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Abstract

We present Playable Environments—a new representa-

tion for interactive video generation and manipulation in

space and time. With a single image at inference time,

our novel framework allows the user to move objects in 3D

while generating a video by providing a sequence of desired

actions. The actions are learnt in an unsupervised manner.

The camera can be controlled to get the desired viewpoint.

Our method builds an environment state for each frame,

which can be manipulated by our proposed action mod-

ule and decoded back to the image space with volumetric

rendering. To support diverse appearances of objects, we

extend neural radiance fields with style-based modulation.

Our method trains on a collection of various monocular

videos requiring only the estimated camera parameters and

2D object locations. To set a challenging benchmark, we in-

troduce two large scale video datasets with significant cam-

era movements. As evidenced by our experiments, playable

environments enable several creative applications not at-

tainable by prior video synthesis works, including playable

3D video generation, stylization and manipulation1.

1. Introduction

What would you change in the last tennis match you

saw? The actions of the player? The style of the field, or,

perhaps, the camera trajectory to observe a highlight more

dramatically? To do so interactively, the geometry and the

style of the field and the players need to be reconstructed.

Players’ actions need to be understood and the outcomes

of future actions anticipated. To enable these features one

needs to reconstruct the observed environment in 3D and

*This work was partially done while interning at MPI for Informatics
†Equal senior contribution
1willi-menapace.github.io/playable-environments-website

Control Camera

Figure 1. Given a single initial frame, our method creates playable

environments that allow the user to interactively generate different

videos by specifying discrete actions to control players, manipu-

lating the camera trajectory and indicating the style for each object

in the scene.

provide simple and intuitive interaction, offering an experi-

ence similar to playing a video game. We call these repre-

sentations Playable Environments (PE).

Such a representation enables multiple creative applica-

tions, such as 3D- and action-aware video editing, camera

trajectory manipulation, changing the action sequence, the

agents and their styles, or continuing the video in time, be-

yond the observed footage. Fig. 1 shows a playable envi-

ronment for tennis matches. In it, the user specifies actions

to move the players, controls the viewpoint and changes the

style of the players and the field. The environment can be

played, akin to a video game, but with real objects.

In this work, we propose a method to construct PEs of

complex scenes that supports a large set of interactive ma-

nipulations. Trained on a dataset of monocular videos, our

method presents six core characteristics listed in Tab. 1 that

enable the creation of such PEs. Our framework allows the

user to interactively generate videos by providing discrete

actions ⟨1⟩ and controlling the camera pose ⟨2⟩. Further-
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Name Description

⟨1⟩ Playability The user can control generation with discrete actions.

⟨2⟩ Camera

control

The camera pose is explicitly controlled at test time.

⟨3⟩ Multi-object Each object is explicitly modeled.

⟨4⟩ Deformable

objects

The model handles deformable object such as human

bodies

⟨5⟩ Appearance

changes

The model handles objects whose appearance is not

constant is the training set

⟨6⟩ Robustness The model is robust to calibration and localization er-

rors.

Table 1. Characteristics of our method for Playable Environments.

Each row is referred in the text with ⟨·⟩ symbols.

more, it can represent environments with multiple objects

⟨3⟩ with varying poses ⟨4⟩ and appearances ⟨5⟩ and is ro-

bust to imprecise inputs ⟨6⟩. In particular, we do not require

ground-truth camera intrinsics and extrinsincs, but assume

they can be estimated for each frame. Neither do we assume

ground-truth object locations, but rely on an off-the-shelf

object detector [27] to locate the agents in 2D, such as both

tennis players. No other supervision is required.

Playable Environments encapsulate and extend represen-

tations built by several prior image or video manipulation

methods. Novel view synthesis and volumetric rendering

methods support re-rendering of static scenes. However,

while some methods support moving or articulated objects

[24, 26, 34, 39], it is challenging for them to handle dy-

namic environments and they do not allow user interaction,

making them undesirable for modeling compelling environ-

ments. Video synthesis methods manipulate videos by pre-

dicting future frames [15, 16, 33, 35], animating [30–32] or

playing videos [18], but environments modeled with such

methods typically lack camera control and multi-object sup-

port. Consequently, these methods limit interactivity as they

do not take into account the 3D nature of the environment.

