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Abstract

Attaching attributes (such as color, shape, state, action)
to object categories is an important computer vision prob-
lem. Attribute prediction has seen exciting recent progress
and is often formulated as a multi-label classification prob-
lem. Yet significant challenges remain in: 1) predicting a
large number of attributes over multiple object categories,
2) modeling category-dependence of attributes, 3) method-
ically capturing both global and local scene context, and
4) robustly predicting attributes of objects with low pixel-
count. To address these issues, we propose a novel multi-
category attribute prediction deep architecture named Gli-
deNet, which contains three distinct feature extractors. A
global feature extractor recognizes what objects are present
in a scene, whereas a local one focuses on the area sur-
rounding the object of interest. Meanwhile, an intrinsic
feature extractor uses an extension of standard convolution
dubbed Informed Convolution to retrieve features of objects
with low pixel-count utilizing its binary mask. GlideNet
then uses gating mechanisms with binary masks and its self-
learned category embedding to combine the dense embed-
dings. Collectively, the Global-Local-Intrinsic blocks com-
prehend the scene’s global context while attending to the
characteristics of the local object of interest. The architec-
ture adapts the feature composition based on the category
via category embedding. Finally, using the combined fea-
tures, an interpreter predicts the attributes, and the length
of the output is determined by the category, thereby re-
moving unnecessary attributes. GlideNet can achieve com-
pelling results on two recent and challenging datasets –
VAW and CAR – for large-scale attribute prediction. For in-
stance, it obtains more than 5% gain over state of the art in
the mean recall (mR) metric. GlideNet’s advantages are es-
pecially apparent when predicting attributes of objects with
low pixel counts as well as attributes that demand global
context understanding. Finally, we show that GlideNet ex-
cels in training starved real-world scenarios.

more info at http://signal.ee.psu.edu/research/glidenet.html

1. Introduction

To fully comprehend a scene, one should not only be able
to detect the objects in the scene but also understand the at-
tributes (properties) of each object detected. Even if two
objects belong to the same category, their behavior might
vary depending on their attributes. For example, we can’t
predict the route of a driving vehicle based on a still 2D im-
age alone, unless we know the vehicle’s heading/direction
and if the vehicle is parked or not. Accurate classification of
objects and their attributes is critical in numerous applica-
tions of computer vision and pattern recognition such as au-
tonomous driving where a thorough grasp of the surround-
ings is essential for safe driving decisions. In order to drive
safely, a driver must be able to predict numerous crucial as-
pects. They include, among other things, the activities of
other drivers and pedestrians, the slipperiness of the road
surface, the weather, traffic signs and their contents, and
pedestrian behavior.

Attributes are often defined as semantic (visual) descrip-
tions of objects in a scene. An object’s semantic informa-
tion includes how it looks (color, size, shape, etc.), inter-
acts with surroundings, and behaviors. The category of an
object, in general, determines the set of possible attributes
that it can have. For instance, a table might have attributes
related to shape, color, and material. However, a human
will have a more complicated set of attributes related to age,
gender, and activity status (sitting, standing, walking, etc.).
Some properties, such as the visible proportion of an ob-
ject, may exist across multiple categories. Therefore, to
accurately predict an object’s attributes, we must consider
the following: 1) some attributes are unique to certain cat-
egories, 2) some categories may share the same attribute,
3) some attributes require a global understanding of the en-
tire scene and 4) some attributes are inherent to the object
of interest. In this paper, we present a new algorithm –
Global, Local and Intrinsic based Dense Embedding Net-
work (GlideNet) – to tackle the attribute prediction prob-
lem. GlideNet is capable of addressing the aforementioned
listed concerns while also predicting a variety of categories.
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Earlier methods for object detection and classification re-
lied heavily on tailored or customized features that are ei-
ther generated by ORB [58], SIFT [42], HOG [11] or other
descriptors. Then, the extracted features pass through a sta-
tistical or learning module – such as CRF[28] – to find the
relation between the extracted features from the descrip-
tor and the desired output. Recently, Convolutional Neu-
ral Networks (CNN) have proven their capability in extract-
ing better features that ease the following step of classi-
fication and detection. This has been empirically proven
in various fields, such as in object classification [32, 18],
object detection [15, 54] and inverse image problems such
as dehazing [44, 73], denoising [39, 56], HDR estimation
[40, 45, 9], etc. Deep learning with CNN typically re-
quires a large amount of data for training and regularization
[5, 70, 2, 53, 6]. Classical methods [4, 13] for predicting at-
tributes may require less data, however they perform worse
than deep learning based techniques.

