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Abstract

Contrastive learning (or its variants) has recently be-
come a promising direction in the self-supervised learn-
ing domain, achieving similar performance as supervised
learning with minimum fine-tuning. Despite the labeling ef-
ficiency, wide and large networks are required to achieve
high accuracy, which incurs a high amount of computation
and hinders the pragmatic merit of self-supervised learn-
ing. To effectively reduce the computation of insignificant
features or channels, recent dynamic pruning algorithms
for supervised learning employed auxiliary salience pre-
dictors. However, we found that such salience predictors
cannot be easily trained when they are naı̈vely applied to
contrastive learning from scratch. To address this issue,
we propose contrastive dual gating (CDG), a novel dy-
namic pruning algorithm that skips the uninformative fea-
tures during contrastive learning without hurting the train-
ability of the networks. We demonstrate the superiority
of CDG with ResNet models for CIFAR-10, CIFAR-100,
and ImageNet-100 datasets. Compared to our implemen-
tations of state-of-the-art dynamic pruning algorithms for
self-supervised learning, CDG achieves up to 15% accu-
racy improvement for CIFAR-10 dataset with higher com-
putation reduction.

1. Introduction
The success of the conventional supervised learning

relies on the large-scale labeled dataset to minimize the

loss and achieve high accuracy. However, manually an-

notating millions of data samples is labor-intensive and

time-consuming. This promotes the self-supervised learn-
ing (SSL) to be an attractive solution, since artificial labels

are used instead of human-annotated ones for training.

The state-of-the-art self-supervised learning frame-

works, such as SimCLR [3] and MoCo [11], utilize the con-

cept of contrastive learning (CL) [9] with wide and deep

models to achieve comparable performance as the super-

vised training counterpart. Figure 1 shows the CIFAR-10

inference accuracy vs. the number of floating-point opera-
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Figure 1. Inference accuracy of various ResNet models with su-

pervised and self-supervised training [3] from scratch. After con-

trastive pre-training, models are fine-tuned on 50% of training set.

tions (FLOPs). By training from scratch, SimCLR [3] re-

quires a model that is 4 times wider (ResNet-18 (4×)) to

achieve similar accuracy as the baseline model trained with

supervised learning (ResNet-18 (1×)). On the other hand,

it is also difficult to achieve good accuracy with the com-

pact model architecture (e.g., ResNet-20). The extraordi-

nary computation cost necessitates efficient computation re-

duction techniques for self-supervised learning.

Under the context of supervised learning, network spar-

sification has been widely studied. Both static weight prun-

ing [10,21] and dynamic computation skipping [1,8,14,16,

20] have achieved high accuracy with pruned architecture or

sparse features. A recent work [2] reported the transferabil-

ity of applying the lottery ticket hypothesis [7] to SSL for

the downstream tasks. However, the requirements of self-

supervised pretraining and iterative searching greatly limit

the practicality of the algorithm. Sparsifying the SSL mod-

els that are trained from scratch is still largely unexplored,

despite its importance.

To address this research gap, we investigate efficient dy-

namic sparse feature learning by training the model from

scratch in a self-supervised fashion. Most of the prior

works on dynamic computation reduction [1, 8, 16, 20] ex-

ploit the spatial sparsity by using an auxiliary mini neu-
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Figure 2. Overview of the proposed Contrastive Dual Gat-

ing (CDG) algorithm based on SimCLR [3] framework, which

learns sparse feature in both constrative branches.

ral network (mini-NN) to determine the feature salience.

Besides the extra computation cost of the mini-NN-based

salience prediction, we found that it is problematic to use

for contrastive learning due to significant accuracy degra-

dation (see Section 5 for more details).

