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Abstract

We propose a keypoint-based object-level SLAM frame-

work that can provide globally consistent 6DoF pose es-

timates for symmetric and asymmetric objects alike. To

the best of our knowledge, our system is among the first

to utilize the camera pose information from SLAM to pro-

vide prior knowledge for tracking keypoints on symmetric

objects – ensuring that new measurements are consistent

with the current 3D scene. Moreover, our semantic key-

point network is trained to predict the Gaussian covariance

for the keypoints that captures the true error of the predic-

tion, and thus is not only useful as a weight for the resid-

uals in the system’s optimization problems, but also as a

means to detect harmful statistical outliers without choos-

ing a manual threshold. Experiments show that our method

provides competitive performance to the state of the art in

6DoF object pose estimation, and at a real-time speed. Our

code, pre-trained models, and keypoint labels are available

https://github.com/rpng/suo_slam.

1. Introduction

Object pose estimation in 6 degrees of freedom (DoF)
plays a key role in a variety of down-stream applica-
tions (e.g., autonomous driving, robotic navigation, ma-
nipulation, and augmented reality), and has been exten-
sively studied in computer vision and robotics communi-
ties [5, 14, 17, 22, 26, 28, 33]. Some methods rely on RGB
input [15,22,31,32,37], while others utilize additional depth
input to improve the performance [15,29,32,35]. Some deal
with a single view [22, 28, 35], while others utilize multiple
views to enhance the results [2, 3, 5, 14, 15, 29]. In particu-
lar, multi-view methods can be further categorized into of-
fline structure from motion (SfM) – where all the frames
are given at once [3, 14] – and the online SLAM styles,
where frames are provided sequentially and real-time per-

Figure 1. Our proposed method leverages the detected keypoints
of asymmetric objects and the 3D scene created from the SLAM
system to consistently track the keypoints of symmetric objects.
Given the current camera pose estimated from asymmetric objects’
keypoints, the projections of the existing 3D keypoints into the
current image act as informative prior input to guide the network
in predicting keypoints with consistent symmetry over time.

formance is expected [5, 29]. This paper focuses on image-
based 6DoF pose estimation for multiple objects in the con-
text of an online monocular SLAM system.

A typical multi-view 6DoF pose estimation method can
be decomposed into the single-view estimation stage and
the multi-view enhancement stage. While pose estimates
from multiple views can be fused for better performance [3,
5, 14], handling extreme inconsistency – e.g., those caused
by rotational symmetry of objects – is still challenging. It
is also unreliable to manually tune the thresholds for out-
lier rejection and assign residual weights for nonlinear opti-
mization. To tackle these challenges, in this paper, we pro-
pose a symmetry and uncertainty-aware 6DoF object pose
estimation method which fuses semantic keypoint measure-
ments from all views within a SLAM framework. The main
contributions of this work are:

• We design a keypoint-based object SLAM system that
jointly estimates the globally-consistent object and
camera poses in real time – even in the presence of
incorrect detections and symmetric objects.
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• We propose a method able to consistently predict and
track 2D semantic keypoints for symmetric objects
over time, which leverages the projection of existing
3D keypoints into the current image as an informative
prior input to the keypoint network.

• We develop a method to train the keypoint network
to estimate the uncertainty of its predictions such that
the uncertainty measure quantifies the true error of the
keypoints, and significantly improves object pose esti-
mation in the object SLAM system.

The rest of this paper is organized as follows: After
briefly reviewing the related literature in Sec. 2, we describe
our method in detail in Sec. 3 – including the keypoint de-
tector and how it is used in the entire system. A thorough
evaluation of our framework is presented in Sec. 4 before
concluding in Sec. 5.

