
Active Teacher for Semi-Supervised Object Detection

Peng Mi1*, Jianghang Lin1*, Yiyi Zhou1**, Yunhang Shen1, Gen Luo1, Xiaoshuai Sun1,
Liujuan Cao1†, Rongrong Fu2, Qiang Xu2, Rongrong Ji1

1Media Analytics and Computing Lab, School of Informatics, Xiamen University, 361005, China.
2Ascend Enabling Laboratory, Huawei Technologies, China.

{mipeng,hunterjlin007,luogen}@stu.xmu.edu.cn, {zhouyiyi,xssun,caoliujuan,rrji}@xmu.edu.cn,
shenyunhang01@gmail.com, {furongrong, xuqiang40}@huawei.com

Abstract

In this paper, we study teacher-student learning from the
perspective of data initialization and propose a novel algo-
rithm called Active Teacher1 for semi-supervised object de-
tection (SSOD). Active Teacher extends the teacher-student
framework to an iterative version, where the label set is
partially initialized and gradually augmented by evaluat-
ing three key factors of unlabeled examples, including dif-
ficulty, information and diversity. With this design, Active
Teacher can maximize the effect of limited label informa-
tion while improving the quality of pseudo-labels. To vali-
date our approach, we conduct extensive experiments on the
MS-COCO benchmark and compare Active Teacher with a
set of recently proposed SSOD methods. The experimental
results not only validate the superior performance gain of
Active Teacher over the compared methods, but also show
that it enables the baseline network, i.e., Faster-RCNN, to
achieve 100% supervised performance with much less la-
bel expenditure, i.e. 40% labeled examples on MS-COCO.
More importantly, we believe that the experimental analy-
ses in this paper can provide useful empirical knowledge for
data annotation in practical applications.

1. Introduction

Recent years have witnessed the rapid development
of object detection supported by a flurry of benchmark
datasets [9, 11, 22, 32] and methods [13–15, 23, 26, 28, 29].
Despite great success, the expensive instance-level annota-
tion has long plagued the advancement and application of
existing detection models. To this end, how to save labeling
expenditure has become a research focus in object detec-
tion [4, 5, 17, 17, 24, 25, 33, 35, 36, 38, 40, 41].

*Equal Contribution. † Corresponding Author.
1Source code are available at: https://github.com/HunterJ-

Lin/ActiveTeacher
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Figure 1. The performance comparison between Active Teacher
and the state-of-the-art (SOTA) method [24] with different propor-
tions of labeled data in MS-COCO. Active Teacher exceeds 100%
fully supervised performance with only 40% label information.

Inspired by recent success in image classification [2,
3, 19, 34, 39], some practitioners resort to teacher-student
learning for semi-supervised object detection (SSOD) [24,
35, 37]. Specifically, this methodology uses a teacher
network with weakly augmented labeled data to generate
high-quality pseudo-labels for the student network with
strong data augmentation [8, 10, 44]. This self-training
process helps the model explore large amounts of unla-
beled data based on a very limited number of annota-
tions. Following this methodology, Sohn et al. [35] pro-
posed the first teacher-student framework called STAC for
SSOD. This simple framework outperforms the existing
semi-supervised methods [4, 33, 36, 38] by a large margin,
showing the great potential of teacher-student learning in
object detection.

Some very recent SSOD works [24, 37, 50] are pro-
posed to improve this methodology. For instances, Liu et
al. [24] apply exponential moving average (EMA) [39] to
train a gradually progressing teacher to alleviate the class-
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imbalance and over-fitting issues. Zhou et al. [50] propose
an instant pseudo labeling strategy to reduce the impact of
the confirmation bias and improve the quality of pseudo la-
beling. In [37], Tang et al. adopt a detection-specific data
ensemble to produce more reliable pseudo-labels. Conclu-
sively, these methods mainly focus on the framework opti-
mization or the negative impact of noisy pseudo-labels, of
which contributions are orthogonal to ours.