To resolve the issue, we propose Contrastive Dual Gat-
ing (CDG), a dynamic sparse feature learning algorithm

for contrastive self-supervised learning. As opposed to the

mini-NN-based salience prediction, CDG exploits spatial

redundancy by using a spatial gating function. Different

from channel gating network (CGNet) [14] presented for

supervised learning, the proposed CDG algorithm for self-

supervised learning exploits the spatial redundancies with

full awareness of the saliency difference between the con-

trastive branches. As illustrated in Figure 2, CDG learns

the sparse features in both contrastive branches during the

unsupervised learning process. Furthermore, CDG can ex-

ploit the sparse features in both structured and unstructured

manner. Aided by the efficient and optimized sparsification,

CDG achieves high FLOPs reduction and high inference ac-

curacy, without any auxiliary predictors. Overall, the main

contributions of this work are:

• Contrary to dynamic pruning for supervised learning

where mini-NN-based saliency prediction improved

the overall performance, we show that such auxiliary

predictor scheme leads to inferior accuracy in dynamic

pruning for self-supervised learning.

• We present CDG, a new dynamic pruning algorithm

with dual gating strategy, designed for contrastive self-

supervised training with multiple recent contrastive

learning frameworks.

• We evaluate CDG for ResNet models across multi-

ple datasets, where CDG achieved up to 2.25× and

1.65× computation reduction for CIFAR-10/-100 [15]

and ImageNet-100 datasets, respectively.

2. Related Work

2.1. Dynamic computation reduction

Learnable salience prediction. The inflation of the

model sizes produces the different channel importance with

the changing inputs. Several recent works proposed to use

an additional mini-NN to predict the uninformative fea-

tures or channels. Given the high-dimensional input, the

salience predictor generates the low-dimensional salience

vector, which will be used to formulate the binary feature

masks during supervised training.

FBS [8] estimates the input channel importance by

using an additional fully-connected (FC) layer followed

by the ReLU activation function. Dynamic group con-

volution (DGC) [20] extends the design of FBS with

more FC layers while deploying separate salience predic-

tors in different output channel groups. Dynamic dual

gating (DDG) [16] utilizes both convolution and fully-

connected layers to exploit spatial and channel feature spar-

sity. The complex salience predictor designs improve the

computation reduction with the cost of deteriorating the

trainability of the model. DDG [16] requires the pretrained

static model for initialization, even for the CIFAR-10 [15]

dataset. None of the salience predictor designs have been

studied for self-supervised learning.

Channel gating-based dynamic pruning. Channel gat-

ing networks (CGNet) [14] first executes a subset of input

channels in every layer Wb (base path), the resultant par-

tial sum will be strategically gated to determine the remain-

ing computation of the convolution layer Wc (conditional

path). Strong correlations have been reported between the

base path outcomes and the final sum output, which means

the uninformative features of the base path computation are

also highly likely to be unimportant for the conditional path.

The salience of the computation is evaluated based on the

normalized base path output, where the features with large

magnitude are deemed important and selected. Specifically,

the base path output is formulated as:

Ybase = Xbase ∗Wb (1)

Subsequently, the computation decision Mc ∈ {0, 1} for

the conditional path Wc can be computed as:

Mc = σs(normal(Ybase)− τ), (2)

where τ represents the learnable gating threshold. For bet-

ter gradient approximation, the non-linear function σs con-

sists of a non-linear activation function and a unified step

function. The features with small magnitude (less than the

threshold) will be gated, and the binary decision mask Mc

will be applied to the conditional path computation. The fi-

nal output of the convolution layer combines the dense base
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path and the sparse conditional path:

Yi,j,k =

{
{Ybase}i,j,k if {Mc}i,j,k = 0

{Ybase}i,j,k + {Ycond}i,j,k if {Mc}i,j,k = 1

(3)

As orthogonal to other methods that exploit the structured

channel sparsity, CGNet focuses on fine-grained sparsity

along the spatial axes. However, employing the unstruc-

tured sparsity in hardware could be cumbersome due to the

fine-grained sparse indexes. As a result, the structured fea-

ture sparsity should also be carefully investigated.

2.2. Contrastive self-supervised learning

In contrast to learning the representative features with

the labeled data, contrastive learning (CL) trains the model

based on the latent contrastiveness of the high-dimensional

features [12, 13]. With the similarity-based contrastive loss

function [18], CL maximizes the agreement between similar

samples while repelling mismatched representations from

each other. The success of the contrastive loss enables

the state-of-the-art methods to optimize the model by using

gradient-based learning.