Our method consists of two components. The first

one is the synthesis module. It extracts the state of the

environment—location, style and non-rigid pose of each

object—and renders the state back to the image space. Re-

cently introduced Neural Radiance Fields (NeRFs) [19] rep-

resent an attractive tool for their ability to render novel

views. In this work, we introduce a style-based modifica-

tion of NeRF to support objects of different appearances.

Furthermore, we propose a compositional non-rigid volu-

metric rendering approach handling the rigid parts of the

scene and non-rigid objects. The second component—the

action module—enables playability. It takes two consecu-

tive states of the environment and predicts an action with

respect to the camera orientation. We train our framework

using reconstruction losses in the image space and the state

space, and a novel loss for action consistency. Finally, to

improve temporal dynamics, we introduce a temporal dis-

criminator that operates on sequences of environment states.

To thoroughly evaluate ⟨1−6⟩, we introduce two com-

plementary large-scale datasets for the training of playable

environments, a synthetic and a real one. The first is in-

tended to evaluate ⟨1−5⟩, with a particular focus on cam-

era control thanks to the synthetic ground truth, the second

to evaluate ⟨1−6⟩, with a particular focus on ⟨4−6⟩ given

the high diversity present in this dataset. We propose an

extensive evaluation of our method with several baselines

derived from existing NeRF and video generation methods.

These experiments show that our method is able to generate

high-quality videos and outperforms all baselines in terms

of playability, camera control and video quality.

In summary, the primary contributions of this work are

as follows: a new framework for the creation of com-

pelling Playable Environments with the characteristics in

Tab. 1, featuring a new compositional NeRF that handles

deformable objects with different visual styles and an ac-

tion module that operates in the latent space of our NeRF

model; two challenging large-scale datasets for training

and evaluating PEs to stimulate future research in this area.

2. Related Works

Video generation has seen incredible progress over past

years. The video synthesis task has numerous formulations

which mostly differ in the type of conditional information

that is used for generation. The generation process could be

conditioned on previous frames [5,16,17,35,37], on another

video [30–32, 38], on the pose of the agent [2] or even be

completely unconditional [28,35]. Moreover, several works

proposed to condition the generation of each single frame

on an action label [4, 13, 22, 23]. Still, all these methods

require action supervision for training.

Playable video generation (PVG) was recently introduced

in Menapace et al. [18]. Differently from prior works in

this domain which required annotated action labels [12,13],

their method, CADDY, automatically infers actions during

training in a completely unsupervised manner from raw

videos. This method is closely related to ours. However,

CADDY assumes only a single controllable object while

here we also model the camera movement, complex 3D in-

teractions and support a variety of object appearances.

Novel view synthesis methods traditionally utilized depth

maps [3, 25] or multi-view geometry [14, 29, 42] in order

to reconstruct underlying 3D representation and later ren-

der new views of the corresponding scene. Recently, Neu-

ral Radiance Fields (NeRF) [19] revolutionized the field of

novel view synthesis. The main idea of NeRF [19] is to

model the scene as a continuous 5D function, usually rep-

resented by MLP, and directly query this function along the
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Synthesis

Synthesis

Figure 2. Overview of our framework. The encoder E extracts

environment states for every object in the scene. The synthesis

module follows a NeRF-like architecture to reconstruct the input

frame and allows for camera manipulation. We introduce the ac-

tion module that learns to encode state dynamics with discrete ac-

tion labels. At test time, these learned action labels are provided

by the user to control the generated content.

camera rays. Numerous follow-up works on [19] have been

proposed. For instance, some works proposed to decom-

pose the foreground and background [20, 40]. Other works

generalised NeRF [19] to dynamic scenes [10, 24, 34, 39].

GIRAFFE [21] and GANcraft [7] proposed to utilize an

internal representation that is rendered in a feature space

and later decoded by a standard 2D convolutional network.

However, none of these methods is able to generalize to

multiple monocular videos, several moving and deforming

objects, and diverse objects and scene appearances. Com-

paratively, our method can be trained with such data. More-

over, for enriching the interactivity of the playable environ-

ment, our method can control objects in the scene with ac-

tion labels that are discovered in an unsupervised manner.

3. Method

Our framework is based on the encoder-decoder archi-

tecture shown in Fig. 2 whose design is driven by the

playable environment characteristics ⟨1-6⟩ in Tab. 1. At

time t, the encoder network outputs state vector sit for every

object i in the scene. To enable playability ⟨1⟩, we include

an action module in the bottleneck layer that has two goals.