In this work, we present a new deep learning approach
GlideNet for attributes prediction that is capable of incorpo-
rating problem (dataset) specific characteristics. Our main
contributions can be summarized as follows:

• We employ three distinct feature-extractors; each has
a specific purpose. Global Feature Extractor (GFE)
captures global information, which encapsulates infor-
mation about different objects in the image (their lo-
cations and category type). Local Feature Extractor
(LFE) captures local information, which encapsulates
information related to attributes of the object as well as
its category and binary mask. Lastly, Instance Feature
Extractor (IFE) encapsulates information about the in-
trinsic attributes of objects. It ensures that we estimate
characteristics solely from the object’s pixels, exclud-
ing contributions from other pixels.

• We use a novel convolution layer (named Informed
Convolution) in the IFE to focus on intrinsic informa-
tion of the object related to the attributes prediction.

• To learn appropriate weights for each Feature Extrac-
tor (FE), we employ a self-attention technique. Uti-
lizing binary mask and a self-learned category embed-
ding, we generate a “Description” Then we use a gat-
ing mechanism to fine-tune each feature layer’s spatial
contributions.

• We employ a multi-head technique for the final clas-
sification stage for two reasons. First, it ensures that
the final classification step’s weights are determined
by the category. Second, the length of the final output
can vary depending on the category. This is significant
since not every category has the same set of attributes.

The term “class” can be confusing because it can refer to
the object’s type (vehicle, pedestrian, etc.) or the value of

one of the object’s attributes (parked, red, etc). As a result,
we avoid using the term “class” throughout the work. We
use the word “category” to refer to the object’s type and the
word “attribute” for one of the semantic descriptions of that
object. In addition, we use uppercase letters X to denote
images or 2D spatial features, lowercase bold letters x for
1D features, and lowercase non-bold letters x for scalars,
a hat accent over a letter x̂ to denote an estimated value
and calligraphic letters X to denote either a mathematical
operation or a building block in GlideNet’s architecture.

2. Related Work
Attributes prediction shares common background with

other popular topics in research such as object detection
[65, 25], image segmentation [21, 29] and classification
[38, 60]. However, visual attributes recognition has its
unique characteristics and challenges that distinguish it
from other vision problems such as multi-class classifica-
tion [55] or multi-label classification [12, 10].

Examples of these challenges are the possibly large num-
ber of attributes to predict, the dependency of attributes on
the category type, and the necessity of incorporating both
global and local information effectively. This has moti-
vated several past studies to investigate how we could tailor
a recognition algorithm that can predict the attributes.

So far, the majority of relevant research has concentrated
on a small number of generic attributes. [26, 66, 63, 57, 33,
67] or a targeted set of categories [16, 48, 68, 62, 30, 1].
For instance, [20, 61] predict the attributes related to the
vehicles. [61] have proposed a vehicle attributes prediction
algorithm. The proposed method uses two branches one to
predict the brand of the vehicle and another to predict the
color of the vehicle. They use a combined learning sched-
ule to train the model on both types of attributes. Huo et al.
[20] use a convolution stage first to extract important fea-
tures, then they use a multi-task stage which consists of a
fully connected layer per an attribute. The output of each
fully connected layer is a value describing that particular
attribute. For more details about recent work in vehicle at-
tribute prediction, Ni and Huttunen [47] have a good survey
of recent work, and some existing vehicle datasets for ve-
hicle attributes recognition (e.g. color, type, make, license
plate, and model) can be found in [69, 37].

On the other hand, [1, 23, 62] tackle the prediction of
attributes related to pedestrians or humans. Jahandideh
et al. [22] attempts to predict physical attributes such as
age and weight. They use a residual neural network and
train it on two datasets; CelebA [41] and a self-developed
one [41]. Abdulnabi et al. [1] learns semantic attributes
through a multi-task CNN model, each CNN generates
attribute-specific feature representations and shares knowl-
edge through multi-tasking. They use a group of CNN net-
works that extract features and concatenate them to form a
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Figure 1: GlideNet – the inputs are the image, the binary mask and the category of an object. The output is the attributes of
the object. Note that, the category embedding is self-learned from the extracted features of LFE using the category estimator.
All shown images are taken from Visual Attributes in the Wild (VAW) Dataset.

