
Text2Mesh: Text-Driven Neural Stylization for Meshes

Oscar Michel1* Roi Bar-On1,2* Richard Liu1* Sagie Benaim2 Rana Hanocka1

1University of Chicago 2Tel Aviv University

Iron Man Brick Lamp Colorful Crochet Candle Astronaut Horse
Figure 1. Text2Mesh produces color and geometric details over a variety of source meshes, driven by a target text prompt. Our stylization

results coherently blend unique and ostensibly unrelated combinations of text, capturing both global semantics and part-aware attributes.

Abstract

In this work, we develop intuitive controls for edit-

ing the style of 3D objects. Our framework, Text2Mesh,

stylizes a 3D mesh by predicting color and local geo-

metric details which conform to a target text prompt.

We consider a disentangled representation of a 3D ob-

ject using a fixed mesh input (content) coupled with a

learned neural network, which we term a neural style

field network (NSF). In order to modify style, we ob-

tain a similarity score between a text prompt (describ-

ing style) and a stylized mesh by harnessing the rep-

resentational power of CLIP. Text2Mesh requires nei-

ther a pre-trained generative model nor a specialized

3D mesh dataset. It can handle low-quality meshes

(non-manifold, boundaries, etc.) with arbitrary genus,

and does not require UV parameterization. We demon-

strate the ability of our technique to synthesize a myr-

iad of styles over a wide variety of 3D meshes. Our

code and results are available in our project webpage:

https://threedle.github.io/text2mesh/.

1. Introduction

Editing visual data to conform to a desired style, while

preserving the underlying content, is a longstanding objec-

tive in computer graphics and vision [14,21,23,24,30]. Key

challenges include proper formulation of content, style, and

the constituents for representing and modifying them.

To edit the style of a 3D object, we adapt a formulation of

geometric content and stylistic appearance commonly used

in computer graphics pipelines [2]. We consider content as

the global structure prescribed by a 3D mesh, which defines

the overall shape surface and topology. We consider style as

the object’s particular appearance or affect, as determined

by its color and fine-grained (local) geometric details. We

propose expressing the desired style through natural lan-

guage (a text prompt), similar to how a commissioned artist

is provided a verbal or textual description of the desired

work. This is facilitated by recent developments in joint

embeddings of text and images with CLIP [44]. A natural

cue for modifying the appearance of 3D shapes is through

2D projections, as they correspond with how humans and

machines perceive 3D geometry. We use a neural network

to synthesize color and local geometric details over the 3D

input shape, which we refer to as a neural style field (NSF).

The weights of the NSF network are optimized such that the

resulting 3D stylized mesh adheres to the style described

by text. In particular, our neural optimization is guided by

multiple 2D (CLIP-embedded) views of the stylized mesh

matching our target text. Results of our technique, called

Text2Mesh, are shown in Fig. 1. Our method produces dif-

ferent colors and local deformations for the same 3D mesh

content to match the specified text. Moreover, Text2Mesh

produces structured textures that are aligned with salient

features (e.g. bricks in Fig. 2), without needing to esti-

mate sharp 3D curves or a mesh parameterization [33, 52].

Our method also demonstrates global understanding; e.g.

in Fig. 3 human body parts are stylized in accordance with

their semantic role. We use the weights of the NSF net-

work to encode a stylization (e.g. color and displacements)

over the explicit mesh surface. Meshes faithfully portray 3D

shapes and can accurately represent sharp, extrinsic features

13492

https://threedle.github.io/text2mesh/

Cactus Bark Brick Wood

Stained Glass

Chainmail

Fur

Wicker

Burgundy Crochet

Colorful Crochet Colorful Doily Cactus Embroidered

Wood

Beaded

Wicker

Chainmail

Bark

Robot Poncho Metal Scales Wood

Cactus

Beaded

Spotted Fur

Embroidered

Wicker

Figure 2. Given a source mesh (gray), our method produces stylized meshes (containing color and local geometric displacements) which

conform to various target texts. Insets show a close up of the stylization (with color), and the underlying geometry produced by the

deformation component (without color). Insets of the source mesh are also shown on the left most column.

using a high level of detail. Our neural style field is comple-

mentary to the mesh content, and appends colors and small

displacements to the input mesh. Specifically, our neural

style field network maps points on the mesh surface to style

attributes (i.e., RGB colors and displacements).