2. Related Work

Single-view object pose estimation. A large number of
single-view object pose estimation methods have been pre-
sented in recent years. One major trend is to utilize
deep networks to predict the relative pose of an object
with respect to the camera in a regress-and-refine fash-
ion [14, 15, 35, 37]. Although effective, the iterative refin-
ing process is usually at a high computationally cost. An-
other trend is to either estimate the 2D projected locations of
sparse 3D semantic points from the CAD model [25,26,28],
or to regress the 3D coordinates from the dense 2D pixels
within object masks [22, 33], and then solves a perspective
n point (PnP) problem to estimate object poses. This type
of approach is more efficient, however, not always as reli-
able under occlusion. In order to achieve superior robust-
ness to occlusion and real-time efficiency simultaneously,
we develop a multi-view method which integrates a sparse
semantic keypoint detection in an object-level SLAM sys-
tem. Instead of adapting traditional descriptors [2, 3], we
opt to develop a CNN-based keypoint detector in order to
leverage more global context to reason about the keypoint
locations and distinguish their semantics. We show that an
object SLAM system can effectively utilize the sparse set
of semantic keypoints to optimize the poses in a bundle ad-
justment (BA) optimization with outlier rejection at the key-
point level.

Object-level SLAM. Object-level SLAM typically builds
upon single-view object pose estimators, which improves
the estimated poses’ robustness to occlusions, missing de-
tections, and the global consistency via multi-view opti-
mization. SLAM++ [29] was notably the first work along
this line, but their system only worked on depth images.
There are also some works which model objects as a sparse
set of 3D keypoints, and use a 2D keypoint detectors to

estimate the correspondences which are fused over time
[23, 30], however none have considered symmetric objects.
PoseRBPF [4] on the other hand proposed a method to track
objects over time with an autoencoder and particle filter to
reason about the symmetry, however their system is only
able to track one object at a time – limiting the application.
CosyPose [14] presented a method to disambiguate pose es-
timates of symmetric objects from multiple views through
object-level RANSAC, but their method is an offline SfM
approach and not directly comparable to ours. Fu et. al [5]
proposed a multi-hypothesis SLAM approach to estimate
the pose of symmetric objects, which is optimized with a
max-mixture model. In contrast, our approach only tracks
one hypothesis, and is shown to have superior performance.

Keypoint uncertainty estimation. A typical global opti-
mization that uses the predicted object keypoints as a mea-
surement (i.e., PnP or multi-view graph optimization), re-
quires a proper weighting of the residuals. Without any
measure of certainty to accompany the keypoint measure-
ments, this weight is typically set to identity or some
manually-tuned value. Some works have retrieved a weight
directly from the output of the keypoint network [25, 26]
to be used in PnP as a scalar measure of certainty [25] or
Gaussian covariance matrix [26], while [30] adapted the
Bayesian method of [10] to estimate a covariance matrix
for the keypoints by sampling over a randomized batch. Al-
though these methods have been shown to work in practice,
none have shown that the uncertainty they are predicting
actually bounds the true error of the prediction compared to
the ground truth.

Besides for residual weighting, the uncertainty is espe-
cially useful for outlier rejection, since, assuming that the
uncertainty is a Gaussian covariance matrix, the �2 distribu-
tion can determine an outlier threshold more systematically
compared to manual tuning. Inspired by a plethora of recent
works (unrelated to keypoint prediction) on self-uncertainty
prediction of networks [1, 9, 12, 16, 18, 36, 38], we design
a maximum likelihood estimator (MLE) loss, which trains
the network to predict keypoint locations accurately and to
jointly predict the uncertainty to be tightly bound around
the actual error of the prediction.

3. The Proposed Method

Our multi-view 6DoF object pose estimation method is
unified in an object SLAM framework, which jointly esti-
mates object and camera poses – while accounting for the
symmetry of detected objects and utilizing the uncertainty
estimations from the network to robustify the system. A
depiction of the full pipeline can be seen in Fig. 2. The
pipeline involves two passes to deal with asymmetric and
symmetric objects separately. In the first pass, the asym-
metric objects are tracked from the 3D scene to estimate
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Figure 2. An overview of the proposed symmetry and uncertainty aware object SLAM pipeline.

the camera pose. In the second pass, the estimated 3D key-
points for symmetric objects are projected into the current
camera view to be used as the prior knowledge to help pre-
dict keypoints for these objects that are consistent with the
3D scene. The object SLAM system is primarily comprised
of two modules, the front-end tracking using the keypoint
network, and back-end global optimization to refine the ob-
ject and camera pose estimates. As a result, the proposed
system can operate on sequential inputs and estimate the
current state in real time for the use of an operator or robot
requiring object and camera poses in a feedback loop.