First, it learns discrete action labels in an unsupervised man-

ner. More precisely, we learn to discretize the transition

from sit to sit+1 using an action labels ait ∈ {1, ...,K},

where the number of actions K is a hyper-parameter spec-

ified before training. Second, the action module is used

at test time to condition the next frame generation on the

action selected by the user. Finally, the decoder network,

referred to as the synthesis module, is in charge of recon-

structing the input frame combining the state of every object

and the camera parameters to allow for camera control ⟨2⟩.
The synthesis and action modules are trained in two sepa-

rate phases using reconstruction as the main driving loss.

To handle environments with multiple objects ⟨3⟩, we

adopt a compositional formulation for our encoder-decoder:

we decompose the environment into a predefined set of

objects. We distinguish between two object categories,

namely static objects (e.g. background) and playable ob-

jects (e.g. human), where the latter are the dynamic objects

the user will be able to control. We define the environment

state of object i as sit = (xi
t, w

i
t, π

i
t) where xi

t is the position

of the object in the environment, wi is a style descriptor,

and πi is the object pose. We introduce wi and πi to handle

deformable objects ⟨4⟩, such as humans, and to model ap-

pearance changes of objects in the training set ⟨5⟩. For ev-

ery static object, we assume xi
t to be fixed and known. For

playable object i instead, given the current camera parame-

ters and its bounding box bit, we approximate xi
t by project-

ing the middle point of the lower bounding box edge onto

the ground plane. We then compute the style and pose de-

scriptors using a convolutional encoder network E for each

object. The encoder takes as input the image cropped at the

location defined by the bounding box for each object and

outputs both wi
t and πi

t. In the rest of the paper, we omit

object indexes.

We introduce a novel synthesis module detailed in

Sec 3.1. The action module is described in Sec. 3.2. The

training procedures are given in Secs. 3.3 and 3.4.

3.1. Synthesis Module

Point samplingObject 1

Figure 3. The synthesis module consists of two steps. First, non-

rigid neural radiance fields with a bending network B and style

modulation are used to generate a feature map. Second, the feature

maps are fed to a ConvNet F .

The aim of the synthesis module is to reconstruct the in-

put image from the camera pose and states st. We found

NeRF [19] to be a reasonable base architecture for explicit

camera control ⟨2⟩. Therefore, we propose a novel architec-

ture (Fig. 3) that combines non-rigid neural radiance fields

with a convolutional image generator to address ⟨2-6⟩.

Camera control ⟨2⟩ is achieved by employing NeRF [19]

as a base architecture. Our NeRF represents scenes using

a fully-connected network V , whose input is a single vec-

tor containing a point location in 3D. It outputs the volume
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density σ and radiance c for the input point location. Given

a desired virtual camera, 3D points are sampled along the

camera ray r traced through each pixel. The color value of

every pixel is computed by integration over the ray r:

C(r) =

∫ tf

tn

e
−

∫
t

tn
σ(r(s))ds

σ(r(t))c(r(t))dt. (1)

Similarly to [7, 21], instead of directly predicting color

values, our neural radiance fields generate feature maps for

the input camera pose, while a convolutional image genera-

tor is in charge of generating realistic frames. For more de-

tails about NeRFs, please refer to the Supp. Mat. and [19].

Multi-object ⟨3⟩. Each object is modeled using a separate

feature field parametrized as an object-specific MLP V . The

field is bounded by volume β and centered at the respective

object location xt. Given a ray r, we compute its features

f(r) according to the following procedure. We first inter-

sect r with each bounding volume β to compute the ingress

and egress location of the ray with each object xin, xout.

For each object, we then uniformly sample a given amount

of positions {xp}
N
p=1 between xin and xout and obtain the

respective features fp and opacities σp as fp, σp = V (xp).
f(r) is obtained by integration similarly to Eq. (1).

Deformable objects ⟨4⟩. To handle deformable objects

such as humans, we make use of non-rigid NeRF models,

similarly to [34]. For each playable object, we introduce a

ray bending network B parametrized as an MLP. Given an

object pose descriptor π and position xp on ray r, we use

the bending network to regress the corresponding position

x̃p on the bent ray r̃ as:

x̃p = xp +B(xp, πt). (2)

We then make use of the positions on r̃ when sampling V .

