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Abstract

Vanilla unsupervised domain adaptation methods tend to
optimize the model with fixed neural architecture, which is
not very practical in real-world scenarios since the target
data is usually processed by different resource-limited de-
vices. It is therefore of great necessity to facilitate archi-
tecture adaptation across various devices. In this paper, we
introduce a simple framework, Slimmable Domain Adapta-
tion, to improve cross-domain generalization with a weight-
sharing model bank, from which models of different capac-
ities can be sampled to accommodate different accuracy-
efficiency trade-offs. The main challenge in this frame-
work lies in simultaneously boosting the adaptation perfor-
mance of numerous models in the model bank. To tackle
this problem, we develop a Stochastic EnsEmble Distilla-
tion method to fully exploit the complementary knowledge
in the model bank for inter-model interaction. Nevertheless,
considering the optimization conflict between inter-model
interaction and intra-model adaptation, we augment the ex-
isting bi-classifier domain confusion architecture into an
Optimization-Separated Tri-Classifier counterpart. After
optimizing the model bank, architecture adaptation is lever-
aged via our proposed Unsupervised Performance Eval-
uation Metric. Under various resource constraints, our
framework surpasses other competing approaches by a very
large margin on multiple benchmarks. It is also worth
emphasizing that our framework can preserve the perfor-
mance improvement against the source-only model even
when the computing complexity is reduced to 1/64. Code
will be available at https://github.com/HIK-
LAB/SlimDA.

1. Introduction
Deep neural networks are usually trained on the offline-

collected images (labeled source data) and then embedded

†Corresponding author

Figure 1. SlimDA: We only adapt once on cloud computing center
but can flexibly sample models with diverse capacities to distribute
to different resource-limited edge devices.

in edge devices to test the images sampled from new sce-
narios (unlabeled target data). This paradigm, in practice,
degrades the network performance due to the domain shift.
Recently, more and more researchers have delved into unsu-
pervised domain adaptation (UDA) to address this problem.

Vanilla UDA aims to align source data and target data
into a joint representation space so that the model trained
on source data can be well generalized to target data
[7,11,20,26,29,38,44]. Unfortunately, there is still a gap be-
tween academic studies and industrial needs: most existing
UDA methods only perform weight adaptation with fixed
neural architecture yet cannot fit the requirements of vari-
ous devices in the real-world applications efficiently. Tak-
ing the example of a widely-used application scenario as
shown in Fig.1, a domain adaptive model trained on a pow-
erful cloud computing center is urged to be distributed to
different resource-limited edge devices like laptops, smart
mobile phones, and smartwatches, for real-time processing.
In this scenario, vanilla UDA methods have to train a se-
ries of models with different capacities and architectures
time-and-again to fit the requirements of devices with dif-
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Methods Data Type Teacher Student Model

CKD Labeled Single Single Fixed

SEED Unlabeled Multiple Multiple Stochastic

Table 1. Conventional Knowledge Distillation (CKD) vs. Stochas-
tic EnsEmble Distillation (SEED).

ferent computation budgets, which is expensive and time-
consuming. To remedy the aforementioned issue, we pro-
pose Slimmable Domain Adaptation (SlimDA), in which
we only train our model once so that the customized mod-
els with different capacities and architectures can be sam-
pled flexibly from it to supply the demand of devices with
different computation budgets.

Although slimmable neural networks [54–56] had been
studied in the supervised tasks, in which models with differ-
ent layer widths (i.e., channel number) can be coupled into
a weight-sharing model bank for optimization, there remain
two challenges when slimmable neural networks meet un-
supervised domain adaptation: 1) Weight adaptation: How
to simultaneously boost the adaptation performance of all
models in the model bank? 2) Architecture adaptation:
Given a specific computational budget, how to search an
appropriate model on the unlabeled target data?

For the first challenge, there is a straightforward baseline
in which UDA methods are directly applied to each model
sampled from the model bank. However, this paradigm
neglects to exploit the complementary knowledge among
tremendous neural architectures in the model bank. To rem-
edy this issue, we propose Stochastic EnsEmble Distillation
(SEED) to interact the models in the model bank so as to
suppress the uncertainty of intra-model adaptation on the
unlabeled target data. SEED is a curriculum mutual learn-
ing framework in which the expectation of the predictions
from stochastically-sampled models are exploited to assist
domain adaptation of the model bank. The differences be-
tween SEED and the conventional knowledge distillation
are shown in Table 1. As for intra-model adaptation, we
borrow the solution from the state-of-the-art bi-classifier-
based domain confusion method (such as SymNet [57] and
MCD [38]). Nevertheless, we analyze that there exists an
optimization conflict between inter-model interaction and
intra-model adaptation, which motivates us to augment an
Optimization-Separated Tri-Classifier (OSTC) to modulate
the optimization between them.