3.1. Keypoint Network

We develop a keypoint network that not only predicts the
2D keypoint coordinates but also their uncertainty. In addi-
tion, to make it able to provide consistent keypoint tracks
for symmetric objects, the network optionally takes prior
keypoint heatmap inputs that are expected to be somewhat
noisy. The architecture of our keypoint network can be
seen in Fig. 3. The backbone architecture of our keypoint
network is the stacked hourglass network [20], which has
been shown to be a good choice for object pose estima-
tion [23, 25, 30]. Similar to the original [20] we choose a
multi-channel keypoint parameterization due to its simplic-
ity. With this formulation, each channel is responsible for
predicting a single keypoint, and we can combine all of the
keypoints for the dataset into one output tensor – allowing
for a single network to be used for all of the objects.

Given the image and prior input cropped to a bound-
ing box and resized to a static input resolution, the net-
work predicts an N ⇥ H/d ⇥ W/d tensor p, where H ⇥

W is the input resolution, d is the downsampling ra-
tio (4 in our experiments), and N is the total number
of keypoints for the dataset. From p, a set of N 2D
keypoints {u1,u2, . . . ,uN}, 2 ⇥ 2 covariance matrices
{⌃1,⌃2, . . . ,⌃N} are predicted. Every channel of p, pi,
is enforced to be a 2D probability mass by utilizing a spa-
tial softmax. The predicted keypoint is taken as the ex-
pected value of 2D coordinates over this probability mass
ui =

P
u,v pi(u, v)[u v]>. Unlike the non-differentiable

argmax operation, this allows us to use the keypoint coor-
dinate directly in the loss function – which is important for
our uncertainty estimation.

Keypoints with uncertainty. Since the keypoint ui is the
expected value of the distribution of 2D coordinates with
probability mass given by the values of pi, it is straightfor-
ward to estimate an uncertainty measure by the covariance
of this distribution with the second moment about the mean

⌃i =
X

u,v

pi(u, v)
�
[u v]> � ui

� �
[u v]> � ui

�>
. (1)

However, without any particular criteria for the covariance,
there is nothing to enforce that the uncertainty actually cap-
tures the true error of the prediction. To this end, we
propose to use a Gaussian maximum-likelihood estimator
(MLE) loss to jointly optimize the keypoint coordinates as
well as the covariance:

L(i)
MLE = (u⇤

i � ui)
> ⌃�1

i (u⇤
i � ui) +

1

2
log |⌃i|, (2)
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Figure 3. The overall architecture of our keypoint network. The
network input is augmented to include additional N channels for
the prior keypoint inputs. When no prior is available, these chan-
nels are filled with zeros. The network outputs an N -channel fea-
ture map corresponding to the raw logits, from where a spatial
softmax head predicts keypoints ui and uncertainty ⌃i, while an
average pool head predicts the keypoint mask m.

where u⇤
i is the ground truth keypoint coordinate. From a

high-level perspective, the first term enforces that the co-
variance bounds the true error of the prediction, while the
second prevents it from becoming too large. This way,
the network can predict its own uncertainty in the form of
a Gaussian covariance matrix, which is trained to tightly
bound the true error of the estimated keypoint.

While our network predicts a total of N keypoints, only
a subset of these, K(`) ⇢ {1, 2, . . . , N}, are valid for a
particular object `. Furthermore, considering a single im-
age, only a subset of keypoints B ✓ K(`) lie within the
bounding box for object ` (note that occluded keypoints are
still predicted). However, during deployment, while K(`) is
known from the object class and keypoint labeling, it may
be impossible to know which keypoints lie within the de-
tected bounding box. For this reason, we add another head
onto the network to predict a sigmoid vector m 2 [0, 1]N ,
which is trained to estimate the ground-truth binary mask
m⇤ 2 {0, 1}N , where m⇤

i = 1 if i 2 B and 0 otherwise
(see Fig. 3 for the architecture). Thus, for a single object,
in a single image, the full loss becomes

Ltot = BCE(m,m⇤) +
1

|B|
X

i2B
L(i)
MLE, (3)

where BCE(.) is the binary cross entropy loss function. For
the rest of the paper, to simplify notation, we will denote
k 2 {1, 2, . . . ,K} as the indices for keypoints which pass
the ground-truth mask m⇤ for training (i.e., the next sec-
tion) or the estimated mask m (as well as the known K(`))
for deployment in the SLAM system (Sec. 3.2).

