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Abstract

The development of computational tools allows the ad-
vancement of research in behavioral neuroscience and el-
evates the limits of experiment design. Many behavioral
experiments need to determine the animal’s position from its
tracking, which is crucial for real-time decision-making and
further analysis of experimental data. Modern experimental
designs usually generate the recording of a large amount of
data, requiring the development of automatic computational
tools and intelligent algorithms for timely data acquisition
and processing. The proposed tool in this study initially
operates with the acquisition of images. Then the animal
tracking step begins with background subtraction, followed
by the animal contour detection and morphological oper-
ations to remove noise in the detected shapes. Finally, in
the final stage of the algorithm, the principal components
analysis (PCA) is applied in the obtained shape, resulting in
the animal’s gaze direction.

1. Introduction

The main goal of systems neuroscience is to describe
causal relationships between neural circuit activity and ani-
mal behavior. Over the last two decades, new technologies
for monitoring [1, 2] and manipulating [3] neural activity
with striking spatiotemporal resolution in freely behaving
animals have become available. To take full advantage of
these technologies, we critically depend on the ability to
interfere with real-time neural circuit activity in response to
ongoing animal behavior. However, current technology for
accurate online and real-time animal behavior tracking is a
major computational challenge in neuroscience experiments.

There are many approaches to tracking animal head direc-
tion. Classically, head-orientation detection is performed by
tracking at least two LEDs that are attached over the head of
the animal for this specific purpose [4–6]. However, LEDs

represent additional weight for the animal headstage with
significant consequences in the case of small animals, like
the mouse.

Recent advances in tracking technology using machine
learning [7] can satisfactorily solve the problem of head-
direction tracking without the necessity of using LEDs. How-
ever, the computational cost of its implementation turns diffi-
cult its utilization for real-time online detection of behavioral
parameters in neuroscience experiments.

This study presents the development of a computational
tool called PyMiceTracking. It is written in the Python pro-
gramming language. It allows simultaneous and real-time
tracking of rodent body parts without markers (e.g., cen-
ter of mass, snout tip, and tail base position), allowing for
closed-loop experiments. PyMiceTracking also provides
an algorithm for estimation of the yaw of the head (i.e., the
head’s orientation in the 2D coordinates over the plane where
the animal navigates). Combining the simultaneous real-time
tracking of mouse body parts and head orientation allows
several possibilities for social and objects experimental in-
vestigation designs that could be associated with sensory and
optogenetic stimulations.

It is intended to demonstrate the functioning and imple-
mentation details of the PyMiceTracking toolbox and the
algorithms used for detecting body parts and estimating head
orientation. Is presented a benchmark test using online
available mouse behavioral datasets. Finally, we provide
a step-by-step guide for using PyMiceTracking covering all
installation steps and the creation of customized processing
pipelines for experiments with closed-loop feedback stimu-
lation.

2. Methods

2.1. Computational Development

Here, computational development techniques are de-
scribed, including the environment for software development,



problem modeling, programming languages, and usability
for researchers, the target audience for this type of research.

The Python programming language was adopted to de-
velop the software proposed in this research. Also, the Open
Source Computer Vision (OpenCV) library was essential
for the acquisition and processing of the frames necessary
for the analysis contained in this work. All steps involved
for Mice Tracking and Head Orientation Detection can be
viewed in summary form in the UML-based activity diagram
shown in Figure 1.
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Figure 1. UML activity diagram of the developed system for the
animal tracking and detection of head orientation.

In step 1, images are acquired from a video source, which
can be a video file or even a live stream from a camera.
Thus, the pre-processing of the images is performed using
techniques such as noise filtering and histogram equalization,
enabling improvements in image quality for the subsequent
steps.

In step 2, the goal is to perform animal tracking. Initially,
the user has to choose between two methods of tracking:
background subtraction and threshold.

In the case of background subtraction, an absolute differ-
ence operation is performed between a reference background
frame, possibly obtained before the animal entered the arena
and the current frame. This subtraction will allow the re-
moval of objects that may appear in the scene and reflections
of animals on the acrylic or glass walls common in this type
of experiment.

For threshold tracking, the Otsu method is applied. This
method returns a single intensity threshold that separates
pixels into two classes, foreground, and background. This
threshold is determined by minimizing intra-class intensity
variance, or equivalently, by maximizing inter-class variance
[8].