For the second challenge, it is intuitive to search models
with optimal adaptation performance under different com-
putational budgets after training the model bank. However,
unlike performance evaluation in the supervised tasks, none
of the labeled target data is available. To be compatible
with the unlabeled target data, we exploit the model with
the largest capacity as an anchor to guide performance rank-
ing in the model bank, since the larger models tend to be

more accurate as empirically proven in [52]. In this way,
we propose an Unsupervised Performance Evaluation Met-
ric which is eased into the output discrepancy between the
candidate model and the anchor model. The smaller the
metric is, the better the performance is assumed to be.

Extensive ablation studies and experiments are carried
out on three popular UDA benchmarks, i.e., ImageCLEF-
DA [27], Office-31 [36], and Office-Home [45], which
demonstrate the effectiveness of the proposed framework.
Our method can achieve state-of-the-art results compared
with other competing methods. It is worth emphasizing
that our method can preserve the performance improvement
against the source-only model even when the computing
complexity is reduced to 1/64×. To summarize, our main
contributions are listed as follows:
• We propose SlimDA, a “once-for-all” framework to

jointly accommodate the adaptation performance and the
computation budgets for resource-limited devices.

• We propose SEED to simultaneously boost the adap-
tation performance of all models in the model bank.
In particular, we design an Optimization-Separated Tri-
Classifier to modulate the optimization between intra-
model adaptation and inter-model interaction.

• We propose an Unsupervised Performance Evaluation
Metric to facilitate architecture adaptation.

• Extensive experiments verify the effectiveness of our
proposed SlimDA framework, which can surpass other
state-of-the-art methods by a large margin.

2. Related Work
2.1. Unsupervised Domain Adaptation

Existing UDA methods aim to improve the model per-
formance on the unlabeled target domain. In the past few
years, discrepancy-based methods [14, 26, 41] and adver-
sarial optimization methods [1, 11, 18, 25, 38] are proposed
to solve this problem via domain alignment. Specifically,
SymNet [57] develops a bi-classifier architecture to facil-
itate category-level domain confusion. Recently, Li et.al.
[21] attempts to learn optimal architectures to further boost
the performance on the target domain, which proves the
significance of network architecture for UDA. These UDA
methods focus on achieving a specific model with better
performance on the target domain.

2.2. Neural Architecture Search

Neural Architecture Search (NAS) methods aim to
search for optimal architectures automatically through re-
inforcement learning [4, 42, 43, 58, 59], evolution methods
[9, 24, 34, 35], gradient-based methods [23, 30, 40, 47, 49]
and so on. Recently, one-shot methods [2, 3, 13, 33, 49, 54]
are very popular since only one super-network is required to
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train, and numerous weight-sharing sub-networks of vari-
ous architectures are optimized simultaneously. In this way,
the optimal network architecture can be searched from the
model bank. In this paper, we highlight that UDA is an un-
noticed yet significant scenario for NAS, since they can be
cooperated to optimize a scene-specific lightweight archi-
tecture in an unsupervised way.

2.3. Cross-domain Network Compression

Chen et.al. [6] proposes a cross-domain unstructured
pruning method. Yu et.al. [53] adopts MMD [26] to min-
imize domain discrepancy and prunes filters in a Taylor-
based strategy, and Yang et.al. [50,51] focuses on compress-
ing graph neural networks. Feng et.al. [10] conducts adver-
sarial training between the channel-pruned network and the
full-size network. However, the performances of the exist-
ing methods still have a great improvement space. More-
over, their methods are not flexible enough to obtain nu-
merous optimal models under diverse resource constraints.

3. Preliminary
3.1. Bi-Classifier Based Domain Confusion

3.1.1 Notation

A labeled source data Ds = {(xs
i , y

s
i )}

ns
i=1 and an unla-

beled target data Dt = {(xt
i)}

nt
i=1 are provided for train-

ing. SymNet [57] is composed of a feature extractor F and
two task classifiers Cs and Ct. A novel design in Sym-
Net is to construct a new classifier Cst which shares the
neurons with Cs and Ct. Cst is designed for domain dis-
crimination and domain confusion without an explicit do-
main discriminator. The probability outputs of Cs, Ct and
Cst are g(x;F,Cs) ∈ [0, 1]K , g(x;F,Ct) ∈ [0, 1]K and
g(x;F,Cst) ∈ [0, 1]2K respectively, where K is the class
number of the task. The kth element of the probability out-
put can be written as gs

k(x), g
t
k(x) and gst

k (x), respectively.