As a representative work, SimCLR [3] encodes two sets

of augmented inputs (e.g., color jitter, Gaussian blur) with

one single base encoder. Such end-to-end training frame-

works exhibit less complexity but perform better with large

models. However, the impact of the salience difference be-

tween the augmented features is still not clearly understood,

which could largely impact the dynamic pruning perfor-

mance for contrastive learning.

3. Learning Sparse Features with Contrastive
Training

In this section, we discuss the optimal dynamic gating

strategy for self-supervised sparse feature learning. We use

ResNet-18 architecture as the default base encoder of Sim-

CLR [3] contrastive learning framework.

3.1. Non-transferability of dynamic sparse masks

The pruning decision of CGNet [14] is formulated by

evaluating the feature salience of the base path outcome.

With supervised learning, all the intermediate features maps

are originated from the clean input image. However, in the

contrastive supervised learning scheme, the inputs of the

base encoder are the transformed images for different con-

trastive branches. For SimCLR [3], the two transformed

inputs are generated by the separate transformation opera-

tors from the same augmentation family T . Therefore, the

question arises: Given the unique encoder network, will the
base path feature salience be similar between the two aug-
mented paths? In other words, can the pruning decisions be
transferred between the two augmented features?
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Figure 3. Broadcasting the computed sparse masks Ma1
c to both

contrastive paths results in: (a) reduced contrastive training loss,

and (b) defective generalizability with unsuccessful supervised lin-

ear evaluation.

To answer the above questions, we use CGNet [14] as

the starting point but disable the channel shuffling to avoid

the distortion of randomness. Given the two contrastive

branches a1 and a2, we first compute Ma1
c based on Eq. 2

with the base path input Xa1

base, then broadcast Ma1
c to the

conditional path of both contrastive branches:

Y a1

cond = Xa1

cond ∗Wc ·Ma1
c , (4)

Y a2

cond = Xa2

cond ∗Wc ·Ma1
c , (5)

where

Ma1
c = σs(normal(Y a1

base)− τ) (6)

We train a ResNet-18 encoder from scratch on the CIFAR-

10 dataset. Due to the low resolution (32×32), the random

Gaussian blur is excluded from the augmentation. Simi-

lar transformation methods have been verified in a previ-

ous implementation [6]. As shown in Figure 3(a), apply-

ing the identical dynamic pruning mask leads to a large re-

duction in contrastive loss from the baseline. However, the

low contrastive pre-training loss cannot empower the subse-

quent supervised linear evaluation stage. The low accuracy

is shown in Figure 3(b) implies that the feature extractor is

defective due to unsuccessful contrastive learning.

With the absence of the geometric transformations,

broadcasting the dynamic sparse masks across different

contrastive paths can be considered as revealing similar spa-

tial features during the conditional path convolution. After

convolving with the shared conditional path Wc, the pro-

jected low-dimensional vectors tend to have high similar-

ities, leading to decreased contrastive loss. Summarizing

these empirical results, our main observations are:

A1: The unanimous data transformation operation
T and the identical encoder f cannot guarantee the fea-
ture salience to be similar across different augmented
branches. The observation of A1 yields the following con-

clusion of dynamic pruning:

C1: Due to the distinct feature salience of contrastive
learning, the pruning decision Mc is non-transferable
between the contrastive branches.
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Methods Gating
Groups

Cond. path
Spars. (%)

Inference
Acc. (%)

Baseline - - 89.16

Unified Gating 4 52.29 52.53

Dual Gating 4 71.88 87.67

Table 1. Comparison of different gating schemes for CIFAR-10

accuracy after contrastive pre-training and linear evaluation. Ap-

plying the discriminative dual gating during the contrastive learn-

ing significantly improves the model performance.