Keypoints for symmetric objects. Since we want to ef-
ficiently track the keypoints over time during deployment,
it is convenient to obtain keypoint predictions that have a
symmetry hypothesis that is consistent with the 3D scene.
Inspired by [19], we opt to include N extra channels as in-
put to the keypoint network which contain a prior detec-

tion of the object’s keypoints. As shown in Fig. 2, during
deployment in the SLAM system, the prior keypoint de-
tections come from projecting the 3D keypoints from the
global object frame into the current image once the corre-
sponding camera pose is found (i.e., the second pass). With
this paradigm, there are two main issues to address: how to
create training examples of the prior detections (since the
SLAM system is not run during training), and how to detect
the initial keypoints on symmetric objects when there is not
yet an object pose estimate available. Here we describe the
training scheme used to address these issues.

To create the training prior, we simulate a noisy prior
detection that the SLAM system would create by projecting
the 3D keypoints from the object frame into the image plane
with a perturbed ground truth object pose �TC

OT
⇤ (see the

supplementary Sec. A about the notation). To further en-
sure that the network can learn to follow the prior detections
for the symmetry hypothesis, we utilize the set of symmetry
transforms S = {OS1

T,OS2
T, . . . ,OSM

T} that we expect to be
available for each object (discretized for objects with con-
tinuous axes of symmetry). Each O

Sm
T 2 S , when applied

to the object CAD model, makes the rendering look (nearly)
exactly the same, and in practice, these transforms can be
manually chosen fairly easily. Thus, when constructing a
training example with a prior detection, we pick a random
symmetry transform and apply it to the ground-truth object
pose before doing the projection.

In order for the network to learn to predict initial key-
points on symmetric objects (when no prior is available),
we only provide this simulated prior randomly for roughly
half of the examples. Without the prior detection, however,
the network is left up to its own devices to reason about the
absolute orientation for the object – which is theoretically
impossible for symmetric objects without special care. As
opposed to the mirroring technique and additional symme-
try classifier proposed by [28], we instead teach the network
to deal with this issue with a simple criteria of choosing the
keypoints that correspond to the symmetrically-valid pose
that is closest to a canonical view where the front of the
object faces the camera, and the top of the object faces the
top of the image. We refer the reader to the supplementary
material (Sec. B) for more details on this procedure.

3.2. Object SLAM System

Our symmetry and uncertainty-aware object SLAM sys-
tem is comprised of two modules: the front-end tracking,
and the back-end global optimization. The front end is re-
sponsible for processing the incoming frames – running the
keypoint network, estimating the current camera pose, and
initializing new objects – while the back end is responsi-
ble for refining the camera and object poses for the whole
scene. We refer the reader again to Fig. 2 for a visual rep-
resentation of our system.

14904



Front-end tracking. The first step of our front end is to
split the bounding boxes detected in the current image into
two information streams – the first for asymmetric objects
and first-time detections of symmetric ones, and the sec-
ond for symmetric objects that already have 3D estimates.
Again, we expect the symmetry information (i.e., symmet-
ric or not) to be included with each object class. The first
information stream sends the images, cropped at the bound-
ing boxes, to the keypoint network without any prior to de-
tect keypoints and uncertainty. These keypoints are then
used to estimate the pose of each asymmetric object C

OTpnp

in the current camera frame by using PnP with RANSAC.
These PnP poses are then used to coarsely estimate the cur-
rent camera pose and then initialize objects which do not yet
have 3D estimates. See the supplementary material Sec. C
for more details on how this is done as well as more detailed
behavior of the front end.