Next, a contour detection based on edge detection is exe-
cuted, looking for the boundaries of a shape with the same
intensity to determine the pixels that belong to the animal
being tracked. The final part of this step is the execution
of a computational process called morphological aperture
that is performed on the shape obtained from the previous
contour detection, improving the detection and considering
the animal pixels that may have been excluded due to noise
in previous steps.

Finally, in step 3, the Principal Component Analysis
(PCA) algorithm is executed in a shape obtained from the
previous morphological operation, extracting the essential
features of the shape and giving the elliptical characteristic
of mice. Thus, two axes can be traced, indicating the direc-
tions in which the most shape changes are. One of those axes
shows the constant changes in the position of the animal’s
head, therefore, aligning the axis with the gaze direction.
direction.

2.2. Experimental setup

The software under development can be used in different
animal behavioral experiments scenarios. To validate the
computational development proposed in this work, we ana-
lyzed videos of behavioral experiments on social iteration
with mice, kindly provided by [9]. Figure 2-a shows a 3D
view of a typical setup for this mouse social interaction test.
Figure 2-b shows an example of a frame captured from a
camera with a superior view during a behavioral experiment.

Figure 2. Setup designed for behavioral experiment of social inter-
action. a) 3D representation of the experimental configuration for
the social interaction test. It is possible to visualize the arena for
free movement, a retention cage for another animal and a camera
for image acquisition. b) Example of captured frame in a top view
of the arena during the social interaction test.

The images analyzed in this work for software valida-
tion come mainly from the behavioral testing environment
presented in [9]. The tests initially placed the mouse in the



center of a square arena (white plexiglass open field, 37 cm
on each side and 30 cm high), and the behavior was moni-
tored using a video camera (Cineplex Studio, 50 fps) placed
above the arena.

The experimental mouse was allowed to explore an arena
under two different experimental sessions. In the first (“ob-
ject” session), there was an empty perforated plexiglass cage
placed in the middle of one wall of the arena. In the second
session (“social” session), an unfamiliar male mouse was
introduced into the cage as a social stimulus. Classically, pat-
terns of arena occupation such as time spent in the vicinity
of the cage and arena corners are compared between sessions
and used to identify anxiety and depressive-like behaviors in
mice.

This experimental setup where an arena is recorded from
an upper camera and from there some behavioral analysis of
the animal is performed is quite common [10–12]. Thus, the
software presented in this paper has been validated in this
scenario.

2.3. Image Processing Techniques

2.3.1 Segmentation

Image segmentation is the process of partitioning a digital
image into multiple segments (sets of pixels, also known
as image objects). The goal of segmentation is to simplify
and/or change the representation of an image into something
more meaningful and easier to analyze. More precisely,
image segmentation is the process of assigning a label to
every pixel in an image such that pixels with the same label
share specific characteristics [13].

Generally, segmentation algorithms are either based on
discontinuity, which analyses the boundaries of the regions in
search of pronounced differences, or similarities that search
the pixels of a region that can be clustered by similarity.
Segmentation is very useful for line detection [14], edge
detection [15, 16], region clustering [17] among other appli-
cations.

The segmentation process divides a region R into n con-
nected sub-regions R1, R2, · · · , Rn, so that Equations 1 and
2 are satisfied.

R = ∪n
i=1 Ri (1)

Ri ∩Rj = ∅ ∀ i ̸= j (2)

2.3.2 Mathematical morphology

In nature, the term morphology refers to studying the form
and structure of plants and animals. The mathematical mor-
phology is the toolbox based on set theory through which the
forms and structures in digital images are studied [18–21].

In binary images, the sets are members of the Z2 space
where the coordinates are the pixel coordinates components.

For images in grayscale, the sets are members of the Z3 space
where besides the pixel coordinates, an extra dimension is
added to account for the pixel grayscale color.

The operations in mathematical morphology are based
on small sets called structuring elements (SE) these are sub-
images used to search an image for properties of interest.
Some set operations can be performed over an input im-
age with these elements, the main ones being erosion and
dilation.

The erosion is the morphological operation through which
the boundary of a set is worn out. Equation 3 formally
defines the set operation performed.

A⊖B = { z | (B)z ⊆ A } (3)

On the other hand, dilation is the morphological operation
through which the boundary of a set is expanded, formally
defined by Equation 4.