matrix that is later decomposed into a shared features matrix
and attribute-specific features matrix. [72] attempt to focus
on datasets with missing labels and attempt to solve it with
“background replication loss”. Multiple datasets focus on
attributes of humans, but the majority target facial attributes
such as eye color, whether the human is wearing glasses
or not, · · · , etc. Examples of datasets for humans with at-
tributes are CelebA [41] and IMDB-WIKI [57]. Li et al.
[31] propose a framework that contains a spatial graph and
a directed semantic graph. By performing reasoning using
the Graph Convolutional Network (GCN), one graph cap-
tures spatial relations between regions, and the other learns
potential semantic relations between attributes.

Only a handful of published work tackled a large set of
attributes from a large set of categories [52, 19, 59, 68].
Sarafianos et al. [59] proposed a new method that targeted
the issue of class imbalance. Although they focused on hu-
man attributes, their method can be extended to other cat-
egories as well. Pham et al. [52] proposed a new dataset
VAW that is rich with different categories where each ob-
ject in an image has three sets of positive, negative, and
unlabeled attributes. They use GloVe [51] word embedding
to generate a vector representing the object’s category.

3. Proposed Model
Universal semantic (visual) attribute prediction is a chal-

lenging problem as some attributes may require a global un-
derstanding of the whole scene, while other attributes may
only need to focus on the close vicinity of the object of in-
terest or even intrinsically in the object regardless of other
objects in the scene. We also aspire to estimate the possible
attributes of various types of categories. This necessitates
a hierarchical structure where the set of predicted attributes
depends on the category of the object of interest. In this
section, we discuss the details of GlideNet and the training
procedure to guide each FE to achieve its purpose.

3.1. GlideNet’s Architecture

Fig. 1 shows GlideNet’s network architecture at infer-
ence. The input to the model is an image capturing the en-
tire scene (I), the category (C), and the binary mask (M )
of the object of interest. The output of the model is a vec-
tor (a) representing different attributes of that object. Fig. 1
shows an example where the object of interest is the small
portion of the floor below the bed. The output is a vector of
the attributes of the floor. We can decompose the informa-
tion flow in GlideNet into three consecutive steps; feature
extraction, feature composition, and finally interpretation.
In the next few subsections, we discuss the details of each
step. However, the reader can refer to Section S.2 in the
supplementary document for exact numerical values of the
parameters of the architecture.

3.1.1 Feature Extraction

Feature extraction generates valuable features for the fi-
nal classification step. It is of utmost importance to ex-
tract features that help in predicting attributes accurately.
Some of which require an understanding of the whole im-
age while others are intrinsic to the object. In addition, we
are interested in the multi-category case. Thus, we need
to strengthen the feature extraction process to deal with ar-
bitrary shapes for the object of interest. For these reasons,
we have three FEs; namely Global Feature Extractor (GFE),
Local Feature Extractor (LFE) and Instance Feature Extrac-
tor (IFE). Each FE has a specific purpose so that collectively
we have a complete understanding of the scene while giving
attention to the object of interest.
GFE generates features related to the entire image I . It
produces features that are used for the identification of the
most prominent objects in the image. Specifically, the gen-
erated features from GFE describe objects detected in the
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image (their center coordinates, their height and width, and
their category). We use the backbone of ResNet-50 [17]
network here. We extract features at three different lev-
els of the backbone network to enrich the feature extrac-
tion process and for enhanced detection of objects at mul-
tiple scales. We denote the extracted features by GFE as
F 1
G, F

2
G, F

3
G and collectively by FG. Since the extracted

features will have different spatial dimensions, we upsam-
ple F 2

G, F
3
G to the spatial size of F 1

G; which is denoted by
h × w for the height and width, respectively. Let U(X,Y )
represent a function that upsamples X to the spatial size of
Y and S be a concatenation layer, then

FG = S
(
F 1
G,U

(
F 2
G, F

1
G

)
,U
(
F 3
G, F

1
G

))
(1)

LFE generates features related to the object of interest, but
it also considers the object’s edges as well as its vicinity.
The extracted features from LFE are used for the identifi-
cation of the object’s binary mask as well as its category
and attributes. LFE should be capable of estimating a sig-
nificant portion of attributes as it focuses on the object of
interest in contrast to GFE. However, GFE is still necessary
for some attributes, which require an understanding of other
objects in the scene as well. To illustrate, consider a vehi-
cle towing another one. We cannot recognize the attribute
“towing” without recognizing the existence of another ve-
hicle and their mutual interaction. That is why we employ
GFE in features extraction. Similar to GFE, we use ResNet-
50 as the backbone for LFE. The extracted features are de-
noted by F 1

L, F
2
L, F

3
L and collectively by FL. F 2

L, F
3
L are

up-sampled to the spatial size of F 1
L.