With a rough estimate of the current camera, we move
onto the second information stream of the front end. We
use the coarse estimate of the camera pose to create the
prior detections for the keypoints of symmetric objects by
projecting the 3D keypoints for these objects into the cur-
rent image, and constructing the prior keypoint heatmaps
for network input. After running the keypoint network on
these symmetric objects, we store the keypoint measure-
ments from both information streams for later use in the
global optimization.

Back-end global optimization. The global optimization
step runs periodically to refine the whole scene (object and
camera poses) based on the measurements from each image.
Rather than reduce the problem to a pose graph (i.e., using
relative pose measurements from PnP), we keep the orig-
inal noise model of using the keypoint detections as mea-
surements, which allows us to weight each residual with the
covariance prediction from the network. The global opti-
mization problem is formulated by creating residuals that
constrain the pose Cj

G T of image j and the pose G
O`

T of ob-
ject ` with the kth keypoint

rj,`,k = uj,`,k �⇧j,`

⇣
Cj

G T G
O`

T O` p̄k

⌘
, (4)

where ⇧j,` is the perspective projection function for the
bounding box of object ` in image j. Thus the full prob-
lem becomes to minimize the cost over the entire scene

C =
X

j,`,k

sj,`,k ⇢H
⇣
r>j,`,k ⌃�1

j,`,k rj,`,k
⌘

(5)

where ⌃j,`,k is the 2⇥2 covariance matrix predicted by the
network for the keypoint uj,`,k, sj,`,k 2 {0, 1} is a constant
indicator that is 1 if the measurement was deemed an inlier
before the optimization started and 0 otherwise, and ⇢H is
the Huber norm which reduces the effect of outliers during

the optimization steps. Both ⇢H and sj,`,k use the same out-
lier threshold ⌧ , which is derived from the 2-dimensional �2

distribution, and is always set to the 95% confidence thresh-
old ⌧ = 5.991. Thus we do not need to manually tune the
outlier threshold as long as the covariance matrix ⌃j,`,k can
properly capture the true error of keypoint uj,`,k.

4. Experiments

Our experiments are conducted on two of the most chal-
lenging object pose estimation datasets: the YCB-Video
dataset [35] and the T-LESS dataset [6]. Both datasets pro-
vide ground truth poses for symmetric and asymmetric ob-
jects in cluttered environments over multiple keyframe se-
quences. YCB-Video contains 21 household objects, in-
cluding 4 objects with discrete symmetries and one object
(the bowl) with a continuous axis of symmetry. The T-LESS
dataset contains 30 industry-relevant objects with very little
texture, and most are symmetric. Note that the symmetry
information of each object is provided by [7].

4.1. Implementation Details

Choice of keypoints. While our design is agnostic to the
choice of keypoint, to reduce the number of channels that
the network needs to predict, we created a set of rules to an-
notate keypoints manually in such a way that each keypoint
can be applied to multiple object instances, and the same
rules can be applied to both the YCB-Video and T-LESS
dataset. We manually label the 3D CAD models for both
datasets, and project the keypoints from 3D to 2D to create
the ground-truth keypoints described in Sec. 3.1. We refer
the reader to the supplementary material Sec. D for more
details on how we annotated the keypoints.

Training procedure. We implemented the keypoint net-
work in PyTorch [24]. For all training, we used the Adam
optimizer [11] with a learning rate of 10�3. For the YCB-
Video dataset, we utilized real training data provided along
with the official 80k synthetic images. Due to the high re-
dundancy in the real training data, we used only every 5th
image. We trained on this dataset for 60 epochs using a
batch size of 24 with randomized backgrounds for the syn-
thetic dataset as well as randomized bounding boxes, color,
and image warping. For the T-LESS dataset, there are only
real training images of single objects on a dark background,
so for the synthetic data we opted to use the physics-based
pbr rendered data provided by [8]. For both the real
and pbr splits we augment the examples with randomized
backgrounds, bounding boxes, color, and warping, as well
as randomly pasted objects for the real data only – since
it only contains images of isolated objects. We trained the
TLESS model for 89 epochs with a batch size of 8, which
was smaller than that for YCB-Video due to the higher im-
age resolution of the pbr data.
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Table 1. Results on the YCB-Video dataset. Data means what syn-
thetic data was used in addition to the real data, and U.M. (unified
model) is checked if only one model was trained for all objects in-
stead of one model trained for each object separately. Bold is best,
underlined is second best.