3.1.2 Task and Domain Discrimination

The training objective of task discrimination for Cs&Ct is:

min
Cs,Ct

− 1

ns

ns∑
i=1

log(gs
ys
i
(xs

i ))−
1

ns

ns∑
i=1

log(gt
ys
i
(xs

i )) (1)

The training objective of domain discrimination for Cst is:

min
Cst

− 1

ns

ns∑
i=1

log

K∑
k=1

gst
k (xs

i )−
1

nt

nt∑
i=1

log

K∑
k=1

gst
k+K(xt

i) (2)

3.1.3 Category-Level Domain Confusion

The training objective of category-level confusion is:

min
F

− 1

2ns

ns∑
i=1

log(gst
ys
i
(xs

i ))−
1

2ns

ns∑
i=1

log(gst
ys
i +K(xs

i )) (3)

The training objective of domain-level confusion is:

min
F

− 1

2nt

nt∑
i=1

log(

K∑
k=1

gst
k (xt

i))−
1

2nt

nt∑
i=1

log(

K∑
k=1

gst
k+K(xt

i))

(4)
Besides, an entropy minimization loss is conducted on Dt

to optimize F . For more detailed technical illustration, we
recommend referring to the original paper.

4. Method
4.1. Straightforward Baseline

It has been proven in slimmable neural networks that nu-
merous networks with different widths (i.e., layer channel)
can be coupled into a weight-sharing model bank and be op-
timized simultaneously. We begin with a baseline in which
SymNet is straightforwardly merged with the slimmable
neural networks. The overall objective of SymNet is uni-
fied as Ldc for simplicity. In each training iteration, several
models can be stochastically sampled from the model bank
{(Fj , C

s
j , C

t
j)}mj=1∈(F,Cs, Ct), named as model batch,

where m represents the model batch size. Here (F,Cs, Ct)
can be viewed as the largest model, and the remaining mod-
els can be sampled from it in a weight-sharing manner. To
make sure the model bank can be fully trained, the largest
and the smallest models* should be sampled and constituted
as a part of model batch in each training iteration. (Note that
each model should re-calculate the statistical parameters of
BN layers before deploying).(

∂Ldc

∂Cs
,
∂Ldc

∂Ct

)
=

(
1

m

m∑
j=1

∂Ldc

∂Cs
j

,
1

m

m∑
j=1

∂Ldc

∂Ct
j

)
(5)

∂Ldc

∂F
=

1

m

m∑
j=1

∂Ldc

∂Fj
(6)

This baseline can be viewed as two alternated processes
of Eqn.5 and Eqn.6 to optimize the model bank. To en-
courage inter-model interaction in the above baseline, we
propose our SlimDA framework as shown in Fig. 2.

4.2. Stochastic EnsEmble Distillation
Stochastic Ensemble: It is intuitive that different mod-
els in the model bank can learn complementary knowledge
about the unlabeled target data. Inspired by Bayesian learn-
ing with model perturbation, we exploit the models in the
model bank via Monte Carlo Sampling to suppress the un-
certainty from unlabeled target data. The expected predic-
tion gseed(x

t
i) can be approximated by taking the expec-

tation of {g(xi;Fj , C
s
j , C

t
j)}mj=1 with respect to the model

confidence {g(Fj , C
s
j , C

t
j)}mj=1

†:

gseed(x
t
i) = Eg(Fj ,C

s
j ,C

t
j)

[
g(xt

i;Fj , C
s
j , C

t
j)
]

(7)

*The smallest model corresponds to 1/64× FLOPs model (1/8× chan-
nels) by default in this paper.

†g(Fj , C
s
j , C

t
j) is short for g(Fj , C

s
j , C

t
j | D) where D denotes the

training data. The model confidence, ranging [0,1], can be interpreted to
measure the relative accuracy among the models in the model bank.
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Figure 2. The training details of our proposed SlimDA framework. Our framework is composed of Stochastic EnsEmble Distillation
(SEED) and an Optimization-Separated Tri-Classifier (OSTC) design. The SEED is designed to exploit the complementary knowledge
in the model bank for multi-model interactions. The red arrows across Cs and Ct classifiers denote domain confusion training Ldc and
knowledge aggregation in the model bank. The purple arrow across Ca classifier denotes SEED optimization Lseed.

g(xt
i;Fj , C

s
j , C

t
j) =

1

2
(g(xt

i;Fj , C
s
j ) + g(xt

i;Fj , C
t
j)) (8)

where E is a weighted average function with j={1, ...,m},
and the subscript of E denotes the weight.

Assumption 4.1 As demonstrated by extensive empirical
results in in-domain generalization work [52] and out-of-
domain generalization work [5], the models with larger ca-
pacity‡ perform more accurate than those with smaller ca-
pacity statistically. Thus, it is reasonable to assume that
g(F1, C

s
1 , C

t
1) ≥ g(F2, C

s
2 , C

t
2) ≥ ... ≥ g(Fm, Cs

m, Ct
m)

where the index denotes the order of model capacity from
large to small.