FL = S
(
F 1
L,U

(
F 2
L, F

1
L

)
,U
(
F 3
L, F

1
L

))
(2)

IFE generates intrinsic features of the object of interest,
utilizing its binary mask using a novel convolutional layer
dubbed as Informed Convolution. It is of great importance
to differentiate and distinguish between the objectives of
LFE and IFE. Both of them attempt to extract features that
predict the object’s attributes. However, IFE generates fea-
tures related to the intrinsic properties of the object (its tex-
ture as an example). On the other hand, LFE generates fea-
tures associated with its neighborhood and the boundaries
of the object. To clarify, assume we want to predict the at-
tributes of a pole in an image. LFE cannot estimate its color,
as typically poles have low aspect ratios; its height is much
larger than its width. Thus, the number of pixels contribut-
ing to the pole’s color is small compared to the total number
of pixels in the cropped image IC . Therefore, any typical
FE will obscure the pole’s pixels with other pixels in the
cropped image, even if we use an attention scheme to the
output features. On the other hand, IFE cannot understand
the interaction of an object with its vicinity, as it only con-
siders the object’s pixels while extracting features. As an
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Image

Encoded 
Objects

(a) The purpose of GFE is to understand the scene holistically.
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(b) The purpose of LFE is to extract features related to the object
while understanding its vicinity.
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Cropped
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Attributes Estimation
Attributes
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(c) The purpose of IFE is to extract features related to intrinsic
properties of the object using Informed Convolution.

Figure 2: Training of different feature extractors in Stage I.
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X Description
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To Gates 

Figure 3: Structure of the Object Descriptor – the inputs are
the binary mask and the self-learned category embedding ĉ.

example, consider an object’s exposure to light. IFE can-
not predict the exposure to light accurately; as that requires
comparison with other objects in the vicinity of the pole
(a dark-red object may be dark due to its low exposure to
light or that it intrinsically has that color). Therefore, LFE
and IFE supplement each other for a better estimation of
attributes. The structure of IFE resembles the backbone of
ResNet-50 where we replace each convolutional layer with
an informed-convolutional one (see Section 3.3). The ex-
tracted features are denoted by F 1

I , F
2
I , F

3
I and collectively

by FI . F 2
I , F

3
I are also up-sampled to the spatial size of F 1

I .

FI = S
(
F 1
I ,U

(
F 2
I , F

1
I

)
,U
(
F 3
I , F

1
I

))
(3)

Therefore, we have three different sets of features at the
end of the feature extraction step; FG, FL, FI . Each of them
contains features from three levels (dense embeddings) that
are all up-sampled to the same spatial size h×w, which we
set to 28× 28 in our implementation.
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3.1.2 Feature Composition

Feature composition amalgamates the generated dense em-
beddings from different feature extractors. A diligent fea-
ture composition is indispensable here, as a weak one will
impair the extracted features and give all of the attention
to only one of the FEs. Therefore, we leverage the binary
mask of the object of interest besides a self-generated and
learnable “category embedding” to produce a description
D for the composition mechanism. Details about how we
generate the “category embedding” can be found in Sec-
tion 3.2.2. After generating the description D, it passes by
spatial gating mechanisms GG,GL,GI to generate spatial at-
tention weights denoted by AG, AL, AI in Fig. 1. Later, we
use these weights to reduce the 2D spatial extracted features
FG, FL, FI to 1D features fG, fL, fI through δG, δL, δI , re-
spectively. That effectively generates spatial attention maps
to each feature level of each FE based on the shape and cat-
egory of the object. In other words, GlideNet learns to focus
on different spatial locations per each FE individually.

The structure of the Object Descriptor (D), Fig. 3, is as
follows. First, the binary mask M passes through a convo-
lution block to learn spatial attention based on the object’s
shape. Meanwhile, the Category Embedding ĉ passes by a
fully connected block to learn an attention vector based on
the category. Then the category attention vector is broad-
casted and multiplied by the mask attention as follows.