In this paper, we study this semi-supervised methodol-
ogy from the perspective of data initialization. More specif-
ically, we investigate how to select the optimal labeled ex-
amples for teacher-student learning in SSOD. To explain,
although a plenty of pseudo-labels are generated for self-
training, ground-truth label information still plays a key
role in the infant training phase, which determines the qual-
ity of pseudo-labels and the performance lower-bound of
the teacher networks [24, 35, 50]. Meanwhile, in some
teacher-student methods [24,31], the pseudo-labels are only
used to optimize the predictions of object categories and
foreground-background proposals, while the optimization
of bounding boxes regression still relies on the ground-truth
annotations. In this case, we observe that ground-truth la-
bel information plays an important role in SSOD, which,
however, is still left unexplored.

To this end, we propose a new teacher-student method,
coined as Active Teacher, for semi-supervised object de-
tection. As shown in Fig. 2, Active Teacher extends the
conventional teacher-student framework to an iterative one,
where the label set is partially initialized and gradually aug-
mented via a novel active sampling strategy. With this mod-
ification, Active Teacher can maximize the effect of limited
label information by active sampling, which can also im-
prove the quality of pseudo-labels. We further investigate
the selection of labeled examples from the aspects of diffi-
culty, information and diversity, and the values of these met-
rics are automatically combined without hyper-parameter
tunning. Through these metrics, we can explore what kind
of data are optimal for SSOD.

To validate the proposed method, we conduct exten-
sive experiments on the benchmark dataset, namely MS
COCO [22]2. The experimental results not only con-
firm the significant performance gains of Active Teacher
against a set of state-of-the-art SSOD methods, e.g., +6.3%
and +23.3% compared with Unbiased Teacher [24] and
STAC [35] on 5% MS-COCO, respectively. It also shows
that Active Teacher enables the baseline detection network,
i.e., Faster-RCNN [29], to achieve 100% supervised perfor-
mance with much less labeling expenditure, e.g., with 40%
labeled examples on MS-COCO, as shown in Fig. 1. More
importantly, we also provide the in-depth analyses for active
sampling, which can give useful hints for data annotation in
practical applications of object detection.

2More experimental results can be found in our Github project.

In summary, our contribution is two-fold:

• We present the first attempt of studying data initializa-
tion in teacher-student based semi-supervised object
detection (SSOD), and conduct extensive experiments
for different sampling strategies. These quantitative
and qualitative analyses can provide useful references
for data annotation in practical applications.

• We propose a new teacher-student framework for
SSOD called Active Teacher, which not only out-
performs a set of SSOD methods on the benchmark
dataset, but also enables the baseline detection network
achieve 100% fully supervised performance with much
less label expenditure.

2. Related Work
Object Detection. With the rapid development of

deep neural networks, object detection has achieved great
progress both academically and industrially [13–16, 20, 23,
26–29]. Object detection is roughly divided into two gen-
res: one-stage and two-stage detectors. The representative
work of one-stage methods includes YOLO [13, 26–28],
SSD [23], etc., and the ones of two-stage models include
RCNN series [14,15,29] and its variants [16,20]. The main
difference between these two methodologies is that the one-
stage method directly predicts the coordinates and probabil-
ity distribution of the object based on the feature map, while
the two-stage methods use region proposal networks [29] to
sample potential objects, and further predict the probabil-
ity distribution and coordinate information of the object, re-
spectively. Following the prior works [24, 35, 50], we focus
the semi-supervised learning of two-stage models and use
Faster-RCNN [29] as our baseline network.

