the main idea is to introduce specialized losses or pre-
extracted representations to sharpen edges and smooth sur-
faces, thus learning an abstract conversion between photo
and cartoon images. However, they are incapable of gener-
ating vivid cartoon faces with exaggerated geometry trans-
form, such as delicate big eyes and simplified mouths.
Portrait cartoonization methods are proposed to produce
manga [28, 33, 34] or caricature [5, 26] faces with large ge-
ometric changes. Yet, they heavily depend on facial char-
acteristics (e.g., decomposed facial components or guided
facial landmarks) and are not suitable for common scenes.

3501



There also exist some unsupervised image-to-image trans-
lation (UIT) models [17, 23, 35] or StyleGAN-based meth-
ods [25,27] that aim to handle the challenging selfie2anime
task, while they either produce unsatisfactory results with
missing contents or require training a model for each spe-
cific style. Overall, neither P2C nor UIT is capable of pro-
viding flexible user controls on cartoon styles, i.e., generat-
ing cartoon images in the style of an arbitrary input exem-
plar, and the portraits and scenes need to be processed via
specifically designed models.

The goal of this paper is to design a general framework
of cartoon image synthesis that is capable of rendering di-
verse source photos with controllable cartoon styles. As
shown in Figure 1, with a single trained generator, exag-
gerated cartoon faces and realistic cartoon scenarios in de-
sired styles (specified by input exemplars) can be simulta-
neously synthesized. The challenge of this task lies in three
aspects. First, no paired training data is available and the
model needs to be trained in an unsupervised way. Exist-
ing methods [7, 17, 31] typically utilize the cycle consis-
tency to exploit unpaired data. But it is difficult to generate
high-quality results due to the significant geometry changes
along with texture style variation. Second, in contrast to
pre-defined styles that can be straightforwardly learned by
training on large-scale databases, we only have a style-
mixed cartoon collection and aim to render images in an ar-
bitrary style with the trained model. Third, due to different
conversion requirements for portraits and scenes, multiple
generators that are trained respectively for them are needed,
making it a heavy architecture and thus limiting its practical
usage.

To address the aforementioned challenges, we propose
a simple yet effective cartoon image synthesis model with
gated cycle mapping. In contrast to previous works [7, 17,
37] that forcedly learn bidirectional mappings between two
domains using multiple generators (GA→B and GB→A), we
design a simplified cycle network with a single generator
equipped with the gated style encoder Egs. Egs utilizes
a novel gated mapping unit (GMU) consisting of domain
and group specific layers to produce the category-specific
style code, which can be directly injected into the genera-
tor to provide a target style guidance, making it easier to
learn the texture style, meanwhile, enabling the network to
transfer the corresponding style into a given image. For the
concepts of group and category, considering the huge se-
mantic discrepancy and different conversion requirements
between portrait and scene images, we introduce a fine-
grained category translation mechanism. All images in each
domain (photo or cartoon) are further classified into two
groups (portrait and scene), and only category translations
within each group will be learned, aiming to ignore unrea-
sonable mappings with mismatched structures. Cooperat-
ing with the gated cycle networks mentioned above, we

can simply use a single generator for image translation in
all directions, where only the decoder part is modulated
by the corresponding style codes. The proposed strategy
not only achieves a common cartoon translator with signif-
icantly lighter architecture, but also provide a flexible user
control for desired cartoon styles. In summary, major con-
tributions of this paper are threefold:

• We propose a brand-new task of synthesizing style-
controllable cartoon images with a common translator
for both portraits and scenes, and solve it by designing
a novel gated cycle mapping network.

• We develop a gated mapping unit which utilizes the
gating mechanism to learn category-specific style rep-
resentations via domain and group specific layers.

• We extend the proposed method to video synthesis of
cartoon portraits, leveraging an auxiliary dataset and a
new adaptive style loss, which achieves stable results
with the precise control of facial expressions.