In this way, B encodes the transformation from the space of

the deformed object to a canonical space and V encodes a

canonical representation of the object.

Appearance changes ⟨5⟩. The appearance of each object

may vary widely in the dataset. In order for each object-

specific model to be able to represent the complete set of

possible appearances of its object, we propose the use of

a style embedding layer inspired by AdaIN [9], which we

embed into V . Assuming a hidden feature ht in V and a

style code wt, we modulate ht as follows:

h̃t = γ(wt)ht + β(wt), (3)

where γ and β are trainable linear layers. Following [19],

we design V as a backbone terminated by two separate

branches, one for opacity and one for features prediction.

We assume that the style of an object should influence its

features, but not its geometry. Therefore, we insert our

modulation layer in the features prediction branch only.

Robustness ⟨6⟩ to calibration and localization errors is

achieved through a Feature Renderer. Our compositional

Figure 4. The action module. Given the states at times t and

t+1, the action network A predicts a discrete action label at and

action variability vt that are combined by the dynamics network

R to estimate the new environment state st+1 given the old st.

NeRF model outputs a feature map ft corresponding to an

input image patch. We employ a ConvNet F to reconstruct

it. Due to the ability of ConvNets to model cross-pixel rela-

tionships, inaccuracies in the estimation of features caused

by input noise can be compensated, reducing the associ-

ated blur. Note that F contains upsampling layers. It al-

lows an important reduction in the number of rays that are

to be sampled by the NeRF model since it outputs a fea-

ture map at a lower resolution than the image. Therefore,

we reduce memory consumption allowing larger patches to

be rendered. We also find it beneficial to use multiple in-

put feature maps at different resolutions to capture details

at different scales (see Sup. Mat. for details).

3.2. Action Module

The action module (Fig. 4) learns the action space and

enables playability ⟨1⟩. The actions of each playable object

are modeled by a separate action module, consisting of the

action and dynamics networks.

Action network. Given two successive environment states

st and st+1, we use an action network A to infer a discrete

representation at ∈ {1, ...,K} of the action performed by

the object in the input sequence. Following [18], to address

non determinism present in the environment, we also extract

an action variability embedding vt describing the particular

variation of at performed at time t:

at, vt = A(st, st+1). (4)

Dynamics network. The role of the dynamics network is

to predict the state st+1 from st and the action label at.

We adopt a recurrent model R implemented as an LSTM to

model the dynamics of the object. The next state prediction

ŝt+1 = (x̂t, ŵt, π̂t) is given by:

ŝt+1 = R(st, at, vt). (5)

In our preliminary experiments, we observe that when R di-

rectly regresses x̂t+1 as formulated in (5), the model learns

actions that are independent from the current camera posi-

tion. This behavior is unnatural for the user since in applica-

tions such as video games, object movements are typically

expressed relatively to the camera pose. To avoid this be-

havior, R is instead asked to predict the object movement ∆
expressed in the camera coordinate system. The estimated
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position is then given by x̂t+1 = xt +M∆ where M is the

rotation matrix expressing the orientation of the camera.

3.3. Synthesis Module Training

We train our model in two steps by first training the en-

coder and synthesis module until convergence, and then the

action module. We train the encoder and synthesis mod-

ule using the perceptual loss of Johnson et al. [11] that as-

sesses image reconstruction quality in features spaces of a

pretrained VGG network. The loss is computed between the

ground truth and reconstructed image patches. The percep-

tual loss is complemented by an L2 reconstruction loss in

the pixel space.

Our preliminary experiments showed that training may

fail to correctly disentangle object style and pose (i.e. w

and π respectively). Indeed, the reconstruction losses can

be minimized using w alone by predicting a constant, non-

deforming surface with changing style. To avoid this prob-

lem, we make the observation that the pose of an object

in neighboring frames can change while the style does not.

Therefore, we enforce better disentanglement by permuting

the order of w codes along the temporal dimension for each

sequence before feeding them to the synthesis module.

3.4. Action Module Training

In the second phase of training, we train the action mod-

ule using a combination of losses. Each loss is computed

separately for each playable object and then averaged to

produce the final optimization objective.