In this work, we empirically define the model confidence in
a hard way:

rj =
M(Fj , C

s
j , C

t
j)

M(F,Cs, Ct)

Ω = {(Fj , C
s
j , C

t
j) whose rj ≥ λ}

g(Fj , C
s
j , C

t
j) =

{
1 , if (Fj , C

s
j , C

t
j) ∈ Ω

0 , otherwise

(9)

where λ is set 0.5 by default, and M(·) represents the model
capacity. As the prediction tends to be uncertain on the un-
labeled target data, we aim to produce lower-entropy pre-
dictions to boost the discrimination [12]. In this work, we
apply a sharpening function to gseed(x

t
i) to induce implicit

entropy minimization during SEED training:

gseed,k(x
t
i) = gseed,k(x

t
i)

1
τ /

K∑
k′=1

gseed,k′(xt
i)

1
τ (10)

‡We use FLOPs as a metric to measure model capacity in this paper.

where τ is a temperature parameter for sharpening, and is
set 0.5 by default in this paper. gseed(x

t
i) is used to refine

the model batch, along with domain confusion training in a
curriculum mutual learning manner.

Distillation Bridged by Optimization-Separated Tri-
Classifier: We cannot directly feed gseed(x

t
i) back to the

original bi-classifier for distillation since there exists opti-
mization conflict between intra-model adaptation (Eqn.1-4)
and inter-model interaction (distillation by gseed(x

t
i)) in the

model bank, which are two asynchronous tasks. Specifi-
cally, in the q iteration, domain confusion bi-classifier of
multi-models provides two-part information, including task
discrimination and domain-confusion, and the two infor-
mation are aggregated in gq

seed(x
t
i). In the next q+1 it-

eration, the above information can be further updated via
the bi-classifier training. However, if we transfer gq

seed(x
t
i)

back to the bi-classifier, gq
seed(x

t
i) will offset the gains of

the two information in gq+1
seed(x

t
i) and hinder the refinement

of gseed(x
t
i). Thus, the curriculum learning in our SlimDA

framework will be destroyed.

To this end, we introduce an Optimization-Separated
Tri-Classifier (OSTC) {(Cs

j , C
t
j , C

a
j )}mj=1∈(Cs, Ct, Ca),

where the former two are preserved for domain confu-
sion training, and the last one is designed to receive the
stochastically-aggregated knowledge for distillation. The
distillation loss is formulated as:

Lseed =− 1

m× nt

m∑
j=1

nt∑
i=1

gseed(x
t
i) log(g(x

t
i;Fj , C

a
j ))

− 1

m× ns

m∑
j=1

ns∑
i=1

1ys
i
log(g(xs

i ;Fj , C
a
j ))

(11)
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Model batch size I → P P → I I → C C → I C → P P → C Avg.
2 (w/ CKD) 71.8 83.3 93.0 82.2 67.3 89.2 81.1

2 73.5 88.3 92.2 87.1 69.3 91.5 83.7
4 74.3 89.0 92.6 87.5 69.8 92.0 84.2
6 75.3 90.2 94.1 88.3 71.7 94.2 85.6
8 76.1 89.9 94.9 88.1 71.7 94.2 85.8

10 78.3 90.7 95.8 88.3 71.8 94.8 86.6

Table 2. Two ablation studies on ImageCLEF-DA: 1) The second
row represents the results from conventional knowledge distilla-
tion (CKD). 2) Comparison among different model batch sizes in
SlimDA. We report the above results for 1/64× models.

Baseline SEED OSTC 1× 1/2× 1/4× 1/8× 1/16× 1/32× 1/64×
✓ 88.6 88.0 86.9 86.0 84.1 82.0 81.7
✓ ✓ 87.9 87.6 87.3 86.9 86.5 86.1 85.9
✓ ✓ ✓ 88.9 88.7 88.8 88.4 88.3 87.2 86.6

Table 3. The ablation studies for the components in SlimDA on
ImageCLEF-DA dataset.

Methods 1× 1/2× 1/4× 1/8× 1/16× 1/32× 1/64×
SymNet w/o SlimDA 78.9 77.0 76.7 74.8 71.2 68.2 69.3
SymNet w/ SlimDA 79.2 79.0 79.0 78.7 78.8 78.2 78.3
improvement 0.3↑ 2.0↑ 2.3↑ 3.9↑ 7.6↑ 10.0↑ 9.0↑
MCD w/o SlimDA 77.2 75.0 75.0 72.3 70.3 68.7 69.6
MCD w/ SlimDA 78.5 78.2 78.1 78.0 77.7 77.6 77.7
improvement 1.3↑ 3.2↑ 3.1↑ 5.7↑ 7.4↑ 8.9↑ 8.1↑
STAR w/o SlimDA 76.9 74.0 69.7 68.1 65.6 62.9 64.7
STAR w/ SlimDA 77.8 77.5 77.2 77.2 77.0 76.9 77.0
improvement 0.9↑ 3.5↑ 7.5↑ 9.1↑ 11.4↑ 14.0↑ 12.3↑

Table 4. Two ablation studies on ImageCLEF-DA for I→P adap-
tation task: 1) Comparison with different UDA methods injected
into SlimDA, which indicates the universality of our framework.
2) Comparison with stand-alone networks (aka “w/o SlimDA”),
which have the same architectures as our searched models but are
trained individually outsides the model bank.