2. Related Work
2.1. GAN-based Image-to-Image Translation

Generative adversarial networks (GANs) [10] have been
widely used for many computer vision tasks such as image
translation [14,21], image super-resolution [19,32] and im-
age inpainting [24]. Among these tasks, the image-to-image
translation framework provides a general solution of trans-
lating images between two domains via supervised [14, 30]
or unsupervised learning [21, 37]. Pix2pix [14] is the first
work to propose a supervised image translation model with
conditional GANs [22], and was later extended to generate
high-resolution images [30]. Due to the difficulty of obtain-
ing paired images, CycleGAN [37] exploits cycle consis-
tency to learn the transform from unpaired data. UNIT [21]
tackles the same problem by making a shared-latent space
assumption. To produce diverse outputs from the source
domain image, multimodal methods [13,20] were proposed
by combining the domain-invariant content with a random
domain-specific style. Despite great progresses achieved,
these techniques have limited scalability for cartoon image
synthesis, due to misaligned structures with exaggerated ge-
ometry and simplified strokes. Recently, U-GAT-IT [17] in-
troduces an attention module and a new normalization to
alleviate this issue, but it still cannot produce satisfactory
results with smooth lines and diverse styles. Our model
overcomes these challenges and is able to synthesize high-
quality cartoon images with controllable cartoon styles.

2.2. Cartoon Image Generation

Scene cartoonization. Chen et al. [7] first proposed a
GAN-based model for cartoon stylization and introduced
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Figure 2. An illustration of our gated cycle mapping framework. The proposed model starts from CycleGAN (a). Instead of forcibly
learning a mapping between two domains {XA, XB}, we introduce a style guidance z by directly injecting the style code zx of a target
sample x into the generator to achieve exaggerated geometric transform and adaptive style transfer (b). It is further developed to (c), a gated
cycle mapping structure utilizing the gated style encoder to produce the category-specific style code zi,j , thus handling diverse transform
requirements in a single framework.

the semantic content loss and edge loss to preserve clear
edges and smooth shading. It was further extended to Ani-
meGAN [6], a faster model with lightweight designs and
improved loss functions. Wang et al. [31] utilized white-
box representations extracted from images to guide the car-
toonization process. Although high-quality results from the
real-world scenes to cartoon animations are produced, these
models only learn the texture abstraction and they are un-
able to synthesize exaggerated cartoon portraits.

Portrait cartoonization. Yi et al. [33] proposed AP-
DrawingGAN using a hierarchical structure to transfer face
photos to portrait drawings and extended it to an unsuper-
vised version [34]. MangaGAN [28] employed a multi-
GANs architecture to generate each facial component re-
spectively and combined them together to synthesize final
manga results. [5, 26] achieved photo-to-caricature trans-
lation by warping stylized portraits via estimated land-
marks. Recently, StyleGAN-based cartoonization meth-
ods [25, 27] have gained large popularity by combining in-
version algorithms [3, 29, 36] with transferred StyleGAN
models [15, 16]. Despite high-quality results, they require
training a model for each specific style and easily suffer
from content missing. Moreover, all these methods tailored
to portrait transfer lack the generality for common scenes
and scalability for various styles. In this paper, we propose
a universal framework, which can transfer arbitrary cartoon
styles to diverse photos, including both portrait and scene.

3. Method Description

In this section, we first formulate the task of general car-
toon image synthesis and give an overview of how to solve
the problem via the proposed gated cycle mapping (Section
3.1). Then we present a detailed description for each part of
the network architecture (Section 3.2) and the design of the
training scheme (Section 3.3). Finally, we extend the pro-
posed method to video generation of cartoon portraits via an
auxiliary dataset and a new adaptive style loss (Section 3.4).

3.1. Problem Formulation and Analysis

Let XA and XB be the image sets in the photo and car-
toon domains, respectively, and no pair data exists between
these two domains. The proposed method aims at convert-
ing a source photo xA ∈ XA to a target cartoon image
xg ∈ XB with controllable cartoon styles. Our model starts
from CycleGAN [37], which leverages cycle consistency
GB(GA(X)) ∼ X to achieve domain translations without
paired training data, as shown in Figure 2 (a). However,
we observe that when applying the above strategy in the
task of “portrait photo to anime face” translation, due to
the significant geometry changes along with texture style
variation, it is difficult to generate high-quality results with
correct structures preserved. Considering that it is hard to
forcibly learn a mapping GA(xA) ∈ XB in an unsuper-
vised way, but much simpler to learn such a translation
by directly injecting the texture style of target domain im-
ages into source features, we introduce a style-guided cycle
structure as shown in Figure 2 (b). During training, a target
exemplar xt is randomly fetched from the target domain Xt