3.2. Dual gating for contrastive learning

Based on the conclusion C1, we employ separate prun-

ing decisions for both contrastive branches. Specifically,

given the base path outputs Y a1

base, Y a2

base, the dynamic sparse

masks can be separately generated based on Wb:

Ma1
c = σs(normal(Xa1

base ∗Wb)− τ) (7)

Ma2
c = σs(normal(Xa2

base ∗Wb)− τ) (8)

Following the same training setup as Section 3.1, we apply

separate sparse masks to both contrastive branches during

training. During the subsequent linear evaluation, we only

apply Ma1
c to the frozen backbone model. As summarized

in Table 1, the discriminative dual gating scheme improves

both inference accuracy and conditional path sparsity by a

significant margin. Conclusion C1 confirms the necessity of

applying distinct sparse masks to both contrastive branches

whereas the salience difference between a1 and a2 requires

a more quantitative investigation.

As shown in Figure 4, we compute the average shape-

wise similarity Sc between Ma1
c and Ma2

c along the chan-

nel dimension C. Since the sparse masks are binary, the

element-wise similarity can only be “0” or “1”. The global

average mask similarity is computed by universally averag-

ing the Sc of all the layers across all the training images of

Shape-wise cosine 
similarity 

0.2 0.4 0.6

0.7 0.1 0.5

0.3 0.2 0.4

, × × , × ×

×

Binary Mask: , = ,
“1”: Dense

“0”: Skip

Average

Figure 4. Shape-wise cosine similarity Sc between the contrastive

masks Ma1
c and Ma2

c . With identical base path Wb of ResNet-18,

Ma1
c and Ma2

c become diverse from each other during training.

the CIFAR-10 dataset. Figure 4 shows the averaged simi-

larity between the contrastive feature masks Ma1
c and Ma2

c

across the entire ResNet-18 model. At the start of train-

ing, the feature salience between the contrastive branches

are similar (Sc > 0.6). As the sparsity increases during

training, the similarity reduces to 0.34. The magnification

of the dissimilarity during contrastive training leads to the

following conclusion:

C2: Given the unanimous data transformation and
identical base path selections Wb, contrastive training
encourages the network f to highlight different con-
trastive features for better learning.

3.3. Unbiased contrastive grouping

To avoid the biased weight update, CGNet [14] diag-

onally selects the base path across the evenly-divided in-

put/output gating groups. In the previous experiments of

Section 3.1 and Section 3.2, we adopted the same compu-

tation strategy for contrastive learning. The conclusion C2
suggests that the discriminative feature masks are beneficial

for learning sparse features during contrastive training. The

effectiveness of the distinct spatial feature selection moti-

vates us to introduce separate base paths for different con-

trastive branches during training.

To that end, we investigate the impact of the overlapped

base paths and different computation partitions between the

two contrastive branches. With four gating groups (G =
4), Figure 5 depicts the different intersection percentages

of the separate base paths, where W a1

b and W a2

b represents

the base path weights of the two contrastive branches. We
In
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: Base path weights for contrastive branch 

: Base path weights for contrastive branch 
Overlapped base paths

Figure 5. Dual gating with different overlapping percentages

based on four gating groups: (a) Unified dual gating with 100%

overlap, (b) 75% overlap, (b) 50% overlap, and (d) 0% with dis-

joint base paths.
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Overlap Gating
Groups

Cond. Path
Sparsity (%)

Inference
Acc. (%)

Baseline - - 89.16

100% 4 71.88 87.67
75% 4 71.02 87.59
50% 4 70.60 87.12

Disjoint (0%) 4 72.48 88.59

Table 2. Comparison of different overlapping ratio between the

contrastive base paths for CIFAR-10 accuracy after contrastive

pre-training and linear evaluation.

first set W a1

b along the diagonal, then vary the overlapping

ratio with different selection of W a2

b . During the supervised

linear evaluation, we only use W a1

b as the base path.