M̄ = ĉ⊗M (4)
M̄i[m,n] = ĉi ·Mi[m,n] (5)

where [m,n] represents a spatial location and i represents
the channel number. This leads to a composed description
for the attention based on the object’s shape and category.
Finally, a convolution block is used to refine the output de-
scription and generates D. The exact structure of D can be
found in Section S.2 of the supplementary document.

D = D (M, ĉ) (6)

Then, D passes by three different gates GG,GL,GI each
has a final Sigmoid activation layer to assert that the output
is between 0 and 1. Each gate generates a three channels
spatial attention map A for each FE. Then, δ reduces the 2D
extracted features from FE to 1D features by multiplying
each with its corresponding spatial attention map as follows.

Ak = Gk (D) , Ak ∈ R3×h×w (7)
fk = δ (Fk, Ak) , ∀k ∈ {G,L, I} (8)

δ(Fk, Ak) := S3
i=1

(
h∑

m=1

w∑
n=1

Ai
k[m,n]F i

k[m,n]

)
(9)

where S3
i=1(·) denotes concatenation for i ∈ {1, 2, 3} and

F i
k[m,n] represents the generated features of FE k at feature
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(b) Visual Attributes in the Wild (VAW) Dataset.

Figure 4: Structure of the interpreter for different datasets.

level i and spatial location [m,n]. Similarly, Ai
k[m,n] is the

output attention map from the gate Gk at feature level i and
spatial location [m,n]. Finally, the features are combined
to get a single 1D feature vector fT as follows

fT = S (fG, fL, fI) (10)

3.1.3 Interpretation

The interpreter translates the final feature vector to mean-
ingful attributes. Its design depends on the final de-
sired attributes outputs. In Section 4, we experiment with
two datasets VAW and Cityscapes Attributes Recognition
(CAR). Both datasets are very recent and focus on a large
set of categories with various possible attributes. How-
ever, there are some differences between them. Specifically,
VAW has three different labels (positive, negative, and un-
labeled). On the other hand, CAR doesn’t have unlabeled
attributes; it has a complex taxonomy where each category
has its own set of attributes, and each attribute has a set of
possible values it may take. This obligates the interpreter to
depend on the training dataset and the final desired output.

Therefore, two models are provided in Fig. 4. In both
cases, we first start with a dimensional reduction fully con-
nected layer from Rl to Rm; m < l. That enables us to
create multiple heads for each category without increasing
the memory size drastically. Then, the reduced features fA
passes by a single head corresponding to the category of the
object of interest. For CAR in Fig. 4a, the output size nc

varies from one head to another depending on the taxon-
omy of category c. While for VAW in Fig. 4b, the output
size is the same n = 620. The other difference between the
two interpreters is in the possible values the output can take.
In VAW, the output ranges from 0 to 1, where 0 represents
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(a) Input Mask (b) Partial Convolution (c) Informed Convolution

Figure 5: An input mask and its propagated mask after 5
layers for different update rules - kernel size = 5.

negative attributes and 1 represents positive ones (unlabeled
attributes are disregarded in training). In CAR, the output is
not binary as some attributes have more than two possible
values. Therefore, we encode each attribute as one hot en-
coder. For example, the “Vehicle Form” attribute can take
one of 11 values such as “sedan”, “Van”, etc. Thus, we have
a vector of 11 values where ideally we want the value 1 at
the correct form type and 0 elsewhere. It’s noteworthy to
mention that CAR has an “unclear” value for all attributes.
We skip attributes with unclear values during training.

3.2. Training
Since GlideNet has a complex architecture, tailored

training of the model is necessary to lead each FE to its ob-
jective. Therefore, we have developed a customized train-
ing scenario for GlideNet which divides the training into
two stages. In Stage I, we focus on guiding FEs to a rea-
sonable good status of their objective by adding some tem-
porary decoders to guide the feature extraction process. The
objective in Stage I is to have powerful and representative
FEs. Therefore, we do not train D nor I in Stage I. In Stage
II, we focus on the actual objective of GlideNet, which is
predicting the attributes accurately. Therefore, we remove
the temporary decoders, and we train the whole network
structure as in Fig. 1. The details of training FEs in Stage
I is detailed in Sections 3.2.1 to 3.2.3 while Section 3.2.4
discusses the training in Stage II.