Reconstruction loss. For each playable object, we recon-

struct the input sequence of environment states {st}
T
t=1, ob-

tained by encoding each input image using the encoder E,

and impose an ℓ2 reconstruction loss Lrec with the corre-

sponding reconstructed sequence {ŝt}
T
t=1.

Action learning losses. We employ the information-

theoretic action learning loss of [18] to foster the under-

standing of actions. For each playable object, the action

network A produces internal estimates of action probabili-

ties pt and p̂t for input st and reconstructed ŝt environment

states, respectively. By imposing the maximization of mu-

tual information between these two distributions we foster

the action network both to discover the K action categories,

avoiding mode collapse, and to produce consistent action

estimates for the input and reconstructed sequence:

Lact = −MI(pt, p̂t). (6)

In addition, to improve consistency between discrete ac-

tions and 3D movements, we propose to optimize a novel

loss consisting in a soft version of the ∆ Mean Squared Er-

ror (∆-MSE) introduced in [18]. This metric is based on

the idea that same actions at should correspond to similar

object motions ∆. Assuming a batch containing J image

pairs, we extract the object motion ∆j , j ∈ {1, ..., J} and

estimate the mean object motion for each action:

∀k ∈ {1, ...,K}, µk =

∑J

j=1 pjk∆j∑J

j=1 pjk
, (7)

where pjk denotes the probability for the image pair j to

be assigned to the action k. We then minimize the mean

squared distance between the motion ∆j and the mean mo-

tion for each action:

L∆ =
1

Var(∆)

J∑
j=1

K∑
k=1

pjk ∥∆j − µk∥
2
2 , (8)

where Var(∆) is used as a normalization factor.

Temporal discriminator. Previous methods for playable

video generation [18], tend to produce sequences where the

playable objects move in the scene with unrealistic motions.

We attribute this behavior to the use of reconstruction as the

main training objective. Optimizing reconstruction losses

does not penalize action representations that lead to tempo-

rally inconsistent videos. To address the problem, for each

playable object we introduce a temporal discriminator D

implemented as a 1D ConvNet over the temporal dimen-

sion. Given a sequence of environment states, the temporal

discriminator is trained to classify them as real if produced

by encoding the input images using E or as fake if recon-

structed by the action module. We implement our adversar-

ial training procedure using a vanilla GAN loss with loss

terms LG and LD for the action module and temporal dis-

criminator, respectively.

Total loss. Our optimization objective for A and R is

L = λrecLrec + λactLact + λ∆L∆ + λGLG, (9)

where we introduce the weighting parameters λrec, λact, λ∆

and λG. For training D, we minimize the adversarial objec-

tive LD of the discriminator.

Inference. At inference time, we assume that only the first

frame of the sequence is given. We use the encoder mod-

ule to extract the first environment state ŝ1 = s1. At each

timestep t, we let the user specify a discrete action for each

playable object and use the dynamics network R to derive

ŝt+1 in an autoregressive way. Since the action input is

specified by the user, during inference we do not make use

of the action network and always set vt = 0. The environ-

ment states generated by the dynamics network are rendered

to images using the synthesis module.

4. Experiments

Datasets. Evaluating ⟨1-6⟩ is challenging and requires

video datasets featuring camera motion ⟨2⟩, multiple

playable objects ⟨1,3⟩, deforming objects ⟨4⟩ and varied ap-

pearance ⟨5⟩. For this reason, we collect three datasets:
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• Minecraft dataset. We collect a synthetic video dataset

with duration of 1h with two sparring Minecraft [1] players.

Wide camera movement and diverse, deforming players al-

low the evaluation of ⟨1−5⟩.
• Minecraft Camera dataset. We collect Minecraft [1] se-

quences where the camera is moved in the neighborhood

of a starting position. We use these frames as a synthetic

ground truth for the evaluation of camera control ⟨2⟩.
• Tennis dataset. We collect a large-scale dataset of 43

broadcast tennis matches totalling 12h of videos for the

evaluation of ⟨1-6⟩. The dataset features challenging player

poses ⟨5⟩, high variability in tennis fields and players ⟨4⟩
and noise in camera estimation and player localizaton ⟨6⟩.
To allow comparison with playable video generation meth-

ods under their simplifying assumptions, we adopt the Ten-

nis dataset of [18], referred to as Static Tennis. The dataset

features limited camera movement, each video is cropped

to depict only a single player, only one field is present and

players have uniform appearance, thus only ⟨1,4⟩ are eval-

uated. The datasets are detailed in the Supp. Mat..