Following the same contrastive training setup as Sec-

tion 3.2, we train the ResNet-18 model for CIFAR-10 with

different levels of overlapping, then evaluate the inference

accuracy after the supervised linear evaluation. Table 2

summarizes the model performance that is trained by differ-

ent base path selections. Noticeably, the pre-trained model

reaches the lowest inference accuracy when the contrastive

base paths are overlapped by 50% with each other. As illus-

trated in Figure 5(c), the first and second half of W a2

b covers

the same input channel groups while the remaining two out-

put channel groups are ignored from the base path computa-

tion. Since the channel importance can be largely different,

the inferior model performance with 50% channel overlap-

ping signifies the importance of evenly distributing the com-

putation to all the channel groups. Specifically, the repeated

channels in base path makes the learning process tend to

update the corresponding weights more frequently, and the

inactive weights in the remaining channels will eventually

cause the accuracy degradation. A similar discovery is also

reported in [14].

On the contrary, when W a1

b and W a2

b are completely dis-

jointed, the contrastively trained model achieves the best

inference accuracy with only 0.5% degradation from the

dense baseline. By selecting W a1

b , and W a2

b along the dis-

joint diagonals, the base path computations are not subject

any biased training, where different features among differ-

ent channels are activated to enhance the contrastive learn-

ing. Based on these experiments and analysis, we have the

following conclusion:

C3: Given the base encoder f , evenly activating the
disjoint channels among the different contrastive paths
will enhance the sparse feature learning during con-
trastive training.

4. Contrastive Dual Gating
Based on the aforementioned analysis, we present the

Contrastive Dual Gating (CDG) algorithm for efficient

dynamic sparse feature learning during contrastive self-

supervised training. We illustrate the details of CDG in

Algorithm 1 The proposed contrastive dual gating (CDG)

Require: Encoder f , projector g, target sparsity s, gat-
ing groups G, feature group size K

1: Initialize Learnable salience threshold τ
2: for sampled minibatch Xk do
3: for contrastive branch ai ∈ {1, n} do
4: Draw data augmentation tai

∼ T
5: Xai

k = tai
(Xk)

6: Get base path output: Y ai

base = Xai

base ∗W ai

b

7: Compute feature salience

8: if |K| > 1 then
9: Sai

base = AvgPooldim(K)(Y
ai

base, size(K))
10: Sai

base = Repeat-Extend(Sai

base)
11: else
12: Sai

base = Y ai

base

13: end if
14: Sparse conditional path convolution:

15: Mai
c = σs(normal(Sai

base)− τ)
16: Y ai

cond = (Xai

cond ∗W ai
c ) ·Mai

c

17: Get final output

18: Y ai

total = Y ai

base + Y ai

cond

19: end for
20: end for

Algorithm 1. In this work, we mainly focus on the Sim-

CLR [3] framework with two contrastive branches, referred

as a1 and a2. During the forward pass of the contrastive

training, CDG selects the contrastive base paths W a1

b and

W a2

b along the diagonal and inverse-diagonal of the chan-

nel groups. The pruning masks Ma1
c and Ma2

c are gener-

ated separately based on the learnable salience thresholds

τ ∈ R
C , along with the gating function:

Ma1
c = σs(normal(Xa1

base ∗W a1

b )− τ) (9)

Ma2
c = σs(normal(Xa2

base ∗W a2

b )− τ) (10)

The resultant element-wise binary sparse feature masks

govern whether the corresponding 3× 3 convolution of the

conditional path computation is skipped or not. As illus-

trated in Figure 5, the disjoint base paths of CDG allow

the model to exploit the feature redundancy in a symmetric

manner. The unbiased contrastive learning strategy satisfies

our observation in Section 3.3. After the forward pass com-

putation, we optimize τ via L2 regularization based on the

target sparsity value s:

L̃ = LNT-Xent + λ

L∑
i=1

||s− τ ||2, (11)

where L represents the number of layers of the encoder

model. Tunable parameter λ controls the penalty level of

the regularization. During the backward pass, we adopt the

gradient smoothing technique [14] to approximate the gra-

dient of the non-differentiable gating function σs.
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Figure 6. The granularity of structured CDG algorithm K1, K2

represents the two different groups with same size.