to provide a style guidance zxt
, combined with delicately

designed style losses, the network is encouraged to gener-
ate style-adaptive cartoon images with the analogous style
as xt. Such an intuitive strategy could kill two birds with
one stone: 1) This makes it easier for the network to achieve
exaggerated geometry transform. 2) It enables a flexible and
continuous user control of cartoon styles.

Furthermore, different from other image translation tasks
(e.g., cat2dog, female2male) where each domain includes
a set of images belonging to the same species, our task
defines “domain” as all kinds of images in the style of
photo or cartoon, leading to a significant structure discrep-
ancy among images in each domain. According to exten-
sive observations of cartoon painting samples, we found
that most cartoon characters are composed of exquisite big
eyes and simplified noses and mouths, which reflects real-
world persons in an exaggerated way with large geometric
changes. However, cartoon scenes are produced from real
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Figure 3. An overview of our network architecture, which consists of a generator G, a gated style encoder Egs and a gated discriminator
Dg . G is used to synthesize the cartoonized output xg of a source image xs following the analogous style of a reference image xt. Egs

utilizes the gated mapping unit (GMU) consisting of domain and group specific layers φd, φg to produce the category-specific style code,
which is injected into the decoder via MLP to guide the generation process. Dg also utilizes GMU to learn a category-specific binary
classification. Since these is no paired data available, cycle mapping is adopted for image reconstruction. Source: ©selfie2anime [17].

photos with only clear boundaries and sparse color blocks,
which reflects the real-world photography in a relatively re-
alistic way. This property makes different conversion re-
quirements from scene and portrait images. To resolve this
problem, we first perform a fine-grained data partition by
dividing images in each domain into two groups (portrait
or scene) and thus classify all images as four categories
with distinct styles or requirements, defined as Xi,j , i, j ∈
{0, 1}, where i, j denotes the domain label (photo or car-
toon) and the group label (portrait or scene), respectively.
In contrast to previous methods learning translations be-
tween photo and cartoon domains, our method learns only
category translations within each group (e.g., photo por-
trait ↔ cartoon portrait), thus avoiding unreasonable map-
pings with mismatched structures. In this way, the com-
plicated general cartoonization task can be simplified to a
special multi-domain translation problem [8, 9] with cus-
tomized mappings. Instead of using multiple generators
and encoders, an elegant gated cycle mapping structure is
designed by embedding a gated style encoder Egs into the
cycle mapping networks, as shown in Figure 2 (c). The en-
coder Egs equipped with a novel gated mapping unit can
produce the category-specific style code zi,j for a style im-
age xi,j . With zi,j representing the style of a specific cate-
gory, we can replace the original generators {GA, GB} with
a common generator G and utilize zi,j from the target cat-
egory to control the translation direction, i.e., forcing G to
learn how to transform an image into the specific category.
The gated mapping unit is also integrated into the discrim-
inator for multi-category discrimination. In this way, our

method can generate exaggerated cartoon faces and realis-
tic cartoon scenes simultaneously by using a significantly
light architecture. In the following, we will give a detailed
description for each part of the proposed model.

3.2. Network Architecture

3.2.1 Generator

Let xs and xt represent the samples from the source and
target categories, respectively, and zt denote the style code
outputted by the gated style encoder Egs. Our generator
adopts the encoder-decoder architecture and the style code
zt is fed into the decoder via adaptive instance normaliza-
tion (AdaIN) [12,15]. Given a source image xs and the style
code zt extracted from a reference style image xt, a gener-
ated image can be obtained by xg = G(xs, f(zt)), where
f(zt) denotes the AdaIN parameters (scale µ and shift σ)
dynamically generated by a multilayer perceptron (MLP).
Since it is hard to collect paired data in this task, we uti-
lize a cycle structure [37] to reconstruct the source image
as x̃s = G(xg, f(zs)), where G is the shared generator and
the style code zs is extracted from xs.