Evaluation protocol. We perform a separate evaluation of

the synthesis ⟨2-6⟩ and the action modules ⟨1⟩ using similar

evaluation protocols. For the former, we reconstruct each

test sequence by extracting the environment state of each

frame and rendering the original frame back. For the ac-

tion module, we follow the evaluation protocol of [18]. In

particular, we consider a test sequence and extract the en-

vironment state of the first frame, then we use the action

network to extract the sequence of discrete actions present

in the sequence and reconstruct each frame starting from

the first environment state. As video quality metrics ⟨2,4-6⟩
we adopt LPIPS [41], FID [8] and FVD [36] computed be-

tween the test sequences and the reconstructed sequences.

For evaluation of the action space ⟨1,3⟩, following [18], we

define ∆ as the difference in position of an object between

two given frames and use the following metrics:

• ∆ Mean Squared Error (∆-MSE): The expected error in

terms of MSE in the regression of ∆ from a discrete action.

For each action, the average ∆ is used as the optimal esti-

mator. The metric is normalized by the variance of ∆.

• ∆-based Action Accuracy (∆-Acc): The accuracy with

which a discrete action can be regressed from ∆.

• Average Detection Distance (ADD): The average Eu-

clidean distance between the bounding box centers of cor-

responding objects in the test and reconstructed frames.

• Missing Detection Rate (MDR): The portion of detec-

tions that are present in the test sequences but that are not

matched by any detection in the reconstructed sequences.

4.1. Comparison on Playable Video Generation

In this section, we evaluate the action-modeling capa-

bilities of our method by comparing against the state of

LPIPS↓ FID↓ FVD↓ ∆-MSE↓ ∆-Acc↑ ADD↓ MDR↓

MoCoGAN [35] 0.266 132 3400 101 26.4 28.5 20.2

MoCoGAN+ 0.166 56.8 1410 103 28.3 48.2 27.0

SAVP [16] 0.245 156 3270 112 19.6 10.7 19.7

SAVP+ 0.104 25.2 223 116 33.1 13.4 19.2

CADDY [18] 0.102 13.7 239 72.2 45.5 8.85 1.01

(Ours) 0.089 15.3 237 32.8 68.1 9.47 0.15

Table 2. Comparison with PVG state of the art on the Static Tennis

dataset of [18]. ∆-MSE, ∆-Acc and MDR in %, ADD in pixels.

the art in the related problem of Playable Video Generation

(PVG) [18] where the objective is to learn a set of discrete

action labels in an unsupervised fashion to condition video

generation. Differently from our setting, in PVG no explicit

camera control is required. Moreover, existing PVG meth-

ods assume a single user-controllable object and that cam-

era motion is limited.

To satisfy these simplifying assumptions, we adopt the

Static Tennis dataset of [18]. Tab. 2 shows the results. Our

method substantially improves the ∆-MSE and ∆-Acc ac-

tion quality metrics suggesting that the learned actions are

better correlated with player movement. In addition, the

reduced LPIPS and MDR indicate an improvement in the

quality of the generated reconstruction which is supported

by a user study shown in the Supp. Mat.. We report qualita-

tive results in the Supp. Mat..

4.2. Comparison with Previous Methods

Baselines. We propose to build baselines for the creation

of PEs from state-of-the-art methods in the related prob-

lem of PVG. We make use of the following set of versions

of CADDY [18] which are modified to account for multi-

ple playable objects and for camera motion: (i) the action

network produces a distinct output for each dynamic ob-

ject in the environment; (ii) (i) + the action and dynamics

networks are conditioned on bounding box and camera in-

formation; (iii) (ii) + output resolution is increased to match

our method; (iv) (ii) + L∆; (v) (iii) + L∆.