3.2.1 Global Feature Extractor (GFE)
GFE is trained as in Fig. 2a by having a temporary objects
decoder that attempts to detect the objects in the input image
I , their categories and their bounding boxes center locations
(cx, cy), widths w and heights h. ÔG has c + 5 channels;
c of which are a one-hot representation of the category (P̂),
4 values for the bounding box, and the remaining value is
the probability of having the center of an object in that pixel
(P̂0). The training loss term for GFE is as follows.

Lg = λgp0LBCE

(
P0, P̂0

)
+ λgpLCE

(
P, P̂

)
+ λgd

[
LMSE

(
H, Ĥ

)
+ LMSE

(
W, Ŵ

)]
+ λgc

[
LMSE

(
Cx, Ĉx

)
+ LMSE

(
Cy, Ĉy

)] (11)

where LBCE is the Binary Cross Entropy loss, LCE is the
multi-class Cross Entropy and LMSE is the Mean-Square-
Error loss. λgp0, λgp, λgd, λgc are hyperparameters used to
tune the importance of each term.

3.2.2 Local Feature Extractor (LFE)
Fig. 2b shows the training of LFE. Here, we use three de-
coders; two temporary decoders for the binary mask M and
attributes, and one decoder for the category embedding C.
The training loss term for LFE is as follows.
Ll = λlmLBCE

(
M, M̂

)
+ λlcLCE

(
C, Ĉ

)
+ λlaLBCE (a, â) (12)

where λlm, λlc, λla are hyperparameters to tune the impor-
tance of each term.

The category embedding encapsulates visual similarities
between different categories unlike a word embedding [51],
which was previously used in [52]. We reason that learnable
vectors, rather than static pre-trained word embedding, cap-
ture greater visual similarities between objects depending
on their attributes; a teddy-bear is visually similar (attribute-
wise) to a toy more than to an actual real bear.

3.2.3 Instance Feature Extractor (IFE)
Fig. 2c depicts the training of IFE. It uses Informed Convo-
lution layers detailed in Section 3.3 to focus on the intrinsic
attributes. Its training loss term is as follows.

Li = λiaLBCE (a, â) (13)

where λia is a hyperparameter. Therefore, the complete
training loss function in Stage I is as follows.

LI = Lg + Ll + Li (14)

3.2.4 Stage II
In Stage II, the following loss function focuses on generat-
ing the final attributes vector correctly from the interpreter
while maintaining accurate category embedding ĉ.

LII = LBCE (a, â) + λlc2LCE

(
C, Ĉ

)
(15)

Therefore, the main goal is to predict the desired attributes.
However, we keep the term for the category embedding to
ensure the convergence of the category embedding during
training in Stage II.

3.3. Informed Convolution

The utilization of the binary mask in the feature extrac-
tion process has been previously applied in image inpaint-
ing problems in [36, 71, 8]. [71, 8] used learnable gates to
find the best mask-update rule, which is not suitable here as
we want IFE to only focus on intrinsic attributes of the ob-
ject. Therefore, a learnable update rule does not guarantee
the convergence to a physically meaningful updated mask.
Inspired by [36] we perform a mask-update rule as follows.

X(i+1) =

{
k2·WT∑

M(i)

(
X(i) ⊙M (i)

)
ifmaxM (i) > 0,

0 otherwise
(16)

M (i+1) =

{
1
k2

∑
M (i) ifmaxM (i) > 0,

0 otherwise
(17)

4840



Table 1: Comparison Between GlideNet and other state-of-the-art methods on two challenging datasets CAR and VAW

Method Visual Attributes in the Wild (VAW)[52] Cityscapes Attributes Recognition (CAR)[43]
mA mR mAP F1 mA mR mAP F1

Durand et al. [12] 0.689 0.643 0.623 0.632 0.641 0.629 0.637 0.635
Jiang et al. [24] 0.503 0.631 0.564 0.597 0.668 0.659 0.671 0.654

Sarafianos et al. [59] 0.683 0.647 0.651 0.646 0.701 0.699 0.705 0.703
Pham et al. [52] 0.715 0.717 0.683 0.694 0.731 0.727 0.739 0.720

GlideNet 0.737 0.768 0.712 0.725 0.781 0.802 0.788 0.796

where k is the kernel size of the convolution layer,
X(i),M (i) are the input features and input binary mask for
convolution layer i that is only visible for the kernel and
⊙ represents element-wise multiplication. It is important
to notice the difference between our mask-update rule and
the one provided in [36]. Fig. 5c shows an output example
based on the update rule. In our case, each pixel contributes
to the new mask by a soft value that depends on the contri-
bution of the object of interest at that spatial location. Fur-
thermore, Informed Convolution can be reduced to a regular
convolution if the binary mask was all ones. In this case, the
object of interest completely fills the image and the intrinsic
features would be any feature that we can extract from the
image. It is also noteworthy to recognize the difference be-
tween Informed Convolution and Masked Convolution pre-
sented in [64], where the authors are interested in generat-
ing an image from a caption by using a mask to ensure the
generation of a pixel depends only on the already generated
pixels. Their purpose and approach is entirely different.