3.2.2 Gated style encoder

The gated style encoder Egs aims to produce the category-
specific style code zt for a reference style image xt in the
category Xt. Considering both shared and unique style rep-
resentations for images in different categories, we construct
the gated style encoder Egs by connecting a gated map-
ping unit (GMU) at the backend of a regular style encoder
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Figure 4. Effects of the gated style guidance. (a) Inputs of source
and reference. (b) Results generated without style guidance. (c, d)
Results generated without domain/group specific layers in GMU.
(e) Full model results. Source face: ©selfie2anime [17].

Es. Specifically, Es is used to extract a common feature
Ft from a reference image xt, and GMU embeds Ft into a
specific category space to obtain the customized style code
zt. The proposed GMU consists of domain-specific lay-
ers and group-specific layers connected by a gating mecha-
nism. The common feature Ft firstly goes through domain-
specific layers φdi

(i = 0, 1) in different branches and then
we obtain the feature Fd via the selection gate by:

Fd = αt · φd0(Ft) + (1− αt) · φd1(Ft), (1)

where αt ∈ {0, 1} is the control factor acting as a switch
to make the output features of the selected domain layer
effective. For example, with xt from the cartoon domain,
αt is set to 1 making Ft go through the specific layer φd0 .
The same goes for the final style code zt produced by group-
specific layers as:

zt = βt · φg0(Fd) + (1− βt) · φg1(Fd). (2)

As we can see, the values of αx and βx depend on the
domain label and group label of the image x, respectively.
The layers in GMU are constructed with fully-connected
layers. The category-specific style code zt is later injected
into the generator to guide the translation process.

Figure 4 shows some synthesis results demonstrating ef-
fects of the gated style guidance. The style guidance makes
it more accessible for our method to achieve large geometric
changes, especially for cartoon portraits. For GMU, with-
out domain-specific layers φd, photo and cartoon images
are regarded as the same category, and thus compromised
results are generated with the intermediate texture style of
two domains. Group-specific layers φg eliminate the mu-
tual interference brought by portraits and scenes with dis-
crepant semantics and help producing exaggerated portraits
and realistic scenes in cartoon styles simultaneously.

3.2.3 Gated discriminator

Given an image x, the discriminator is expected to discrim-
inate whether x is a real image of the desired category or
a fake image produced by G. Similar to Egs, the proposed

(a) Source    (b) Reference  (c) w/o 𝐿!"# (d) w/o 𝐿$! (e) Full model
Figure 5. Effects of the style reconstruction loss Lsty and the di-
verse style loss Lds. Source: ©selfie2anime [17].

GMU is integrated into the regular discriminator to help it
learn a category-specific binary classification, denoted as
the gated discriminator Dg . In the Xs → Xt process,
the generated image xg (or the reference image xt) is fed
into Dg as a fake (or real) sample. The control factors in
GMU for xg are equal to (αt, βt), since xg and xt belong
to the same category. The same goes for the reverse process
Xt → Xs.

3.3. Training

Given a source image xs ∈ Xs and a reference image
xt ∈ Xt, we train our model with a loss function consisting
of an adversarial term, an image reconstruction term, a style
reconstruction term and a style diversity term:

Ltotal = Ladv + λrecLrec + λstyLsty + λdsLds, (3)

where λrec, λsty and λds denote the weights of correspond-
ing losses, respectively.
Adversarial loss. We apply the adversarial loss Ladv [10]
to both mapping directions. For the mapping direction:
Xs → Xt, given a source image xs and a reference style
image xt, the generator G synthesizes the cartoonized re-
sult xg with the similar style as xt. The distance between
the distribution of real samples Xt and the distribution of
fake samples Xg generated by G is computed as:

Ladv =Exs,xt
[log(1−Dg(G(xs, f(zt)))]

+ Ext [log(Dg(xt)],
(4)

where the style code zt is extracted using Egs(xt).
Image reconstruction loss. Since there is no paired data
available in this task, we employ the cycle consistency
loss [37] to push the reconstructed image x̃s produced by
sequential translations Xs → Xt → Xs be identical as xs,
making the source image be successfully translated back to
its original category. It implicitly ensures that the gener-
ated image x̃s properly preserves the semantic content of
the source image xs and can be formulated using the L1
distance as:

Lrec = ||G(G(xs, f(zt)), f(zs))− xs||1. (5)
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Figure 6. An illustration of the adaptive style loss. With sam-
ples xt1 and xt2 fetched from the same class (marked in yellow)
as references, the intra-class style invariant loss encourages gener-
ated images produced by G(xs, xt1) and G(xs, xt2) to be equal.
The inter-class style variant loss encourages generated results to
be different with inter-class samples (xt1 , x̃t2 ).

Style reconstruction loss. To ensure the cartoon style of
the generated image xg be coherent with the reference tar-
get sample xt, we apply a style reconstruction loss Lsty

similar to [13, 38], which provides a style constraint for
style representation in the latent space:

Lsty = ||Egs(G(xs, f(zt)))− zt||1. (6)

The effect of Lsty is shown in Figure 5 (c)(e).
Diverse style loss. To further encourage the network syn-
thesizing diverse outputs coherent with the different styles
provided by reference images, we apply an intuitive con-
straint to the generator. Given two samples (xt1 , xt2) from
the target domain Xt that provide various style representa-
tions (zt1 , zt2) and a source image xs, the synthesized im-
ages xg1 , xg2 should have different appearances. We define
Lds as the L1 distance between xg1 and xg2 :

Lds = −||G(xs, f(zt1))−G(xs, f(zt2))||1. (7)

As shown in Figure 5 (d)(e), Lds encourages the style
code containing more cartoon details of references, not only
the abstract texture and color palette, but also the hair color,
eye size and face shape for various personified degrees. It is
worthy of noticing that all local styles of the reference are
automatically captured without any local guidance.

3.4. Further Extension

For cartoon portraits, the proposed method guarantees
that the generated image xg can properly preserve the high-
level content structures (e.g., poses, viewpoints and human
attributes) of the source image xs and the texture style (e.g.,
abstract stroke, hair color and facial features) of the ref-
erence image xt. However, it is still difficult to produce
results with content structures completely preserved. Not
only high-level attributes, but also local details such as fa-
cial expressions should be coherent with the source image.
One of the basic reasons for this is that there is a bias in
the training data, and images in dynamic expressions rarely
appear. In this section, we tackle the above problem and
extend the proposed method to video synthesis of cartoon

So
ur

ce

Reference

(a) Results with ℒ!" (b) Results with ℒ#"
Figure 7. Effects of replacing the original diverse style loss Lds

with the new adaptive style loss Las. Source: ©Google [1].

portraits. Specially, an auxiliary dataset and a new adaptive
style loss are introduced to produce stable results with high
consistency in content details.
Data expansion. The cartoon and photo portraits we use
are from the selfie2anime dataset [17], which includes di-
verse anime faces in mixed styles and each image is re-
garded as a class of cartoon style. Considering the data
bias (e.g., most anime faces have bangs) and the absence
of content variety for certain styles, we introduce a set
of cartoon portraits containing diverse character charac-
teristics and different facial expressions (e.g., open/closed
eyes/mouth) in a similar cartoon style as a new class cnew,
which is added to the original dataset, making it possible to
synthesize dynamic expressions.
Adaptive style loss. The original diverse style loss Lds as-
sumes that each reference image xt ∈ Xt represents a car-
toon style and encourages the network to generate diverse
outputs with different reference style images. However, it
may bring content inconsistency for the extended dataset
with a new class cnew, that includes a series of cartoon por-
traits in a similar style. When xt1 and xt2 are both sampled
from cnew in a similar style, the diverse style loss Lds still
forces the network to produce various images, making lo-
cal contents change following the reference, and thus gen-
erating inconsistent facial expressions with the source im-
age, as shown in Figure 7 (a). Thus, we replace Lds with
a new adaptive style loss Las which is intuitively visual-
ized in Figure 6. Given intra-class samples xt1 and xt2 as
the reference style images, we encourage the synthesis re-
sults produced by G(xs, xt1) and G(xs, xt2) to be equal,
which is defined as the intra-class style invariant loss. For
inter-class samples xt1 and x̃t2 , the generated results should
be different with the inter-class style variant loss (equals to
Lds). Specifically, the adaptive style loss Las is computed
by:

Las =

{
−Lds, (xt1 , xt2) ∈ cnew

Lds, others.
(8)

This intuitive strategy ensures that only content-
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irrelevant features are extracted from xt. thus achieving a
precise control of facial expressions (see Figure 7 (b)).