Method Data U.M. ADD-S ADD(-S)
PoseCNN [35] syn X 75.3 61.3
DeepIM [15] syn X 88.1 81.9
PoseRBPF [4] syn 76.3 64.4
MHPE [5] syn X 82.9 69.7
CosyPose [14] pbr X 89.8 84.5
GDR-Net [33] pbr X 89.1 80.2
GDR-Net [33] pbr 91.6 84.4
Ours syn X 90.3 84.7

no prior det syn X 88.7 83.3
manual cov syn X 59.1 46.1
no MLE loss syn X 47.0 35.2
single view syn X 65.7 56.9

SLAM system. Our SLAM system is implemented in
Python. The GPU is only used for network inference while
all other operations are performed on the CPU. All opti-
mizations are implemented using Python wrappers for the
g2o library [13]1, besides PnP, which is done using the
Lambda Twist solver [27] with RANSAC2. Our front-end
tracking works on every incoming frame, while the back-
end runs every 10th frame. Note that the testing sequences
for both datasets are already provided as keyframes, so no
keyframing procedure is needed. While for actual deploy-
ment it is ideal to run the back-end graph optimization on
a separate worker thread, this would make reproducing the
exact results impossible due to randomness in the operating
system’s allocation of resources between the two threads.
In order to make the results reproducible, we simply exe-
cute both the front-end and back-end on the main thread for
evaluation. Our front-end tracking can typically run at 11Hz
on our desktop with a GTX 1080Ti graphics card, and the
back-end can run at an average speed of 2Hz.

4.2. YCB-Video Dataset

For the YCB-Video dataset, we compare to the single-
view methods [14, 15, 33, 35] and SLAM methods [4, 5].
Note that we do not include the multi-view results of
CosyPose [14] since it is an offline SfM method that is
not comparable to real-time SLAM methods. Following
[4,5,14,15,33,35], we report the area under curve (AUC) of
the ADD-S and ADD(-S) by varying the accuracy threshold
from 0 to 10cm, which is calculated for each object sepa-
rately and then averaged. To fairly compare the methods,

1https://github.com/uoip/g2opy
2https://github.com/midjji/pnp

Figure 4. Qualitative results on YCB-Video. From left to right
columns we show the detected object boxes with prior input to
the keypoint network, the predicted keypoints with uncertainty el-
lipses, and the 3D model projection on the image based on pre-
dicted 6Dof object poses and camera pose. Top: the uncertainty
ellipses tend to be smaller for visible keypoints on textured sur-
faces or corner points, while appearing larger for occluded key-
points and keypoints on smooth surfaces (like the clamp). Center:

our system is able to consistently track the keypoints throughout
the scene despite the presence of symmetric objects. Bottom: the
network trained with a fixed-variance loss predicts uncertainty el-
lipses that are visibly too small – leading to unreliable outlier re-
jection and object poses.

we used the same bounding boxes as PoseCNN. In practice,
the bounding boxes can come from any real-time bound-
ing box detector. The benchmark results as well as several
ablation studies are reported in Table 1 with our method la-
beled as “Ours”. Methods in Table 1 are marked as using
standard synthetic data (syn) with randomly-placed objects
or physics-based (pbr) training data in addition to the real
data. Note that while the pbr data is generally considered
superior to the randomly-placed objects [8], it is not a part
of the official YCB-Video dataset training splits. Regard-
less, our method beats all of the state-of-the-art single view
and SLAM methods in terms of the AUC of ADD(-S) met-
ric – even those utilizing the pbr data while only utiliz-
ing one network for all objects. The AUC of ADD(-S) is
the most important metric here, since it takes into account
the actual object symmetries rather than just shape match-
ing like the ADD-S does. This shows that our system can
provide highly accurate globally-consistent poses for sym-
metric objects, while still maintaining high accuracy on the
texture-asymmetric objects. Qualitative results can be seen
in Fig. 4. More detailed results of each object category can
be found in the supplementary material Sec. E.