We optimize (Cs, Ct, Ca) with Ldc and Lseed losses:(
∂Ldc

∂Cs
,
∂Ldc

∂Ct

)
=

(
1

m

m∑
j=1

∂Ldc

∂Cs
j

,
1

m

m∑
j=1

∂Ldc

∂Ct
j

)
∂Lseed

∂Ca
=

1

m

m∑
j=1

∂Lseed

∂Ca
j

(12)

As to optimize F , we use the model confidence in Eqn.9 to
modulate the training objectives of Ldc and Lseed:

∂Ltotal

∂F
=Eg(Fj ,C

s
j ,C

t
j)

[∂Ldc

∂Fj

]
+ E1−g(Fj ,C

s
j ,C

t
j)

[∂Lseed

∂Fj

] (13)

To summarize, the OSTC in Eqn.12 and the feature ex-
tractor in Eqn.13 are optimized in an alternated way in each
training iteration. Once finishing training, (Cs, Ct) are dis-
carded and only Ca is retained to deploy more efficiently.

4.3. Unsupervised Performance Evaluation Metric
In the context of UDA, one of the challenging points is

to evaluate the performance ranking of models on the unla-
beled target data rather than the searching methods. Ac-
cording to the Triangle Inequality Theorem, we can ob-
tain the relationship among the predictions of the candidate

Methods #Params FLOPs I → P P → I I → C C → I C → P P → C Avg.
ShuffleNetV2 [32] 2.3M 146M 63.2 65.4 82.1 81.0 65.2 78.9 72.6
MobileNetV3 [19] 5.4M 219M 72.8 85.3 93.2 80.3 65.0 91.7 81.4
GhostNet [15] 5.2M 141M 75.8 89.5 95.5 86.1 70.2 94.0 85.2
MobileNetV2 [39] 3.5M 300M 76.0 90.6 95.1 87.0 69.1 95.1 85.5
EfficientNet B0 [43] 5.3M 390M 76.5 88.5 96.5 87.3 71.3 94.0 85.6
SlimDA (1/8×ResNet-50) 4.0M 517M 78.7 91.7 97.2 90.5 75.8 96.2 88.4
SlimDA (1/64×ResNet-50) 1.6M 64M 78.3 90.7 95.8 88.3 71.8 94.8 86.6

Table 5. Performance comparison with different state-of-the-art
lightweight networks on ImageCLEF-DA dataset.

model (Fj , C
a
j ), the largest model (F,Ca), as well as the

ground-truth label:

∥ g(Dt;Fj , C
a
j )−GT (Dt) ∥22<∥ g(Dt;F,C

a)−GT (Dt) ∥22
+∥ g(Dt;Fj , C

a
j )− g(Dt;F,C

a) ∥22
(14)

where GT (Dt) denotes the ground-truth label of the target
data. According to the assumption 4.1, the model with the
largest capacity tends to be the most accurate in the model
bank, which means:

∥ g(Dt;Fj , C
a
j )−GT (Dt) ∥22>∥ g(Dt;F,C

a)−GT (Dt) ∥22
(15)

Combining Eqn.14 and Eqn.15, we can take the model with
the largest capacity as an anchor to compare the perfor-
mance of candidate models on the unlabeled target data.
The Unsupervised Performance Evaluation Metric (UPEM)
for each model can be written as:

∆j =∥ g(Dt;Fj , C
a
j )− g(Dt;F,Ca) ∥22 (16)

where ∆j is the L2 distance between outputs of the candi-
date model and the anchor model. With the UPEM, we can
use a greedy search method [33, 54] for neural architecture
search (Note that we can also use other search methods, but
this is not the deciding point in this paper).

5. Experiments
5.1. Dataset

ImageCLEF-DA [26] consists of 1,800 images with 12
categories over three domains: Caltech-256 (C), ImageNet
ILSVRC 2012 (I), and Pascal VOC 2012 (P).
Office-31 [37] is a popular benchmark with about 4,110 im-
ages sharing 31 categories of daily objects from 3 domains:
Amazon (A), Webcam (W) and DSLR (D).
Office-Home [46] contains 15,500 images sharing 65 cate-
gories of daily objects from 4 different domains: Art (Ar),
Clipart (Cl), Product (Pr), and Real-World (Rw).