4. Experimental Results
In this section, we first describe implementation de-

tails and the dataset used for evaluation. Then, we verify
the effectiveness of the proposed method for universal car-
toon image synthesis and illustrate its superiority over other
state-of-the-art methods. Finally, we show that our method
can be extended for video synthesis of cartoon portraits.
Implementation details. Our method is implemented in
PyTorch using a single NVIDIA Tesla-V100 GPU with
32GB memory. The architectures of our generator, gated
style encoder and gated discriminator are described in the
supplementary materials. αx and βx are the control factors
in GMU and are set to denote the domain label (0 for photo,
1 for cartoon) and group label (0 for portrait, 1 for scene) of
the image x, respectively. The weights for the loss terms are
set to λrec = 1, λsty = 1. The initial value of Lds/Las is
set to 2 and linearly decayed to 0 over 100k iterations. We
use the Adam optimizer [18] with the learning rate 1e-4 to
train our model for around 100k iterations.
Datasets. We conduct experiments on a mixed
photo2cartoon dataset, which consists of portrait and scene
data covering diverse situations. For the portrait data, we
use the selfie2anime dataset [17] to provide cartoon por-
traits and photo portraits, serving as two categories. Fol-
lowing the same data configuration in selfie2anime, 3400
selfie photos and 3400 anime faces with the resolution of
256×256 are used for training, and 100 selfie photos and
100 anime faces for testing. For the scene data, we construct
a scene2cartoon dataset by collecting 5100 landscape pho-
tos and 5100 animation scenes from the dataset proposed
by [31], serving as photo scene and cartoon scene, respec-
tively. We randomly pick 5000 scene images for training
and the remaining 100 scene images for testing.

4.1. General Cartoon Image Synthesis

4.1.1 Cartoon image synthesis in controllable styles

Our experiments verify the effectiveness of the proposed
method in transferring desired cartoon styles to diverse
source photos. As shown in Figure 8, given a source photo
and an arbitrary cartoon exemplar in the test set, our method
can generate high-quality results preserving the semantic
structure of the source and the cartoon style of the exemplar.
It achieves an adaptive geometry transfer with a common
cartoon translator, which enables both exaggerated facial
features for cartoon portraits and realistic structure textures
for cartoon scenes. Besides the photo images in the test set,
we also test our model with in-the-wild images and diverse
scene cases (e.g., animals, foods, city views and other ob-
jects) to demonstrate the generation ability of the networks

Method selfie2anime scene2cartoon
FID ↓ KID ↓ FID ↓ KID ↓

CartoonGAN [7] - - 267.84 7.86±0.80
AnimeGAN [6] - - 255.85 6.19±0.74
CycleGAN [37] 91.35 2.50±0.27 265.26 6.59±0.74
MUNIT [13] 93.69 2.48±0.26 270.80 8.38±0.55
DRIT++ [20] 93.07 2.84±0.27 282.73 10.57±0.84
U-GAT-IT [17] 90.05 2.61±0.31 285.32 9.10±0.65
CouncilGAN [23] 89.51 2.36±0.23 - -
Ours 79.74 1.59±0.25 253.83 6.40±0.73

Table 1. FID and KID×100±std.×100 scores for two tasks.

(see our supplemental materials).
Style interpolation. Our model constructs a complex mani-
fold that is constituted of various cartoon images in different
contents and diverse styles. We can travel along this man-
ifold by mixing and interpolating the style representations
extracted from different references, thus synthesizing an an-
imation from one cartoon style to another. The results of
style interpolation are provided in the supplemental video.