Effect of prior detection. The first ablation study is to
run our same system without the prior detection. The results
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drop slightly, but this is expected on this dataset where only
5 out of 21 objects are considered symmetric, and only the
bowl displays a continuous rotational symmetry. In the next
section, we will see that the prior detection actually makes a
much bigger difference on the T-LESS dataset, where most
of the objects are symmetric, and the camera rotates many
times completely around the scene – whereas the camera
motion in YCB-Video is much simpler.

Manual covariance weight. For the next ablation in Ta-
ble 1, “manual cov”, we manually tune a weight to replace
the covariance in the SLAM system’s residuals and outlier
rejection mechanism. Here, we found that the weight cor-
responding to 2⇥ the average predicted standard deviation
of the network (which was about 2.5 pixels) achieved the
best scores. As observed, the results dropped significantly
compared to using a network predicted covariance.

Effect of MLE loss. For the ablation labeled “no MLE
loss”, we trained a network with the same procedure, but
replaced the MLE loss with a fixed-variance loss with vari-
ance regulation similar to that used by the popular human
pose estimation [21]. As observed, when placed in the
SLAM system, the results are significantly lower than that
with our network trained with the MLE loss. The qualitative
results of this experiment are also in Fig. 4.

Beyond the accuracy of the SLAM system with this
change, we have also tested the accuracy of the predicted
covariance itself. To do so, we ran both of the networks
(with and without MLE loss) on a separate set of simulated
YCB-Video objects (the pbr data which was not used in
training), which has perfect ground truth for the keypoints.
Here, we ran the networks with the ground truth bound-
ing boxes and no prior detection. To evaluate the accuracy
of the predicted covariance, we plotted the keypoint error
against the predicted standard deviation of the network. Ide-
ally, the error will always lie above the cone er < 3� if er
is the scalar x or y component of the error residual of the
keypoint prediction. The results of this experiment can be
viewed in Fig. 5. As observed, the network trained with
the MLE loss has much more of the errors within the 3�
cone. In fact, 91.0% of the data points on the left in Fig. 5
pass a 99% confidence �2 test while only 7.1% pass from
the points on the right. This shows that the predicted uncer-
tainty describes the actual error distribution well (besides
some expected outliers due to heavy occlusion and symme-
try), and including the MLE loss is crucial to achieve this.

Comparing to single view. For the final ablation in Table
1, we ran just our single view network and compared the
accuracy. Specifically, for each view we just ran PnP and
refined it using the same procedure as Eq. 5, but with only
one fixed camera pose per optimization. Clearly the full

Figure 5. The plot of error of the predicted keypoints against the
standard deviation predicted by the network over a separate set
of rendered YCB-Video objects. The 3� bounds are shown as the
cone drawn as the red dotted lines. Left: The result of our network
trained with the MLE loss. Right: The result of the same network
trained with a typical fixed variance loss instead, which have far
fewer points within the 3� cone.

Table 2. Benchmark Results on the T-LESS dataset.

Method Data U.M. evsd < 0.3
Implicit [31] syn 26.8
Pix2Pose [22] syn 29.5
PoseRBPF [4] syn 41.7
CosyPose [14] pbr X 63.8

Ours pbr X 63.7
real only N/A X 45.9
no prior det pbr X 16.2
manual cov pbr X 13.8
single view pbr X 48.1

SLAM system is more accurate. It is interesting to note
that the results for single view are actually more accurate
than the SLAM results using the manual covariance or the
fixed-variance network. This is most likely due to the fact
that incorrect covariance in our SLAM system can cause the
outlier rejection mechanism to be unreliable, and outliers
can then pull the object pose in an incorrect direction and
hurt the accuracy for all views despite the fact that most of
the keypoints are correct.

Accuracy of camera poses The effect of initializing the
camera poses with the poses provided by the dataset was
minor in this experiment. Using the given camera poses
the system achieved a 90.5 AUC of ADD-S score, while
the system with the estimated camera poses scored the 90.3
shown in Table 1. This shows that the estimated camera
poses are very accurate on this dataset.