5.2. Model Bank Configurations
Following the exiting methods [6, 10, 53], we select

ResNet-50 [16] as the main network to conduct the fol-
lowing experiments. Unlike these methods, the ResNet-50
adopted in this paper is a super-network that couples numer-
ous models with different layer widths to form the model
bank. Identical to these methods, the super-network should
be firstly pre-trained on ImageNet and then fine-tuned on
the downstream tasks.
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Methods #Params FLOPs I → P P → I I → C C → I C → P P → C Avg. ∆

Source Only [57] 1× 1× 74.8 83.9 91.5 78.0 65.5 91.2 80.7 –
DAN [26] 1× 1× 74.5 82.2 92.8 86.3 69.2 89.8 82.5 –
RevGrad [11] 1× 1× 75.0 86.0 96.2 87.0 74.3 91.5 85.0 –
MCD [38] (impl.) 1× 1× 77.2 87.2 93.8 87.7 71.8 92.5 85.0 –
STAR [29] (impl.) 1× 1× 76.9 87.7 93.8 87.6 72.1 92.7 85.1 –
CDAN+E [28] 1× 1× 77.7 90.7 97.7 91.3 74.2 94.3 87.7 –
SymNets [57] 1× 1× 80.2 93.6 97.0 93.4 78.7 96.4 89.9 –
SymNets (impl.) 1× 1× 78.8 92.2 96.7 91.0 76.0 96.2 88.5 –

TCP [53] 1/1.7× – 75.0 82.6 92.5 80.8 66.2 86.5 80.6 –
1/2.5× – 67.8 77.5 88.6 71.6 57.7 79.5 73.8 –

ADMP [10] 1/1.7× – 77.3 90.2 90.2 95.8 88.9 73.7 86.3 –
1/2.5× – 77.0 89.5 95.5 88.9 72.3 91.2 85.7 –

SlimDA 1× 1× 79.2 92.3 97.5 91.2 76.7 96.5 88.9 –
1/1.9× 1/2× 79.0 92.3 97.3 90.8 76.8 96.2 88.7 0.2↓
1/3.9× 1/4× 79.0 92.2 97.3 90.8 77.2 96.3 88.8 0.1↓
1/9.4× 1/8× 78.7 91.7 97.2 90.5 75.8 96.2 88.4 0.5↓

1/12.8× 1/16× 78.8 91.5 97.3 90.2 76.0 96.2 88.3 0.6↓
1/28.8× 1/32× 78.2 90.5 96.7 89.3 72.2 96.0 87.2 1.7↓

1/64× 1/64× 78.3 90.7 95.8 88.3 71.8 94.8 86.6 2.3↓

Table 6. Performance on the ImageCLEF-DA dataset. “–” means that the results are not reported in the original paper. “impl.” denotes our
re-implementation using the released code. “∆” indicates the performance gap between the searched model and ResNet-50 based model
for each UDA method. TCP and ADMP are two related cross-domain network compression methods. We adapt the architectures for six
adaptation tasks under seven computational constraints (FLOPs). Since the model architectures adapted for different tasks are different
even with the same FLOPs, we calculate the parameter reduction (#Params) by averaging models in 6 adaptation tasks.

Methods #Params FLOPs A → W D→W W→D A→D D→A W→A Avg. ∆

Source Only [57] 1× 1× 79.9 96.8 99.5 84.1 64.5 66.4 81.9 –
Domain Confusion [17] 1× 1× 83.0 98.5 99.8 83.9 66.9 66.4 83.1 –
Domain Confusion+Em [17] 1× 1× 89.8 99.0 100.0 90.1 73.9 69.0 87.0 –
BNM [8] 1× 1× 91.5 98.9 100.0 90.3 70.9 71.6 87.1 –
DMP [31] 1× 1× 93.0 99.0 100.0 91.0 71.4 70.2 87.4 –
DMRL [48] 1× 1× 90.8 99.0 100.0 93.4 73.0 71.2 87.9 –
SymNets [57] 1× 1× 90.8 98.8 100.0 93.9 74.6 72.5 88.4 –
SymNets (impl.) 1× 1× 91.0 98.4 99.6 89.7 72.2 72.5 87.2 –

TCP [53] 1/1.7× – 81.8 98.2 99.8 77.9 50.0 55.5 77.2 –
1/2.5× – 77.4 96.3 100.0 72.0 36.1 46.3 71.3 –

ADMP [10] 1/1.7× – 83.3 98.9 99.9 83.1 63.2 64.2 82.0 –
1/2.5× – 82.1 98.6 99.9 81.5 63.0 63.2 81.3 –

SlimDA 1× 1× 90.7 91.2 91.1 99.8 73.7 71.0 87.6 –
1/2× 1/2× 90.7 99.1 100.0 91.8 73.3 71.1 87.6 0.0↓
1/4× 1/4× 90.5 98.1 99.8 91.9 73.1 71.2 87.4 0.2↓

1/10× 1/8× 90.6 98.8 100.0 91.6 72.9 71.1 87.5 0.1↓
1/14× 1/16× 90.5 98.7 99.8 91.4 73.1 71.0 87.4 0.2↓
1/20× 1/32× 90.8 97.7 99.5 91.5 71.8 70.8 87.0 0.6↓
1/64× 1/64× 91.2 97.2 98.9 91.2 71.3 68.9 86.8 0.8↓

Table 7. Performance on the Office-31 dataset. As for other illustrations, please refer to the caption of Table 6.