4. Experiments and Results
In this section, we validate the effectiveness of GlideNet

and provide results of extensive experiments to compare it
with existing state-of-the-art methods. Specifically, we pro-
vide results on two challenging datasets for attributes pre-
diction – VAW [52] and CAR [43]. In addition, we per-
form several ablation studies to show the importance of var-
ious components of GlideNet. While we can consider other
datasets such as [50, 27], they lack diversity in either cate-
gories or attributes. However, VAW has 260, 895 instances;
each with 620 positive, negative and unlabeled attributes.
On the other hand, CAR [7] has 32, 729 instances focusing
on self-driving. Unlike VAW, CAR has a complex hierar-
chical structure for attributes, where each category has its
own set of possible attributes. Some attributes may exist
over several categories (such as visibility) and some other
are specific to the category (such as walking for pedestrian).
Experiment setup: the model is implemented using
PyTorch framework [49]. We choose the values of
λgp0, λgp, λgd, λgc, λlm, λlc, λla, λia and λlc2 to
be 1, 0.01, 0.5, 0.5, 0.1, 0.01, 1, 1 and 0.01, respectively by
cross validation [46]. We trained the model for 15 epochs
at Stage I and then 10 epochs for Stage II. More details can
be found in Section S.4 in the supplementary document.

Evaluation Metrics: mean balanced Accuracy (mA), mean
Recall (mR), F1-score and mean Average Precision (mAP)
are used for evaluation. They are unanimously used for clas-
sification and detection problems. Specifically, they have
been used in existing work for attributes prediction such as
[52, 12, 59, 34, 24, 3]. Excluding mAP, we calculate these
metrics over each category then compute the mean over all
categories. Therefore, the metrics are balanced; a frequent
category contributes as much as a less-frequent one (no cat-
egory dominates any metric). However for mAP, the mean
is computed over the attributes similar to [52, 14]. We com-
pute the mean over attributes in case of mAP to ensure di-
versity in metrics used in evaluation. As in this case, we
ensure having balance between different attributes. All met-
rics are defined as follows.

mA =
1

2c

c∑
i=1

TPi

Pi
+

TNi

Ni
, F1 =

2mP ∗ mR
mP + mR

,

mP =
1

c

c∑
i=1

TPi

PPi
, mR =

1

c

c∑
i=1

TPi

Pi
, mAP =

1

n

n∑
j=1

APj

where c and n are the numbers of categories and attributes
respectively. TPi, TNi, Pi, Ni and PPi are the number of
true-positive, true-negative, positive samples, negative sam-
ples and predicted-positive samples for category i. APj is
the average of the precision-recall curve of attribute j [35].

Since some attributes are unlabeled in VAW, we disre-
gard them in the evaluation as [52] did. Conversely, CAR
does not contain unlabeled attributes. It has, however, a
complex hierarchical taxonomy of attributes that requires
modification in the metrics used. For instance, most at-
tributes are not binary. They can take more than two values;
a “visibility” attribute may take one of five values. There-
fore, we define TP and TN per attribute per category. Then
we compute the mean over all attributes of all categories.
For example, mA would be as follows.

mA =
1

2c

c∑
i=1

 1

ni

ni∑
j=1

TPi,j

Pi,j
+

TNi,j

Ni,j


where ni is the number of attributes of category i. TPi,j is
the positive samples of attribute j of category i. Similarly,
we can extend the definition of other metrics to suit the tax-
onomy of CAR. For further details, the reader is encouraged
to check Section S.4 of the supplementary document.
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Table 2: Ablation study over dense embeddings
Method mA mR mAP F1
LFE only 0.612 0.639 0.620 0.613

LFE+GFE 0.661 0.644 0.671 0.668
LFE+IFE 0.719 0.724 0.699 0.705
GlideNet 0.737 0.768 0.712 0.725