4.1. Structured contrastive dual gating

Compared to supervised training, the augmented con-

trastive inputs double the sparse indexes. Since both Ma1
c

and Ma2
c have the same size as the output feature map, stor-

ing and processing such large fine-grained masks could in-

troduce a large amount of memory and computation over-

head in practice. Motivated by this, we introduce the coarse-

grained sparsity on top of the CDG algorithm. Specifically,

given the base path output Y ai

base, we first compute the av-

erage salience map Sai

base within each pre-defined group K:

Sai

base = AvgPooldim(K)(Y
ai

base, size(K)) (12)

The size of K can be either 2-D or 3-D, depending on the

practical needs of the computation. Since the average pool-

ing operation will cause the reduced size of Sai

base, we dupli-

cate each averaged value by |K| times to avoid the dimen-

sionality mismatch. Compared to the fine-grained CDG,

introducing the structured pruning strategy simplifies the

sparse indexes by |K| times, leading to reduced computation

complexity and memory cost. The performance of the spar-

sified contrastive learning model is highly dependent on the

group size selection. The larger pruning granularity leads

to the compendious sparse convolution, whereas the unitary

features will also magnify the accuracy degradation [17].

To balance the model performance and inference efficiency

on targeted hardware, we consider K as a tunable parameter

and use the unified group size |K| across the entire network.

In particular, given the base path output Ybase ∈ R
C×H×W ,

we set the group size to K = Cg×1×1, where 1 < Cg < C.

Figure 6 depicts the group configuration of CDG.

5. Experimental Results
We present the experimental results of the proposed

CDG algorithm for CIFAR-10, CIFAR-100, and ImageNet-

100 datasets. We used 50% labeled data for supervised fine-

tuning. Similar to prior works [6], all experiments are con-

ducted by training the SimCLR-ResNet-18 [3] model from

scratch. Additional results with larger models (e.g., ResNet-

50) are reported in the supplementary materials.

Figure 7. Unstructured conditional path sparsity vs. CIFAR-10

inference accuracy of ResNet-18 with 4 gating groups.

5.1. The impact of gating groups and model widths

The effectiveness of CDG is built upon the high correla-

tion between the base path output and the final convolution

results. Increasing the number of gating groups G reduces

the amount of dense computation, whereas the insufficient

base path partial sums will degrade the model performance.

We evaluated model performance by changing the number

of gating groups during the contrastive training. Given the

number of gating groups G and conditional path sparsity η,

the inference FLOPs reduction DFLOPs is computed as:

DFLOPs =
1

1/G+ (1− η)× (1− 1/G)
(13)

Table 3 summarizes the CIFAR-10 accuracy and un-

structured conditional path sparsity after post-training lin-

ear evaluation. With only 0.5% accuracy degradation, the

proposed CDG algorithm achieves 2.19× FLOPs reduction

by only using 1/4 dense convolution as the base path com-

putation. On the other hand, keeping 7/8 (G = 8) of the

convolution operation sparse has conservative computation

reduction to maintain the accuracy. Therefore, we use 4

gating groups for the ensuing experiments. Figure 7 illus-

trates the CIFAR-10 accuracy and computation reduction

with different target s values and conditional path sparsity.

We also evaluated the proposed CDG algorithm based

on ResNet-18 models with different widths. Table 4 sum-

marizes the inference accuracy by training the model with

CIFAR-100 and ImageNet-100 datasets from scratch. The

first and last layer of the ResNet-18 model are adjusted ac-

cordingly for different input image sizes. After the con-

trastive pre-training, the resulting sparse models are fine-

tuned with 50% labeled training set. Compared to the

ResNet-18 baseline (1×) model, increasing the model width

by 2× largely alleviates the accuracy degradation from the

respective baseline model.

Following Algorithm 1, we exploit the structured feature

sparsity based on the designed sparse group selections. Ta-

ble 5 reports the inference accuracy by exploiting the struc-

tured spatial-wise sparsity with group size of K = 8×1×1.

12262



# of Gating
Groups

Conditional Path
Sparsity (%)

Inference
Accuarcy (%)

Top-1
Accuracy Drop (%)

FLOPs
Reduction

2 75.15 88.67 -0.42 1.60 ×
4 72.48 88.59 -0.50 2.19 ×
8 60.29 88.03 -1.06 1.83 ×

Table 3. Accuracy and FLOPs reduction of CDG with ResNet-18 (1×) on CIFAR-10 dataset with different number of gating groups.