A⊕B = { z | (B̂)z ∩ A ̸= ∅ } (4)

Trough the combination of the aforementioned operations,
two very useful operations can be defined, namely opening
and closing.

The opening operation is used to soften outlines, breaks
channels and eliminate small protrusions. The main applica-
tion of the opening operation is to remove small error regions
from noise in the segmentation. This operations is defined
by Equation 5.

A ◦B = (A⊖B)⊕B (5)

The closing operation is also used to soften outlines but
tends to merge narrow discontinuities, eliminate small holes
and fill gaps in a contour. The operation is defined by Equa-
tion 6.

A ·B = (A⊕B)⊖B (6)

2.3.3 Principal Component Analysis

The Principal Component Analysis (PCA), also known as
Karhunen-Loève Transform or Hotelling Transform [22, 23],
perform an orthogonal transformation on a dataset of interde-
pendent variables to another dataset of linearly de-correlated
variables [24].

Therefore the PCA acts as a linear transformation that
transfers the data to a new coordinate system, so that the
largest variation by any projection of the data will be in
the first coordinate (first principal component), the second-
largest variation is in the second coordinate (second principal
component), and so on.

One of the significant advantages of this type of analysis
lies in the fact that the variables relevant to many problems
are often correlated, which makes some of them redundant



at some level, so when using this type of transformation, the
data can be analyzed in a much smaller dimension without
losing information.

The PCA is formulated as follows, let x̄ =
[x1, x2, . . . , xn]

T be a n-dimensional vector from the dataset
so the average vector (7) and the matrix of covariance (8) of
this dataset are define as:

m̄x =
1

M

M∑
i=1

xi (7)

Cx =
1

M

M∑
i=1

(x̄i · x̄T
i )− m̄i · m̄T

i (8)

The matrix Cx is real and symmetric, therefore its eigen-
values λi are real and distinct, with their respective eigen-
vectors ēi associated.

For the transformations the eigenvalues are sorted in de-
scending order, thus λj ≥ λj+1 where j = 1, 2, . . . , n − 1
and a matrix A is constructed with each of its lines being a
unitary eigenvectors associated with the eigenvalues from
the Cx matrix. The first row of A contains the eigenvec-
tor associated with the largest eigenvalue, therefore the last
line will contain the eigenvector associated with the smallest
eigenvalue.

The Hotelling Transform can be written as shown in Equa-
tion 9, where the transformed vectors have a zero average.

ȳ = A(x̄− m̄) (9)

3. Results
The first step of the approach here proposed is to subtract

a user-provided image of the experimental setup background
from every frame captured by the camera, therefore obtain-
ing a image where the pixels belonging to static elements in
the scene are going to have a value close to 0 and pixels of
moving objects are going to have values close to 255. Figure
3 depict this subtraction process.

Current Frame

Background 

Figure 3. Subtraction process of user provided background image
and a frame obtained from the experimental video.

The subtraction process is effective given that in the exper-
imental configurations studied here, the lighting conditions
rarely change, and the tracking subject stands out from the
background. In Figure 4 a histogram plot of the previously
subtracted frame can be seen, with the strategy here proposed
the pixels belonging to the animal can be placed in the closed
interval [120, 160], as shown by the highlighted part of the
figure, with this a band-pass like the filter is executed over
the image where the pixels inside the interval are assigned a
value of 1, and a value of 0 is given to that outside.
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Figure 4. Histogram of the image subtraction result.

To further increase the system’s robustness on top of
the background subtraction, a series of morphological op-
erations are performed over the binarized image, therefore,
accounting for possible errors in the binarization process.

To harvest the benefits of morphological operations, the
output of the binarization process depicted in Figure 5(a)
passes through an erosion operation with the kernel depicted
in Figure 5(K1) this operation can be written as A⊖K1 with
this all the possible noise is removed from the image however
some parts of interest may also be removed, to overcome this
problem a dilation operation with the kernel shown in Figure
5(K2) is performed over the previous result thus increasing
the area of interest and counterposing possibly removed parts.
The final result is shown in Figure 5(b) and the complete
operation can be written as B = (A⊖K1)⊕K2.