Table 3: Ablation study over Objects with low pixel count
Method mA mR mAP F1

Pham et al. [52] 0.619 0.655 0.603 0.626
GlideNet w/o IFE 0.658 0.691 0.643 0.647

GlideNet 0.704 0.721 0.680 0.698

Table 4: Comparison between GlideNet with and without D
Method mA mR mAP F1

GlideNet w/o D 0.720 0.725 0.696 0.708
GlideNet 0.737 0.768 0.712 0.725

Table 5: Ablation study over category embedding
Method mA mR mAP F1

GlideNet w/o CE 0.725 0.731 0.701 0.712
GlideNet 0.737 0.768 0.712 0.725
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Figure 6: Comparison against training size (VAW Dataset).

Results on VAW and CAR: Table 1 shows the results of
GlideNet in comparison with four state-of-the-art method
over VAW and CAR. In VAW, GlideNet obtained better val-
ues in all metrics. More prominently, it was able to gain 5%
in mR metric than the closest method [52]. This is mainly
due to GlideNet’s usage of IFE and GFE to detect attributes
requiring global and intrinsic understanding. In CAR, Gli-
deNet was capable of achieving even a higher gain (∼ 8%
mR). GlideNet can be trained directly with CAR dataset due
to its varying output length. However, we had to slightly
modify the architecture of other method to work with CAR.

4.1. Ablation Study

Several ablation studies are presented here to demon-
strate the importance of the unique components in GlideNet.
Only ablations from the VAW dataset are shown here, how-
ever, similar behavior was noticed in CAR as well.
Dense Embedding: Table 2 shows the results of GlideNet
with different combinations of FEs. We achieve best results
by using all FEs. Notice that the gain from using IFE is
higher than GFE. This is expected given most attributes in
VAW focus on the object of interest itself and do not require
a lot of global context. However, GFE is still valuable when
global understanding of the scene is necessary, as in CAR.

Informed Convolution: We retrained the model with a re-
stricted dataset comprising objects with low pixel counts to
demonstrate the usefulness of Informed Convolution lay-
ers. We specifically identified examples with a lower than
0.35 ratio between their binary mask and their correspond-
ing bounding boxes. This reflects the goal of Informed Con-
volution layers, which is to give low-pixel-count objects
special attention.

Because the only architectural difference between IFE
and LFE is in the usage of Informed Convolution layers,
we test two scenarios: one with and one without IFE. In all
measures, GlideNet obtains the best performance, as seen
in Table 3 by meaningful margin.
Object Descriptor: Table 4 shows a comparison between
GlideNet with and without the Object Descriptor D. De-
spite the fact that the results without D are less than ideal,
they are still meaningfully higher than [52]. This suggests
that the generated dense embeddings are helping in better
attributes recognition. The feature composition of D, on
the other hand, is superior.
Semantic Embedding: GlideNet uses a self-learned cate-
gory embedding that encapsulate semantic similarities be-
tween objects. If the category embedding confuses two cat-
egories, it is most likely owing to their visual similarities.
In prior studies [52], word embeddings [51] were used to
capture the semantic but a word embedding alone would
not be sufficient to capture the visual similarities. Table 5
shows a comparison of GlideNet by swapping the Category
Embedding (CE) with GloVe [51] – a word embedding.
Limited Training Scenario: We also perform a limited
training data size comparison between GlideNet and other
methods in Fig. 6. The training data size is limited to 60%
and 40% of the original training data size of VAW while
keeping the validation set as it is. Although all methods
suffer in the limited data size scenario, GlideNet shows a
much more graceful decay in comparison to other methods.

5. Conclusion
Global, Local, and Intrinsic based Dense Embedding

Network (GlideNet) is a novel attributes prediction model
that can work with a variety of datasets and taxonomies of
categories and attributes. It surpasses existing state-of-the-
art approaches, and we believe this is due to the use of a va-
riety of Feature Extractors (FEs), each with its distinct goal.
A two-stage training program establishes their objectives.

Furthermore, the self-attention method, which combines
a binary mask and a self-learned category embedding, fuses
dense embeddings based on the object’s category and shape
and achieves richer composed features. The suggested In-
formed Convolution-based module estimates attributes for
objects in the cropped image that have a very low pixel con-
tribution. A rigorous ablation study and comparisons with
other SOTA methods demonstrated the advantages of Gli-
deNet’s unique blocks empirically.
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