Model # of Gating
Groups Dataset Conditional

Path Sparsity (%)
Inference
Acc. (%)

Top-1
Acc. Drop (%)

FLOPs
Reduction

ResNet-18 (1×) 4
CIFAR-100 70.10 66.04 -1.74 2.11×

ImageNet-100 50.05 76.82 -2.05 1.60×
ResNet-18 (2×) 4

CIFAR-100 73.32 67.62 -1.04 2.25×
ImageNet-100 51.57 80.06 -1.14 1.65×

Table 4. Accuracy and FLOPs reduction of CDG on CIFAR-100 and ImageNet-100 datasets with different ResNet-18 widths.

Model # of Gating
Groups Dataset Conditional

Path Sparsity (%)
Inference
Acc. (%)

Top-1 Acc.
Drop

FLOPs
Reduction

Index
Reduction

ResNet-18 (1×) 4

CIFAR-10 71.64 90.37 -0.89 2.16× 8×
CIFAR-100 66.24 65.94 -1.84 1.98× 8×

ImageNet-100 45.52 76.63 -2.24 1.53× 8×
Table 5. Structured contrastive dual gating for different datasets with the spatial group size K = 8 × 1 × 1. After the sparse contrastive

pre-training, the model is fine-tuned on 50% of the training labels.

Method # of Gating
Groups

Linear Eval.
Inference Accuracy (%)

Fine-tuning
Inference Accuracy (%)

FLOPs
Reduction

This work
(CDG SimCLR) 4 88.84 90.74 2.12×

FBS SimCLR - 86.91 88.89 2.00×
DGC SimCLR 4 73.10 81.77 2.11×

CGNet SimCLR 4 87.40 89.26 2.09×
Table 6. With ResNet-18 (1×) for CIFAR-10 dataset, CDG outperforms our re-implementaiton of FBS [8], DGC [20], and CGNet [14]

for SimCLR [3] (referred to as FBS SimCLR, DGC SimCLR, and CGNet SimCLR, respectively) in both accuracy and FLOPs reduction.

Compared to unstructured pruning, the structured CDG al-

gorithm achieves similar accuracy and computation reduc-

tion with 8× index reduction.

5.2. Performance comparison

As discussed in Section 2, the typical feature salience

predictors can be fully-connected layers [8, 20] or con-

volution layers [16, 19]. The increased complexity of

the CNN-based salience prediction usually needs the pre-

trained model as the starting point [16], which is not suit-

able for our case. Therefore, we mainly aim to evalu-

ate CDG with the methods that can train the models from

scratch, e.g., FBS [20], DGC [8] and CGNet [14]. Note

that these works only reported the performance with su-

pervised training. To evaluate the performance of the prior

works’ methods for self-supervised learning, we transferred

the open-sourced dynamic pruning frameworks of [8,14,20]

and re-implemented them with our self-supervised learn-

ing setup. As part of the model architecture, the auxiliary

salience predictors will be shared between the contrastive

paths then get updated in an end-to-end manner.

We evaluate the performance of the selected algorithms

Method # of Gating
Groups

Linear Eval.
Inference Acc.

Top-1 Acc.
Drop (%)

FLOPS
Reduction

This work
(CDG MoCo) 4 90.58% -0.86% 2.00×

FBS MoCo - 88.29% -3.15% 2.00×
DGC MoCo 4 85.42% -4.20% 2.11×

CGNet MoCo 4 90.24% -1.20% 2.04×
This work

(CDG SimSiam) 4 89.04% -0.32% 2.12×
FBS SimSiam - 88.21% -1.15% 2.00×
DGC SimSiam 4 82.24% -7.12% 2.11×

CGNet SimSiam 4 88.65% -0.71% 2.03×
Table 7. With ResNet-18 (1×) for CIFAR-10 dataset, CDG

outperforms our re-implementaiton of FBS [20], DGC [8], and

CGNet [14] with MoCoV2 [5] and SimSiam [4] SSL framework.