Semi-Supervised Object Detection. In the field of com-
puter vision, most existing researches on semi-supervised
learning mainly focus on image classification [1, 7, 19, 45],
which can be roughly divided into consistency-based and
pseudo labeling based methods, respectively . Consistency-
based approaches [2, 3, 12, 17, 34] constrain the model to
make it robust to noise via producing consistent prediction
results. Pseudo labeling [1,24,34,35,37,50] methods firstly
train the classifiers with ground-truth annotations and gen-
erate pseudo-labels for unlabeled data, and finally retrain
models with all data. Recently, some works [17, 18, 24,
35, 50] apply semi-supervised learning to object detection.
CSD [17] randomly flips images multiple times, driving the
model to produce consistent predictions for these flipped
images. ISD [18] uses mixup [49] to constrain model train-
ing. Following the popular teacher-student framework [39],
STAC [35] proposes the first teacher-student based frame-
work for SSOD. Due to the static annotating strategy, the
pseudo-labels in STAC are fixed, which limits the final de-
tection performance. In Instant-Teaching [50], both teacher
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Figure 2. The overall framework of the proposed Active Teacher. In Active Teacher, the label set is partially initialized and gradually
augmented after each semi-supervised training. Active Teacher includes two detection networks, i.e., Faster-RCNN [29], with the same
configurations, namely Teacher and Student. Teacher is used to generate pseudo-labels for training Student, and its parameters are grad-
ually updated from Student via EMA [39]. Student is trained with both ground-truth and pseudo-labels, denoted as Lsup and Lunsup,
respectively. Teacher also serves to estimate the unlabeled examples for active sampling.

and student share the same parameters to deal with above
problem. However, they still suffer from extreme insta-
bility in the initial training phase and require a high con-
fidence score threshold for generating pseudo-labels. Un-
biased teacher [24] exploits EMA [39] to optimize teacher
from student gradually. In addition, Unbiased teacher apply
EMA [39] and focal loss [21] to address the pseudo-label
over-fitting problem in teacher-student learning.

Active Learning. There are also some active-learning
based methods proposed to reduce the labeling expendi-
ture of object detection [42, 47, 48]. For instance, Wang
et al. [42] use different active sampling metrics for different
stages in object detection. CALD [47] measures informa-
tion by calculating the data consistency of bounding boxes
before and after augmentation. MI-AOD [48] applies multi-
instance learning to suppress the pseudo-label noises.

In this paper, we focus on the teacher-student based
semi-supervised learning for object detection.

3. Active Teacher
The overall framework of the proposed Active Teacher is

illustrated in Fig. 2. As shown in this figure, Active Teacher
consists of an iterative teacher-student structure, where the
limited label set is partially initialized and gradually aug-
mented. After each iteration, the well-trained teacher net-
work is used to evaluate the importance of unlabeled ex-
amples in terms of the proposed metrics, i.e., information,
diversity and difficulty, based on which active data augmen-
tation is performed. The detailed procedure is depicted in
Algorithm 1. In the following section, we introduce Active

Algorithm 1 Pseudo Code of Active Teacher

Input: Labeled Dataset {X 0
L, Y0

L}, Unlabeled Dataset
{X 0

U}, Maximum Iteration K
Output: Teacher Model M t

1: for all xl ∈ X 0
L and xu ∈ X 0

U do
2: Update the parameters of Student Ms

0 by Eq. (1)
3: Update the parameters of Teacher M t

0 by Eq. (6)
4: end for
5: for all i=1,...,K do
6: for all xu ∈ {X i−1

U } do
7: Calculate sampling score of unlabeled data us-

ing Teacher network M t
i−1 by Eq. (11);

8: end for
9: Rank the data based on score.

10: Select the top-N data {X i
P } and annotate them with

label {Yi
P };

11: Update labeled set {X i
L,Yi

L} = {X i−1
L ,Yi−1

L } ∪
{XP ,YP };

12: Update unlabeled set {X i
U} = {X i−1

U } - {XP }
13: for all xl ∈ X i

L and xu ∈ X i
U do

14: Update the parameters of Student Ms
i by Eq. (1)

15: Update the parameters of Teacher M t
i by Eq. (6)

16: end for
17: end for
18: return M t

K

Teacher from the aspects of semi-supervised learning and
active sampling, respectively.
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3.1. Semi-Supervised Learning

Given a set of labeled data DL = {XL,YL} and a set of
unlabeled dataDU = {XU}, whereX denotes the examples
and Y is the label set, the target of semi-supervised learning
is to maximize model performance based on both labeled
and unlabeled data.