4.3. T-LESS Dataset

For the T-LESS dataset, we compare to two single-view
baselines [22, 31] as well as, again, PoseRBPF [4] and
CosyPose [14]. To fairly compare to the other methods,
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Figure 6. Qualitative results on T-LESS. Top: Under misalign-
ment between the prior detection and objects (left column), the
network still predicts keypoints accurately (center column) which
just uses the prior as a general guide for the symmetry. Center:

the system displays robustness to missing and bad bounding boxes
here. Bottom: the same system, but without the prior detection,
fails to track keypoints corresponding to the same 3D locations
currently locating at the back side of the symmetric objects, hence
causes the estimated object poses to fly away. Note that the pre-
dicted covariance was used in all of these images, but left out of
the visualization for clarity. Best viewed in color.

we use the same RetinaNet bounding boxes as [22], tak-
ing the top scoring bounding box for each object. We use
the standard visual surface discrepancy (vsd) recall metric,
evsd < 0.3 [7], that the other methods reported. Since the
T-LESS dataset has multiple scenes that have only symmet-
ric objects, and our system requires asymmetric objects to
estimate a camera pose, we initialize our camera poses with
the poses provided by the dataset. While this is a potential
drawback to our system, typical deployment scenarios will
contain symmetric objects or allow for retrieving external
odometry from another source, such as an additional IMU
sensor or traditional feature-based SLAM.

The benchmark results and ablation studies are reported
in Table 2, where our system is shown to achieve a 63.7
recall score – second best to the 63.8 of CosyPose. How-
ever, it is interesting to note that CosyPose is an iterative
refinement method that utilizes initial object poses rendered
at 1m from the camera, which is close to the distance of all
the objects, while our method makes no such assumption.
Qualitative results can be also seen in Fig. 6.

Effect of training data. To test the sensitivity to the train-
ing data, we train it on only the small real training split,
which contains 1,231 images of each object on a dark back-
ground. From Table 2 we observe that, even with this small
amount of data, we still beat all of the state-of-the-art meth-
ods besides CosyPose – all of which used large amounts of

synthetic data on top of the real data. This shows the ability
of our method to work with a limited amount of data which
does not even cover all orientations of the objects.

Effect of prior detection. On the T-LESS dataset, where
most of the objects are symmetric in some way, the 63.7 re-
call score drops to 16.2 in Table 2 when the prior detection
is removed. This shows that the prior detection is crucial for
tackling these challenging T-LESS objects when the camera
is orbiting around their axes of symmetry multiple times.
Without the prior detection, the SLAM system’s outlier re-
jection simply rejects most of the keypoint measurements
on the symmetric objects, as they do not correspond to the
same 3D location. Fig. 6 also includes some qualitative
results of this experiment.

Manual covariance weight. Here again we set the co-
variance in the SLAM system’s residuals to a manually-
tuned weight. The result in this case drop to a 13.8 recall,
which further substantiates the usefulness of our covariance
estimate in the SLAM system. Furthermore, we found that
the optimal weight for this dataset was much larger than
that for YCB-Video, which is not surprising, but shows that
removing the need to manually tune weights by using the
predicted covariance is a useful property of our system.

Comparing to single view. In this case, the single view
result in Table 2 outperformed that from the SLAM system
when it either used a manual covariance weight or no prior
detections. Since the single-view results use no prior detec-
tion, this shows that the keypoints considered independently
for each view are reasonable, while the prior detection is
crucial for tracking them across time.

5. Conclusions and Future Work

In this work, we have designed a keypoint-based object-
level SLAM system that provides globally consistent 6DoF
pose estimates for objects with or without symmetry. Our
method can track semantic keypoints on symmetric ob-
jects consistently with the aid of the proposed prior detec-
tion, and the uncertainty that our network predicts has been
shown to capture the true error of the predicted keypoints
as well as greatly improve the object pose accuracy. In the
future, we would like to adapt our system to larger environ-
ments and generalize to class-level keypoint prediction with
unseen instances.
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Labbé, Eric Brachmann, Frank Michel, Carsten Rother, and
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