by training the ResNet-18 encoder on CIFAR-10 dataset

from scratch, using multiple SSL frameworks including

SimCLR [3], MoCoV2 [5], and SimSiam [4]. For the al-

gorithms with group-wise computation [14, 20], we strictly

follow the reported pruning strategy (e.g., sparsity sched-

ule, number of output groups) during the self-supervised

training. The pre-trained sparse encoder will be fine-tuned

under both supervised linear evaluation and fine-tuning pro-

cess. During the supervised fine-tuning phase, we use the
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Figure 8. Conditional path sparsity during (a) sparse con-

trastive training and (b) supervised fine-tuning based on CIFAR-10

dataset. (c) The layer-wise sparsity of ResNet-18 after fine-tuning.

target (final) sparsity value to avoid the duplicate pruning.

The model performance of methods that we implemented

are summarized in Table 6 (SimCLR [3]) and Table 7 (Mo-

CoV2 [5], and SimSiam [4]). With different SSL training

schemes, the proposed CDG algorithm outperforms all im-

plementations of prior dynamic pruning methods in both in-

ference accuracy and computation reduction. Specifically,

the proposed CDG algorithm outperforms FBS [20] and

DGC [8] by up to 15.7% (SimCLR), 2.3% (MoCoV2), and

7.8% (SimSiam) CIFAR-10 accuracy.

One important observation from the results in Table 6

and Table 7 is the opposite trend on the effectiveness of

complex salience predictors between supervised vs. self-

supervised learning. DGC [20] employed salience predic-

tors for different output groups with 2× deeper mini-NNs

than FBS [8], which improved the overall performance be-

yond FBS and CGNet [8, 14] for supervised training. For

self-supervised training, however, such intricate salience

predictors are difficult to train from scratch, resulting in de-

graded inference accuracy.

5.3. Sparsity variation during contrastive learning

Given the shared regularization target s, the conditional

path sparsity between two contrastive branches has mini-

mum difference, as shown in Figure 8(a). The balanced

sparsity exploitation represents successful unbiased training

and sparsification. With an inherited base path W a1

b and

the learnable threshold τ , the subsequent fine-tuning pro-

cess optimizes the model with the retained sparsity level, as

shown in Figure 8(b). As shown in Figure 8(c), the latter

layers of the model tend to achieve higher spatial sparsity,

since the increase of the channel depth generates more re-

Channel 1 Channel 64 Channel 128

… …

… …

… …

……

Channel 1 Channel 64 Channel 128

Contrastive branch 

Contrastive branch 

Base Path
Cond. Path

Channel 1

…

Channel 64

…
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…

Channel 64

…
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…… …

Figure 9. Feature map visualization of base path and conditional

path along two different contrastive branches.

dundant features.

5.4. Sparse feature visualization

To validate the effectiveness of the proposed CDG al-

gorithm, we visualize the second convolutional layer of the

ResNet-18 (2×) model with ImageNet-100 input. As shown

in Figure 9, for both contrastive branches a1 and a2, the

base path (red rectangle) preserves the details with the dense

computation while the sparse conditional path only keeps

the important edges (e.g., the contour of the rooster’s crest).

As a result, the combined final output saves most of the in-

formation with considerable computation reduction.

6. Conclusion
In this work, we propose contrastive dual gating (CDG),

a simple and novel dynamic pruning algorithm designed

for contrastive self-supervised learning. As one of the

first studies in this area, we analyze different sparse gating

strategies with rigorous experiments. Based on the well-

knit conclusions, we present the detailed algorithm design

to exploit the feature redundancy in both fine-grained and

structured manner. The proposed algorithms have been

verified on multiple benchmark datasets and various SSL

frameworks. Without any auxiliary salience predictors, the

proposed CDG algorithm achieves up to 2.25× computa-

tion reduction for CIFAR-10 dataset, and outperforms our

implementations of recent dynamic pruning algorithms. In

addition, pruning the model in a structured manner elevates

the practicality in terms of efficient hardware computing.
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