5.3. Implementation Details

An SGD optimizer with momentum of 0.9 is adopted to
train all UDA tasks in this paper. Following [57], the learn-
ing rate is adjusted by l = l0/(1 + αp)β , where l0 = 0.01,
α = 10, β = 0.75, and p varies from 0 to 1 linearly with
the training epochs. The training epoch is set 40. The train-
ing and testing image resolution is 224 × 224. An impor-
tant technical detail is that, before performance evaluation,
the models sampled in the model bank should update the
statistic of their BN layers on the target domain via Ad-
aBN [22]. We mainly take the computational complexity
(FLOPs) as resource constraint for architecture adaptation,
and set 1/64× FLOPs as the smallest model by default.

5.4. Ablation Studies

5.4.1 Analysis for SEED

Comparison with Conventional Knowledge Distilla-
tion: As shown in Table 2, we can observe that our SEED
with different model batch size can outperform the conven-
tional knowledge distillation by a large margin even under
1/64× FLOPs of ResNet-50 on ImageCLEF-DA.
Comparison among different model batch sizes: Model
batch size is a vital hyper-parameter of our framework. In-
tuitively, a larger model batch is more sufficient to approx-
imate the knowledge aggregation in the model bank. As
shown in Table 2, a large model batch size is beneficial for
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Methods FLOPs Ar→Cl Ar→Pr Ar→ Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg. ∆

Source Only 1× 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1 –
DAN 1× 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3 –
RevGrad 1× 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6 –
CDAN-E 1× 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8 –
SymNet 1× 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6 –
BNM 1× 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9 –
SlimDA 1× 52.8 72.3 77.2 63.5 72.3 73.3 64.8 52.2 79.7 72.4 57.8 82.8 68.4 –

1/2× 52.4 72.0 77.2 62.8 72.0 73.0 65.1 53.2 79.4 72.1 55.3 82.0 68.0 0.4↓
1/4× 51.9 71.8 77.1 62.4 71.9 72.3 64.8 53.1 78.8 71.9 55.1 82.1 67.8 0.6↓
1/8× 51.6 71.4 76.6 62.5 71.0 71.0 65.0 53.0 78.4 71.5 55.2 81.6 67.4 1.0↓

1/16× 51.0 71.0 75.9 61.3 70.6 70.0 64.4 52.3 77.7 70.2 54.6 81.2 66.7 1.7↓
1/32× 50.0 70.6 74.0 57.7 70.3 68.9 60.1 51.6 76.3 67.5 51.7 80.9 65.0 3.4↓
1/64× 49.7 70.1 72.9 56.6 70.0 66.3 56.5 48.3 75.9 65.9 55.5 80.9 64.0 4.4↓

Table 8. Performance on the Office-Home dataset. As for other illustrations, please refer to the caption of Table 6.

Figure 3. Comparison with randomly-searched models on six
adaptation tasks on ImageCLEF-DA. One hundred models are
randomly-searched under each FLOPs. The blue-filled area rep-
resents the gap between the maximum and minimum accuracy
among random-searched models. The dotted blue dotted line rep-
resents the averaged values of random-searched models, and the
solid red line represents the accuracies of our searched models.

our optimization method. We set the model batch size as 10
by default in our following experiments.
Comparison with stand-alone training: As shown in Ta-
ble 4, compared with stand-alone training with the same
network configuration, SEED can improve the overall adap-
tation performance by a large margin. Here “stand-alone”
means that the models from 1× to 1/64× with the same
topological configuration to the SlimDA counterparts are
adapted individually outside the model bank. Specifically,
not only the tiny models (from 1/2× to 1/64×), but also the
1× model trained with SEED outperform the corresponding
stand-alone ones, which can be supported by more results
in Table 6 and Table 7 (comparing the performance of 1×
models and our re-implemented ones).
Effectiveness of each component in our SlimDA: We
conduct ablation studies to investigate the effectiveness of
the components in our SlimDA framework. As shown in
Table 3, the second row “Baseline” denotes the approach
merging SymNet and slimmable neural network straightfor-
wardly. We can observe that the SEED has a significant im-
pact on the performance with fewer FLOPs, such as 1/4×,

Figure 4. Pearson correlation coefficient between the unsuper-
vised performance evaluation metric (UPEM) and the accuracy
using ground-truth labels. It is performed on six adaptation tasks
(ImageCLEF-DA) under five different computation constraints. In
each grid, we sample 100 models to calculate the Pearson corre-
lation coefficient. If it gets close to −1, it means that our metric
is identical to use the ground-truth labels to measure the perfor-
mance of each model.