(a) (b)

k1

k2

Figure 5. Process of morphological opening

Figure 6(a) shows the input to the final step in the compu-



tational tool proposed here. In this image, the PCA algorithm
is executed, and the two axes can be found representing the
principal components of the image, one of which will always
indicate the direction of the mice’s gaze. These axes and the
masks’ center of mass are depicted in Figure 6(b).

(a) (b)

Figure 6. Input and output for the PCA algorithm.

With the tool, researchers can analyze the animal’s trajec-
tory throughout the arena during the experiment as shown
in Figure 7(a). In addition, from the trajectory points, a
heatmap plot can be generated to analyze the prolonged pres-
ence of the animal in specific parts of the arena as depicted
in Figure 7(b). Furthermore, it’s possible to select regions
of interest (ROI) where the amount of time the animal spent
inside will be automatically accounted as shown in Figure
7(c).
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Figure 7. Examples of analyses performed with the tool: (a) Trajec-
tory plot of the position of a mice during a social session showing
the interaction zone (blue) and corners (yellow); (b) Heatmap plot
of the trajectory showing the prolonged presence of the animal
around the interaction zone; (c) Time spent inside each region
depicted where Region 0 and 1 are the top left and top right re-
spectively and Region 2 is the bottom one; (d) Speed of the animal
during the experiment.

Moreover, the previously described analyses capabilities
the tool also provides an interface for tracking and plotting
the animal’s speed during the experiment, as shown in Figure
7(d).

To facilitate the access to the tools presented, a graphical
user interface (GUI) showed in Figure 8 was developed.
There, the user can load the video and visualize the frames
being processed while making corrections on the fly to the
hyperparameters of the tracking algorithm.

Figure 8. User interface developed.

With the computational tool presented by this work, re-
searchers in neuroscience can automatically analyze data
collected from the position of an animal during behavioral
experiments, therefore, being able to determine if the animal
spent more time exploring the ambient or isolated in the
corners and with this information inferences in the animal’s
level of anxiety can be made [25].

4. Conclusion

This study described the computational development that
uses digital image processing to detect and track mice during
behavioral neuroscience experiments. Researchers world-
wide can have a reliable, real-time, and fully automated
tracking system with the proposed tool. The entire system
can be modified and adapted for different needs with open-
source development.

All computational tools developed during this work
can be found in a repository under the General Public
License (GPL) available at https://github.com/
xarmison/proj-pca, which includes examples and tu-
torials for the usage of the proposed tools.

5. Acknowledgment

This work was supported by the School of Sciences and
Technology at the Federal University of Rio Grande do Norte
(ECT-UFRN).

References

[1] J. J. Jun, N. A. Steinmetz, J. H. Siegle, D. J. Denman,
M. Bauza, B. Barbarits, A. K. Lee, C. A. Anastassiou,
A. Andrei, Ç. Aydın et al., “Fully integrated silicon



probes for high-density recording of neural activity,”
Nature, vol. 551, no. 7679, pp. 232–236, 2017. 1

[2] W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong,
H. Wu, Y. Xu, Y. Lu et al., “Fast high-resolution minia-
ture two-photon microscopy for brain imaging in freely
behaving mice,” Nature methods, vol. 14, no. 7, pp.
713–719, 2017. 1

[3] E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and
K. Deisseroth, “Millisecond-timescale, genetically tar-
geted optical control of neural activity,” Nature neuro-
science, vol. 8, no. 9, pp. 1263–1268, 2005. 1

[4] J. O’Keefe and J. Dostrovsky, “The hippocampus as a
spatial map: preliminary evidence from unit activity in
the freely-moving rat.” Brain research, 1971. 1

[5] L. M. Giocomo, T. Stensola, T. Bonnevie,
T. Van Cauter, M.-B. Moser, and E. I. Moser,
“Topography of head direction cells in medial en-
torhinal cortex,” Current Biology, vol. 24, no. 3, pp.
252–262, 2014. 1

[6] J. I. Sanguinetti-Scheck and M. Brecht, “Home, head
direction stability, and grid cell distortion,” Journal of
neurophysiology, vol. 123, no. 4, pp. 1392–1406, 2020.
1

[7] A. Mathis, P. Mamidanna, K. M. Cury, T. Abe, V. N.
Murthy, M. W. Mathis, and M. Bethge, “Deeplabcut:
markerless pose estimation of user-defined body parts
with deep learning,” Nature neuroscience, vol. 21, no. 9,
pp. 1281–1289, 2018. 1