Similar to prior works [24, 37], our semi-supervised
learning paradigm also includes two detection networks
with the same configurations, namely Teacher and Student,
as shown in Fig. 2. In this paper, we use Faster-RCNN [29]
as our baseline detection network. The teacher network
is in charged of pseudo-label generation, while the student
one is optimized with both ground-truth and pseudo-labels.
Specifically, the optimization loss for the student network
can be defined as:

L = Lsup + λ · Lunsup, (1)

where Lsup and Lunsup denote the losses for supervised
and unsupervised learning, respectively, and λ is the hyper-
parameter to trade-off between Lsup and Lunsup.

For object detection, Lsup consists of the classification
loss Lcls of RPN and ROI head, and the one for bounding
box regression Lloc. Then, Lsup is defined as

Lsup =
1

Nl

Nl∑
i=1

(Lcls(x
i
l, y

i
cls) + Lloc(x

i
l, y

i
loc)), (2)

where Lcls and Lloc are calculated by

Lcls(x
i
l, y

i
cls) = L

rpn
cls (xi

l, y
i
cls) + Lroi

cls (x
i
l, y

i
cls),

Lloc(x
i
l, y

i
loc) =

∑
c∈{x,y,h,w}

SmoothL1(t
i
c − yic).

(3)

Here, xl refers to the labeled example, ycls and yloc are its
labels, and Nl denotes the number of xl. tc is the c-th coor-
dinate of the output image xi. In terms of Lloc, we use the
smooth L-1 loss for the bounding box regression:

SmoothL1(x) =

{
0.5x2 if |x| < 1,

|x| − 0.5 otherwise.
(4)

For Lunsup, we only use the pseudo-labels of RPN and ROI
head predictions, similar to that in [24]. It is formulated as

Lunsup =
1

Nu

Nu∑
i=1

Lcls(x
i
u, ŷ

i
cls), (5)

where Lcls is the same as Eq. (2), and ŷicls is the pseudo-
labels generated by the teacher network.

To avoid the class-imbalance and over-fitting issues, we
follow [24,37] to freeze the optimization of the teacher net-
work during semi-supervised training, and update its pa-
rameters from the student network via Exponential Moving

Average (EMA) [39]:

θit ←− αθi−1
t + (1− α)θis, (6)

where θt and θs are the parameters of the teacher and stu-
dent networks, respectively, and i denotes the i-th training
step. α is the hyper-parameter to determine the speed of
parameter transmission, which is normally close to 1. To
improve the quality of pseudo-labels, we also apply non-
maximum suppression (NMS) [15] and confidence thresh-
old to filter repetitive and uncertain pseudo-labels.

3.2. Active Sampling

In Active Teacher, the label set is partially initialized and
augmented through the teacher network after each semi-
supervised training. We explore what kind of examples (or
images) are critical for semi-supervised object detection,
and introduce three active sampling metrics, namely diffi-
culty, information and diversity.

Difficulty is the widely-used metric for active learn-
ing [6, 51], and is normally measured based on the entropy
of the probability distribution predicted by the model. A
higher entropy shows that the model is more uncertain about
its prediction, suggesting that the example is more difficult.

In SSOD, we measure the difficulty score sdiff
i of an un-

labeled example based on the category prediction of the
teacher network, which is defined as

sdiff
i = − 1

ni
b

ni
b∑

j=1

Nc∑
k=1

p(ck; bj , θt) log p(ck; bj , θt), (7)

where ni
b is the number of the predicted bounding box after

NMS and confidence filtering, Nc is the number of object
categories and p(ck; bj , θt) is the prediction probability of
the k-th category by the teacher network. With Eq. (7), we
can judge whether the image is difficult for SSOD based on
the prediction uncertainty of the teacher network.