Playability evaluation ⟨1⟩. We evaluate player control ca-

pabilities in Tab. 3 and in the Supp. Mat.. On the Ten-

nis dataset our model substantially improves over the base-

lines in the action space metrics, LPIPS and FVD, sug-

gesting better controllability of the players. In particular,

the considerably lower MDR indicates a better capacity of

the model in generating players with respect to the base-

lines. Fig. 5 shows qualitative reconstruction results for

our method. As suggested by the MDR and ADD scores,

the model correctly synthesizes both players and is able to

reconstruct the player movements of the ground-truth se-

quence using only a sequence of discrete actions. In addi-

tion, a visualization of the learned action space (see Fig. 6)
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Tennis Minecraft Camera

Aux. H.Res. L∆ LPIPS↓ FID↓ FVD↓ ∆-MSE↓ ∆-Acc↑ ADD↓ MDR↓ LPIPS↓ FID↓ ADD↓ MDR↓

CADDY [18] (i) 0.313 61.0 877 0.901 42.6 35.1 36.9 0.747 306 11.7 95.8

CADDY [18] (ii) ✓ 0.351 69.2 1109 0.592 59.6 29.0 24.8 0.762 324 44.7 92.2

CADDY [18] (iii) ✓ ✓ 0.213 15.4 727 0.693 57.5 18.7 11.7 0.669 244 29.2 82.0

CADDY [18] (iv) ✓ ✓ 0.445 70.3 1568 0.797 62.4 29.6 33.0 0.699 314 62.0 89.4

CADDY [18] (v) ✓ ✓ ✓ 0.534 191 8083 0.633 73.5 20.2 60.3 0.679 337 19.1 93.6

(Ours) 0.181 17.4 485 0.293 95.7 14.0 4.84 0.242 29.2 5.69 8.07

Table 3. Playability evaluation with baselines on the Tennis dataset and camera control evaluation on the Minecraft Camera dataset. Aux.:

use of auxiliary bounding box and camera pose information; H.Res.: use of the high resolution model; L∆: use of the loss for ∆-MSE.

∆-MSE, ∆-Acc and MDR in %, ADD in pixels.

Figure 5. Qualitative reconstruction results produced by our

method on the Tennis and Minecraft datasets. In the reconstructed

sequence, playable objects move according to the ground truth se-

quence and are rendered in realistic poses.

shows that the model learns a set of diverse discrete actions

that correspond to the main movement directions.

To further evaluate the quality of the action space, we

perform a user study (see Supp. Mat.) on the Tennis dataset,

following the protocol of Menapace et al. [18]. To eval-

uate the consistency of learned actions, we measure user

agreement using the Fleiss’ kappa measure [6]. Our method

achieves an agreement of 0.444, while the best baseline

shows a lower agreement of 0.353.

Camera control evaluation ⟨2⟩. We evaluate the qual-

ity with which the model can synthesize novel views. We

choose to perform a quantitative evaluation on the Minecraft

Camera dataset since novel view ground truth is present.

Figure 6. Action space learned by our method on the Tennis

dataset. Each color represents a learned action and each arrow

shows the effects of applying the respective action six times to the

initial player. The overlay on the floor shows the distribution of

possible ending positions after the application of each action.

We start from the first frame and reconstruct each sequence

using the camera parameters of the novel views. Results are

shown in Tab. 3. Despite the presence of auxiliary bounding

box and camera pose inputs for CADDY [18], the baseline

method fails in synthesizing the scene from novel perspec-

tives. We ascribe this phenomenon to the lack of an explicit

model for the camera. Our method instead can successfully

synthesize the scene from novel camera perspectives.

In Fig. 7 we show qualitative camera and style manip-

ulation results for our method on the Tennis dataset. Our

model can synthesize the scene under novel views and cor-

rectly alter the style of the field and players to the one of a

target image. We present additional camera and style ma-

nipulation results in the Supp. Mat..

4.3. Ablation Studies

Synthesis module ablation study ⟨3-6⟩. In this section

we evaluate the contribution of each proposed architecture

component for the synthesis module: Multi use of multi-

object modeling ⟨3⟩, π use of deformation modeling ⟨4⟩,
w use of style modulation layers for appearance changes
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Var. Multi ⟨3⟩ π ⟨4⟩ w ⟨5⟩ F ⟨6⟩ LPIPS↓ FID↓ FVD↓ ADD↓ MDR↓

(a) 0.735 376 2548 109.1 99.9

(b) ✓ 0.595 266 1617 45.4 86.4

(c) ✓ ✓ 0.648 301 1818 10.17 50.2

(d) ✓ ✓ ∼ 0.361 68.6 482 7.39 31.9

(e) ✓ ✓ ✓ 0.350 61.0 465 8.27 31.8

(f) ✓ ✓ ✓ ∼ 0.341 67.4 1371 88.5 88.8

Full ✓ ✓ ✓ ✓ 0.193 16.5 289 5.45 33.7

Table 4. Synthesis module ablation results on the Minecraft

dataset. Multi: use of multi-object modeling, π: use of deforma-

tion, w: use of style modulation layers or of direct style encoding

(∼), F : use of the feature renderer or of the simplified renderer

(∼). ADD in pixels, MDR in %.