[8] N. Otsu, “A threshold selection method from gray-level
histograms,” IEEE transactions on systems, man, and
cybernetics, vol. 9, no. 1, pp. 62–66, 1979. 2

[9] A. M. Henriques-Alves and C. M. Queiroz, “Etholog-
ical evaluation of the effects of social defeat stress in
mice: beyond the social interaction ratio,” Frontiers in
behavioral neuroscience, vol. 9, p. 364, 2016. 2

[10] M. J. Kas, A. J. de Mooij-van Malsen, B. Olivier, B. M.
Spruijt, and J. M. van Ree, “Differential genetic regula-
tion of motor activity and anxiety-related behaviors in
mice using an automated home cage task.” Behavioral
neuroscience, vol. 122, no. 4, p. 769, 2008. 3

[11] M. Yang and J. N. Crawley, “Simple behavioral as-
sessment of mouse olfaction,” Current protocols in
neuroscience, vol. 48, no. 1, pp. 8–24, 2009. 3

[12] M. Yang, J. L. Silverman, and J. N. Crawley, “Auto-
mated three-chambered social approach task for mice,”
Current protocols in neuroscience, vol. 56, no. 1, pp.
8–26, 2011. 3

[13] G. Stockman and L. G. Shapiro, Computer Vision,
1st ed. USA: Prentice Hall PTR, 2001. 3

[14] L. A. Fernandes and M. M. Oliveira, “Real-time line
detection through an improved hough transform voting
scheme,” Pattern recognition, vol. 41, no. 1, pp. 299–
314, 2008. 3

[15] F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll, “Im-
age selective smoothing and edge detection by nonlin-
ear diffusion,” SIAM Journal on Numerical analysis,
vol. 29, no. 1, pp. 182–193, 1992. 3

[16] R. S. T. Menezes, L. d. A. Lima, O. Santana, A. M.
Henriques-Alves, R. M. S. Cruz, and H. Maia, “Classi-
fication of mice head orientation using support vector
machine and histogram of oriented gradients features,”
in 2018 International Joint Conference on Neural Net-
works (IJCNN), July 2018, pp. 1–6. 3

[17] B. C. Ko and J.-Y. Nam, “Object-of-interest image
segmentation based on human attention and semantic
region clustering,” JOSA A, vol. 23, no. 10, pp. 2462–
2470, 2006. 3

[18] R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Im-
age analysis using mathematical morphology,” IEEE
transactions on pattern analysis and machine intelli-
gence, no. 4, pp. 532–550, 1987. 3

[19] F. Zana and J.-C. Klein, “Segmentation of vessel-like
patterns using mathematical morphology and curvature
evaluation,” IEEE transactions on image processing,
vol. 10, no. 7, pp. 1010–1019, 2001. 3

[20] P. Trahanias, “An approach to qrs complex detection
using mathematical morphology,” IEEE Transactions
on Biomedical Engineering, vol. 40, no. 2, pp. 201–
205, 1993. 3

[21] Z. Yu-Qian, G. Wei-Hua, C. Zhen-Cheng, T. Jing-Tian,
and L. Ling-Yun, “Medical images edge detection
based on mathematical morphology,” in 2005 IEEE
engineering in medicine and biology 27th annual con-
ference. IEEE, 2006, pp. 6492–6495. 3

[22] K. Pearson, “Liii. on lines and planes of closest fit to
systems of points in space,” The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of
Science, vol. 2, no. 11, pp. 559–572, 1901. 3

[23] H. Hotelling, “Analysis of a complex of statistical vari-
ables into principal components.” Journal of educa-
tional psychology, vol. 24, no. 6, p. 417, 1933. 3

[24] S. Wold, K. Esbensen, and P. Geladi, “Principal com-
ponent analysis,” Chemometrics and intelligent labora-
tory systems, vol. 2, no. 1-3, pp. 37–52, 1987. 3



[25] J. Winne, R. Franzon, A. de Miranda, T. Malfatti, J. Pa-
triota, S. Mikulovic, K. E. Leão, and R. N. Leão, “Sal-
icylate induces anxiety-like behavior and slow theta
oscillation and abolishes the relationship between run-
ning speed and fast theta oscillation frequency,” Hip-
pocampus, vol. 29, no. 1, pp. 15–25, 2019. 5