Information is a metric to measure the amount of in-
formation of the unlabeled image for SSOD. In some clas-
sification tasks [6, 51], it is often calculated by prediction
entropies, similar to difficulty. However, in object detec-
tion, richer information means that more visual concepts
appear in the image, so the model can learn more detec-
tion patterns. To this end, we use the prediction confidence
to measure this metric:

sinfo
i =

ni
b∑

j=1

confidence(bj , θ), (8)

where the confidence(bj , θt) is the highest confidence score
in j-th bounding box predicted by the teacher network.
From Eq. (8), we can see that the larger sinfo, the more visual
concepts recognized by the teacher network, suggesting that
the image has richer information.
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Diversity is a metric to measure the distribution of ob-
ject categories in an image. The diversity score sdive is cal-
culated by

sdive
i = |{cj}

ni
b

j=1| (9)

where cj is the predicted category of the j−th bounding
box, and |·| is the cardinality. The difference between infor-
mation and diversity is that the former will sample images
of more visual instances that might belong to only one or
a few categories, while the later will favor those involving
more different concepts.

Metrics Combination. The introduced metrics may be
able to answer which type of examples are suitable for
SSOD. However, a practical problem is that the models in
different states may have different requirements for label in-
formation. Besides, how to maximize the benefits of these
metrics without extensive trials remains a challenge. To this
end, we propose a simple yet efficient solution to automati-
cally combine these metrics, termed AutoNorm.

Before combining these metrics, we notice that the value
ranges of these metrics differ greatly. For instance, the dif-
ficulty scores is usually between 0.3 and 0.8 with a theoret-
ical maximum of logNc, while the information score often
ranges from 4.0 to 6.0. In this case, the first step of combi-
nation is to normalize their values:

ŝmi =
smi
smmax

(10)

where m ∈ {difficulty, information, diversity} represent the
metrics, the smmax is the maximum value of this metric.

Since these metrics represent image information from
different aspects, we further build a three-dimensional
sampling space to represent each example as s⃗i =
(sdiff

i , sinfo
i , sdive

i ). The evaluation result of each unlabeled
example can be regarded as a point in this space. After-
wards, we use L-p normalize the data points into a single
scalar sLp

, which is obtained by

sLp
= Lp(s⃗) = ||s||p = p

√√√√ 3∑
i=1

spi (11)

where s⃗ = (s1, s2, s3) = ( ˆsdiff
i , ˆsinfo

i , ˆsdive
i ). Empirically, we

use L1 norm to combine these three metrics. When using
L-p (p>1) norm, the metrics with higher values will receive
more sampling weights, e.g., difficulty, which is found to be
suboptimal in our experiments.

4. Experiment
4.1. Dataset and Metric

We evaluate our approach on the main benchmark for
object detection, namely MS-COCO [22]. Specifically,
MS-COCO divides the examples into two splits, namely

train2017 and val2017. The train2017 has 118k labeled
images. During our experiments, this split is further di-
vided into the labeled set and the unlabeled one, similar to
the prior works in SSOD [24, 35]. In practice, we adopt
the settings of 1%, 2%, 5%, 10% and 20% labeled data
of train2017 for experiments and the comparisons with the
other SSOD methods [24,35,37,46,50]. The rest examples
are regarded as unlabeled data. In terms of model evalua-
tion, we follow the previous works [17, 24, 35, 37, 46, 50]
adopt mAP (50:95) [22] as the metric of our experiments.
And val 2017, which has 5k images, is used for evaluation.