4.1.2 Comparisons with state-of-the-art methods

In this section, we compare our proposed method with other
existing approaches both qualitatively and quantitatively.
Qualitative comparison. In Figure 9, we first compare
the selfie2anime results of our method with four state-of-
the-art methods: CycleGAN [37], U-GAT-IT [17], Coun-
cilGAN [23] and White-box [31]. Due to the inability of
UIT models [13, 17, 20, 23, 37] for learning portrait and
scene translation simultaneously, synthesis results of these
methods are produced by using independent selfie2anime
(or scene2cartoon) models trained with the corresponding
data. It should be pointed out that we only train a single
model with mixed data. Still, our method outperforms other
approaches and synthesizes high-quality anime faces with
clear edges and delicate features, such as exquisite big eyes
and fluent structure lines. More content details are also bet-
ter preserved. Due to the great semantic discrepancy among
scene images, multimodal methods [13, 23] fail to syn-
thesize reasonable results. Thus, we replace CouncilGAN
with AnimeGAN [6], a P2C method tailored to scenes, for
scene2cartoon comparison. As shown in the right of Fig-
ure 9, our method alleviates issues in multimodal models
and produces more exquisite results than P2C methods.
Quantitative evaluation. We first evaluate the visual qual-
ity using Fréchet Inception Distance (FID) [11] and Kernel
Inception Distance (KID) [4] between the feature represen-
tations of real and generated images. As CartoonGAN [7]
and AnimeGAN [6] are P2C methods designed for cartoon
abstraction within specific styles, they are incapable of syn-
thesizing anime characters. We only calculate the metrics
on the scene2cartoon task. For fair comparison, we evaluate
the performance of CouncilGAN [23] for the selfie2anime
task only when it is trained with face related tasks. We also
include another multimodal method DRIT++ [20] for eval-
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Source

Exemplar

Source

Figure 8. Results of synthesizing diverse cartoon images (portrait in left, scene in right) with controllable styles provided by the correspond-
ing exemplars. With a single trained model, cartoon scenes can be simultaneously synthesized with portraits. Source: ©selfie2anime [17].

Figure 9. Qualitative comparison with state-of-the-art methods. Our results are generated with random styles. Source: ©selfie2anime [17].

Figure 10. Results of representative frames for cartoon video syn-
thesis and the corresponding original video. Source: ©Google [1].

uation. We use the same test images from the source do-
main for all methods. As shown in Table 1, our method out-
performs others to a large margin in the selfie2anime task,
further verifying that our generated anime faces are more
visually similar with real images in the target domain. For
the scene2cartoon task, our method outperforms other UIT
methods and is comparable to P2C methods.

4.2. Video Synthesis of Cartoon Portraits

With the method extension described in Section 3.4, our
model is able to achieve visually-pleasing video synthesis
of cartoon portraits, which can not only preserve the content
details of the source image but also make a precise control
of facial expressions. Given an image xt ∈ cnew as the ref-

erence and a source video consisting of a series of portrait
frames, the proposed model can generate a cartoon video
with continuous facial changes. Results of some represen-
tative frames are depicted in Figure 10 and more complete
videos can be found in the supplemental video. More re-
sults and other discussions (e.g., limitations, negative im-
pact, etc.) can be found in the supplemental materials.

5. Conclusion

In this paper, we presented an unpaired cartoon image
synthesis method that enables not only adaptive geometry
transfer for diverse photos, but also flexible user control of
cartoon styles. We formulated the task of general cartoon
image synthesis as a multimodal and multi-domain image
translation problem and proposed gated cycle mapping to
solve it, in which the gated style guidance is embedded
into cycle networks to control the translation process. With
a novel gated mapping unit, category-specific style codes
adapted to various images with distinct textures or struc-
tures can be obtained. Experimental results not only demon-
strated the effectiveness and superiority of our method by
comparing with the state of the art, but also validated its
extensibility for video synthesis of cartoon portraits.

3508



References
[1] Google. [EB/OL]. https://google.com/. 6, 8
[2] Seeprettyface. [EB/OL]. https://seeprettyface.

com/. 1
[3] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-

age2stylegan++: How to edit the embedded images? In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8296–8305, 2020. 3
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