1/8×, 1/16×, 1/32×, and 1/64×, but the performances of
1× and 1/2 × models with SEED fall 0.7% and 0.4%, re-
spectively, compared with the baseline, which is attributed
to the optimization conflict between intra-model domain
confusion and inter-model SEED. The last row shows that
our proposed OSTC provides an impressive improvement
on the performance of large models (1× and 1/2×) com-
pared with both the SEED and baseline. Moreover, our
proposed OSTC can further improve the performance of
other models with fewer FLOPs. Overall, each component
in SlimDA contributes to the performance-boosting of tiny
models (from 1/64× to 1/4×), the SEED w/o OSTC indeed
brings negative transferring for models with larger capac-
ity. However, our proposed OSTC can remedy the nega-
tive transferring issue and provide additional boosting under
six FLOPs settings. The results in the ablation study also
demonstrate the process of solving the challenges in our
framework to accomplish the combination between UDA
training and weight-sharing model bank.
5.4.2 Analysis for Architecture Adaptation

Analysis for UPEM: To validate the effectiveness of our
proposed UPEM, we conduct 30 experiments which are
composed of six adaptation tasks and five computational
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Figure 5. Convergence performance of the model bank. Six sub-
figures correspond to six adaptation tasks on ImageCLEF-DA. The
results in each epoch are from 10 randomly-sampled models.

constraints. In each experiment, we sample 100 models in
the model bank to evaluate the correlation between UPEM
and the supervised accuracy with the ground-truth labels on
target data. As shown in Fig.4, the Pearson correlation co-
efficients almost get close to −1, which means the smaller
the UPEM is, the higher the accuracy is.
Comparison with Random Search: As shown in Fig.3,
the necessity of architecture adaptation is highlighted from
the significant performance gap among random searched
models under each computational budget. Meanwhile,
the architectures searched for different tasks are different.
Moreover, given the same computational budgets, models
greedily searched from the model bank with our UPEM are
the top series in their actual performance sorting.

5.4.3 Compatibility with Different UDA Methods

Our SlimDA can also be cooperated with other UDA ap-
proaches, such as MCD [38] and STAR [29]. To present the
universality of our framework, we carry out additional ex-
periments of SlimDA with MCD and STAR, as well as their
stand-alone counterparts. As shown in Table 4, the results
from our SlimDA with MCD and STAR are still superior to
the corresponding stand-alone counterparts by a large mar-
gin, which further validates the effectiveness of our SlimDA
framework from another perspective.

5.4.4 Convergence Performance

We sample different models for performance evaluation
during model bank training. As shown in Fig.5, the models
coupled in the model bank are optimized simultaneously.
The performances are steadily improved as learning goes.

5.5. Comparisons with State-of-The-Arts

Comparison with UDA methods: We conduct extensive
experiments on three popular domain adaptation datasets,
including ImageCLEF-DA, Office-31, and Office-Home.
Detailed results and performance comparison with SOTA

UDA methods are presented in Table 6, Table 7 and Table
8. The benefits of our proposed SlimDA can be further pro-
nounced when we reduce FLOPs extremely. Our method
can preserve the accuracy improvement against the source-
only model even when reducing FLOPs up to 1/64×. As
we can see in Table 6, Table 7 and Table 8, when we reduce
FLOPs even up to 1/64×, the accuracy on ImageCLEF-DA,
Office-31 and Office-Home datasets only drop about 2.3%,
0.8% and 4.4%, respectively.
Comparision with cross-domain network compression
methods: TCP [53] and ADMP [10] are two main cross-
domain network compression methods for channel num-
bers, our method can significantly outperform them by a
very large margin and achieve new SOTA results.
Comparison with lightweight networks: As shown in
Table 5, not only human-designed lightweight networks
like MobileNet series [19, 39], ShuffleNet [32] and Ghost-
Net [15], but also auto-designed architectures like Effi-
cientNet [43] is over-passed by our SlimDA with fewer
FLOPs/parameters.

6. Conclusions
In this paper, we propose a simple yet effective SlimDA

framework to facilitate weight and architecture joint-
adaptation. In SlimDA, the proposed SEED exploits ar-
chitecture diversity in a weight-sharing model bank to sup-
press prediction uncertainty on the unlabeled target data,
and the proposed OSTC modulates the optimization con-
flict between intra-model adaptation and inter-model inter-
action. In this way, we can flexibly distribute resource-
satisfactory models via a retrain-free sampling manner to
various devices on target domain. Moreover, we propose
UPEM to select the optimal cross-domain model under each
computational budget. Extensive ablation studies and ex-
periments are carried out to validate the effectiveness of
SlimDA. Our SlimDA can also be extended to other visual
computing tasks, such as object detection and semantic seg-
mentation, which we leave as our future work. In short,
our work provides a practical UDA framework towards real-
world scenario, and we hope it can bring new inspirations
to the widespread application of UDA.

Limitations. The assumption 4.1 is an essential prerequi-
site in this work, which will hold at least to a reasonable ex-
tent. However, it is not guaranteed theoretically, which may
invalidate our method in some unknown circumstances.
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