4.2. Experimental Settings

Following the most work in SSOD [17,24,35,37,46,50],
we use Faster-RCNN with ResNet-50 as our baseline de-
tection network. The implementation and hyper-parameter
setting are the same as those in Detectron2 [43]. In terms of
semi-supervised learning, we also follow the works in [24]
to pre-train the teacher network with the supervised objec-
tives defined in Eq. (2). The numbers of pre-training steps is
set to 2k for all experimental settings. Afterwards, the stu-
dent network is initialized with the parameters of the teacher
one. The total training steps for each semi-supervised learn-
ing are 180k. The optimizer used is SGD [30], and the
learning rate linearly increases from 0.001 to 0.01 at the
first 1k iterations, and is divided by 10 at 179,990 iteration
and 179,995 iteration, respectively. Similar to [24], we ap-
ply random horizontal flip as weak augmentation for the
teacher, and the strong augmentations for the student in-
clude horizontal flip, color jittering, grey scale, gaussian
blur and CutOut [10]. We use a threshold τ = 0.7 to fil-
ter the pseudo-labels of low quality. We use α = 0.9996
for EMA and λ = 4 for the unsupervised loss on all ex-
periments. In terms of active sampling, we set the iteration
number in Algorithm 1 as 2 in this paper. For all experi-
ments, half of the label set are randomly selected, and the
other half are actively selected after semi-supervised learn-
ing. The batch size is set to 64, which consists 32 labeled
and 32 unlabeled images via random sampling.

4.3. Experimental Result

4.3.1 Quantitative Comparisons

Comparisons with the state-of-the-arts. We first compare
Active Teacher with a set of teacher-student based SSOD
methods, of which results are given in Table 1. From this ta-
ble, we can first observe that all teacher-student based meth-
ods greatly outperform the traditional supervised learning.
Besides, we can also notice that with the careful designs in
framework, those recently proposed teacher-student meth-
ods, e.g. Unbiased Teacher [24], improve the pioneer ob-
viously, i.e. STAC, suggesting the notable progresses made
in teacher-student based SSOD. However, their competition
also becomes more fierce. Even so, we still observe that
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Table 1. Comparison between the proposed Active Teacher and other SSOD methods on MS-COCO val2017. The metric we used is mAP
(50:95). “Supervised” refers to the performance of the model trained with labeled data only. * is our re-implementation. ∆: AP gain to the
supervised performance. Our method consistently outperforms the compared methods.

COCO-Standard
1% ∆ 2% ∆ 5% ∆ 10% ∆ 20% ∆

Supervised [29] 9.05 +0.00 12.70 +0.00 18.47 +0.00 23.86 +0.00 26.88* +0.00*
STAC [35]arXiv2020 13.97 +4.92 18.25 +5.55 24.38 +5.91 28.64 +4.78 / /
ISMT [46]CVPR2021 18.88 +9.83 22.43 +9.73 26.37 +7.90 30.53 +6.67 / /

Instant-Teaching [50]CVPR2021 18.05 +9.00 22.45 +9.75 26.75 +8.28 30.40 +6.54 / /
Humble-Teacher [37]CVPR2021 16.96 +7.91 21.72 +9.02 27.70 +9.23 31.61 +7.75 / /
Unbiased-Teacher [24]ICLR2021 20.75 +11.70 24.30 +11.60 28.27 +9.80 31.50 +7.64 34.88* +8.00*

Active-Teacher(Ours) 22.20 +13.15 24.99 +12.29 30.07 +11.60 32.58 +8.72 35.49 +8.61

Table 2. Experiment of how much labeled data is for achieve 100%
supervised performance(37.63 [24]) by Unbiased-Teacher [24]
and our Active-Teacher on MS-COCO.

COCO-Standard
5% 10% 20% 40%

Unbiased-Teacher 28.27 31.50 34.88 37.29
Active-Teacher 30.07 32.58 35.49 37.92

Table 3. The result of Active Teacher on STAC [35]. We just
replace the initial data while keep the rest settings the same.