Original camera Manipulated camera
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Figure 7. Camera and style manipulation results on the Tennis

dataset. The original image is rendered under a novel camera per-

spective using varying styles for the field and players.

⟨5⟩, F use of the feature renderer for robustness ⟨6⟩. We

produce the following method variations: (a) no component

is used; this approach resembles NeRF [19]; (b) Multi; (c)

Multi and π; this architecture is akin to NR-NeRF [34] with

⟨3⟩; (d) Multi, π, and w injected with concatenation rather

than style modulation layers; (e) Multi, π, and w with style

modulation layers; (f) Multi, π, w and a simplified ConvNet

F that renders the complete frame from feature maps at a

single resolution; from an architectural viewpoint, this fea-

ture rendering strategy resembles the one of GIRAFFE [21].

Results are shown in Tab. 4 and in the Supp. Mat.. (c)

and (e) show that deformation and style modeling with style

modulation layers are both necessary to accurately synthe-

size the scene, but generate blurry results due to calibra-

tion and localization errors. We recover sharpness by intro-

ducing our ConvNet feature renderer which reduces blur by

modeling cross-pixel correlations. Substituting our renderer

Var. Rel. D L∆ Lact LPIPS↓ FID↓ FVD↓ ∆-MSE↓ ∆-Acc↑ ADD↓ MDR↓

(A) ✓ 0.205 17.0 334 0.903 33.9 18.7 33.0

(B) ✓ ✓ 0.204 17.0 329 0.290 76.0 18.6 33.5

(C) ✓ ✓ ✓ 0.203 16.9 340 0.263 80.0 15.4 34.0

(D) ✓ ✓ ✓ 0.204 17.0 323 0.289 77.0 17.8 34.3

(E) ✓ ✓ ✓ 0.204 16.9 335 0.276 77.5 17.5 34.0

Full ✓ ✓ ✓ ✓ 0.204 16.8 329 0.271 77.7 17.8 33.9

Table 5. Action module ablation results on the Minecraft dataset.

Rel.: use of camera relative residual ∆ output, D: use of the tem-

poral discriminator, L∆: use of the loss for ∆-MSE, Lact: use of

the information-theoretic action learning loss. ∆-MSE, ∆-Acc and

MDR in %, ADD in pixels.

with the one of (f) leads to performance degradation due to

the excessively sparse sampling of rays imposed by memory

constraints when rendering the complete frame that leads to

3D consistency artifacts which are particularly apparent in

the region of dynamic objects.

Action module ablation study. We now evaluate the con-

tribution of the main components of the action module by

ablating the following: Rel. use of camera-relative object

movement in the dynamics network; D use of the tempo-

ral discriminator; L∆ use of the loss on ∆-MSE; Lact use

of the information-theoretic action learning loss. Results

are shown in Tab. 5. Removing the temporal discriminator

causes an increase in the FVD. A qualitative analysis of the

results (see Supp. Mat.) shows that models not using D

produce sequences where the players translate in the scene,

but fail to realistically move their limbs. In addition, the in-

troduction of L∆ produces a positive impact on the action

space metrics. We also note that, thanks to the presence of

L∆, the model learns an action space even in the absence of

Lact. Lastly, without camera-relative object movement in

the dynamics network, the model produces movements that

are independent from the current camera orientation, which

is undesirable (Sec. 3.2).

5. Conclusions and Discussion

In conclusion, we present a new framework featuring

a NeRF-based encoder-decoder architecture and an action

module for the creation of compelling playable environ-

ments. Extensive experimental evaluation on two large-

scale datasets shows that our method achieves state-of-the-

art performance. We discuss the main limitations and ethi-

cal aspects of the method in the Supp. Mat..
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