COCO-Standard
1% 5% 10%

STAC 13.97 24.38 28.64
STAC+Ours 14.79 26.19 29.77

the proposed Active Teacher can achieve obvious perfor-
mance gains on all experimental settings, e.g., +6.3% than
Unbiased-Teacher with 5% label information. These results
greatly confirm the effectiveness of our method.

Requirement of labeled data to achieve supervision.
In practical applications, the minimum amount of labeled
data required to achieve supervised performance is more
concerned. For this purpose, we conduct a comparison be-
tween Unbiased-Teacher [24] and our Active Teacher. As
shown in Table 2, with 40% labeled data our method could
achieve supervised performance easily.

Effect of Active Teacher on different AP metrics.
Fig. 4 shows the detailed performance gains of Active
Teacher against Unbiased Teacher on more metrics. On
5% labeled data, Active Teacher can greatly improve the
performance on the detection of medium and small objects,
i.e., APs and APm, suggesting that Active Teacher can sam-
ple images with more small objects. On 20% labeled data,
all AP metrics can obtain obvious improvements by Active
Teacher, which also suggests its change in data sampling.

Generalization capability of active sampling. Active
Teacher is also highly generalized. Table 3 illustrates the
performance changes of STAC after using the selected label
information by Active Teacher. Without bells and whistles,
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Figure 3. Training curves of active sampling with different sam-
pling metrics on 5% and 20% labeled data. The proposed Au-
toNorm can well combine the advantages of three metrics.
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Figure 4. Changes of specific AP indicators of Active Teacher
compared with Unbiased Teacher on 5% and 20% labeled data.
Active Teacher is more sensitive to small and medium sized object.

this simple modification can lead to obvious performance
gains of STAC on all experimental settings, strongly sug-
gesting the generalization ability of our method.

Ablation. We also ablate the proposed metrics with dif-
ferent proportions of labeled data, as shown in Table 4.
From this table, we can see that three metrics, i.e., diffi-
culty, information and diversity, are all beneficial for SSOD.
However, under different settings of label proportions, their
performance is also different, which verifies the assumption
we made in Sec 3.2. For instance, with more label exam-
ples, the metric of information will performs better, and vice
verse. In addition, as shown in Fig. 3, AutoNorm is supe-
rior than the other metrics during the training and obtains
the overall better performance finally, which well confirms
its effectiveness.

Sampling distributions and performance changes. To
obtain deep insight into these metrics, we further com-
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Table 4. Ablation study of different sampling strategies in Active Teacher. Note that these results are experimented with a smaller batch
size, i.e. 32, which are slightly inferior than those in Table 1.

Strategy Metric COCO-Standard
Difficulty Information Diversity 5%(2.5%+2.5%) 10%(5%+5%) 20%(10%+10%)

Baseline - - - 27.84 31.39 34.26*
Difficulty ✓ - - 29.03 32.13 34.68

Information - ✓ - 28.92 31.98 35.04
Diversity - - ✓ 29.40 32.26 35.05

AutoNorm ✓ ✓ ✓ 29.48 32.08 35.13
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(b) Results on 20% labeled data.
Figure 5. The relative changes of sample distribution (blue) and performance (red) of Activate Teacher with and without active sampling
on different metrics. The results are obtained on 5% and 20% labeled data.

pare their detailed sampling distributions and performance
changes on all categories, of which results are depicted in
Fig. 5. From these results, we can first observe that in-
formation is easy to suffer from inverse compensation ef-
fect. Specifically, the categories that already take a large
proportion of data will receive more samplings from this
metric. As a result, the biased distribution and unbalanced
performance will become more prominent under this met-
ric. Notably, diversity is the opposite of information, which
can also address diminishing marginal effect. From Fig. 5,
we can find that the performance gains of the major cat-
egories will not keep increasing with more examples. In
contrast, some small categories will obtain more improve-
ments via data augmentation, which can be achieved by di-
versity. However, due to the obvious difference between its
sampling distribution and the real one, the advantage of di-
versity will be weaken as the number of labeled examples
increases. The distribution of difficulty matches the real one.
Due to the preference of outliers, its overall performance is
not significant. Instead, the proposed AutoNorm can make
good use of three metrics, while maintaining the amount of
information and the diversity of examples. Besides, it is
also closer to the real data distribution.

4.3.2 Qualitative analysis
What examples are selected by these metrics? In Fig. 6,
we visualize the examples selected by these metrics based
on 5% and 20% labeled data. From Fig. 6, we can first ob-
serve that the selected examples well correspond to the def-

initions of these metrics. For instance, difficulty will sam-
ple examples with objects that are difficult to detect, e.g.,
small objects, and information prefers the ones with more
instances, e.g. street views. Diversity will select the im-
ages containing more categories, e.g. dining room. In ad-
dition, we can also notice some slightly difference between
the samplings with 5% and 20% labeled data. Specifically,
under 5%, the teacher is not sufficiently trained, so it can
only estimate the examples of the common categories. For
instance, information will sample a picture of only people,
which also explains why its sampling is less effective on
5%. In contrast, under 20%, the example estimation be-
comes more comprehensive. Besides, we can find that the
proposed AutoNorm is the optimal strategy on both set-
tings. The images sampled by AutoNorm are full of infor-
mation, rich in categories and different in object sizes. We
believe that this is also the proper criteria of data sampling
for SSOD from an overall perspective.

Effects on pseudo-labels. We further visualize the
pseudo-labels of Active Teacher with and without active
sampling on different training steps. Firstly, we can find
that there is still an obvious gap between the qualities of
the pseudo-labels and the ground-truth ones. Even so, with
the help of active sampling, Active Teacher can still gen-
erate more pseudo-labels with better qualities in different
training steps. As shown in Fig. 7, Active Teacher can also
detect more small objects in image. This result greatly con-
firms our argument that data initialization also affects the
qualities of pseudo-labels.
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(a) Images selected by different metrics with 5% labeled data.
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(b) Images selected by different metrics with 20% labeled data.
Figure 6. Visualization of the images with top ranks with 5% and 20% labeled proportions and different sampling metrics. The bounding
boxes in red are predicted by the teacher network.

5%

20%

w.o. Active Sampling

10k steps 40k steps Best model

with Active Sampling

10k steps 40k steps Best model

w.o. Active Sampling with Active Sampling w.o. Active Sampling with Active Sampling

Figure 7. Visualization of the pseudo-labels predicted by Active Teacher with and without active sampling at different training steps. The
green bounding boxes are the ground-truths, while the red ones are pseudo-labels predicted by the teacher network.

5. Conclusion

In this paper, we propose a novel teacher-student
based method for semi-supervised object detection (SSOD),
termed Active Teacher. Different from prior works, Active
Teacher studies SSOD from the perspective of data initial-
ization, which is supported with a novel active sampling
strategy. Meanwhile, we also investigate the selection of
examples from the aspects of information, diversity and dif-
ficulty. The experimental results not only show the supe-
rior performance gains of Active Teacher over the existing
methods, but also show that it can help the baseline net-
work achieve 100% supervised performance with much less
label expenditure. Meanwhile, the quantitative and qualita-
tive analyses provide useful hints for the data annotation in
practical applications.
Limitation. A potential issue of Active Teacher is that it
theoretically takes k − 1 times more training steps than the

other teacher-student methods, where k is the number of
training iterations in Algorithm 1. In our experiments, we
find that k = 2 can already help the model obtain obvious
performance gains. Considering the fact that data annota-
tion is much more expensive than model training in some
practical applications of SSOD, e.g., security surveillance
and industrial inspection, we believe that the doubled train-
ing time is still acceptable.
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