We guide the NSF network by rendering the stylized 3D

mesh from multiple 2D views and measuring the similar-

ity of those views against the target text, using CLIP’s em-

bedding space. However, a straightforward optimization of

the 3D stylized mesh which maximizes the CLIP similar-

ity score converges to a degenerate (i.e. noisy) solution (see

Fig. 5). Specifically, we observe that the joint text-image

embedding space contains an abundance of false positives,

where a valid target text and a degenerate image (i.e. noise,

artifacts) result in a high similarity score. Therefore, em-

ploying CLIP for stylization requires careful regularization.

We leverage multiple priors to effectively guide our NSF

network. The 3D mesh input acts as a geometric prior

that imposes global shape structure, as well as local details

that indicate the appropriate position for stylization. The

weights of the NSF network act as a neural prior (i.e. reg-

ularization technique), which tends to favor smooth solu-

tions [19, 46, 58]. In order to produce accurate styles which

contain high-frequency content with high fidelity, we use

a frequency-based positional encoding [56]. We garner a

strong signal about the quality of the neural style field by

rendering the stylized mesh from multiple 2D views and

then applying 2D augmentations. This results in a system

which can effectively avoid degenerate solutions, while still

maintaining high-fidelity results.

The focus of our work is text-driven stylization, since

text is easily modifiable and can effectively express com-

plex concepts related to style. Text prescribes an abstract

notion of style, allowing the network to produce different

13493

Input Steve Jobs Yeti Astronaut Buzz Lightyear Ninja Lawyer Messi Batman Hulk

Figure 3. Given the same input bare mesh, our neural style field network produces deformations for outerwear of various types (capturing

fine details such as creases in clothing and complementary accessories), and distinct features such as muscle and hair. The synthesized

colors consider both local geometric details and global part-aware semantics. Insets of the source mesh are shown in the top row and insets

of the stylized output are shown in the middle (uncolored) and bottom (colored) rows.

valid stylizations which still adhere to the text. Beyond text,

our framework extends to additional target modalities, such

as images, 3D meshes, or even cross-modal combinations.

In summary, we present a technique for the semantic ma-

nipulation of style for 3D meshes, harnessing the represen-

tational power of CLIP. Our system combines the advan-

tages of explicit mesh surfaces and the generality of neural

fields to facilitate intuitive control for stylizing 3D shapes.

A notable advantage of our framework is its ability to han-

dle low-quality meshes (e.g., non-manifold) with arbitrary

genus. We show that Text2Mesh can stylize a variety of 3D

shapes with many different target styles.

2. Related Work

Text-Driven Manipulation. Our work is similar in spirit

to image manipulation techniques controlled through tex-

tual descriptions embedded by CLIP [44]. CLIP learns a

joint embedding space for images and text. StyleCLIP [43]

perform CLIP-guided image editing using a pre-trained

StyleGAN [26, 27]. VQGAN-CLIP [9, 10, 45] leverage

CLIP for text-guided image generation. Concurrent work

uses CLIP to fine-tune a pre-trained StyleGAN [12], and

for image stylization [6]. Another concurrent work uses the

ShapeNet dataset [5] and CLIP to perform unconditional

3D voxel generation [48]. The above techniques leverage a

pre-trained generative network or a dataset to avoid the de-

generate solutions common when using CLIP for synthesis.

The first to leverage CLIP for synthesis without the need for

a pre-trained network or dataset is CLIPDraw [11]. CLIP-

Draw generates text-guided 2D vector graphics, which con-

veys a type of drawing style through vector strokes. Con-

current work [25] uses CLIP to optimize over parameters

of the SMPL human body model to create digital creatures.

Prior to CLIP, text-driven control for deforming 3D shapes

was explored [67, 68] using specialized 3D datasets.

Geometric Style Transfer in 3D. Some approaches ana-

lyze 3D shapes and identify similarly shaped geometric el-

ements and parts which differ in style [22, 32, 37, 61, 66].

Others transfer geometric style based on content/style sep-

aration [4, 8, 49, 63]. Other approaches are specific to cate-

gories of furniture [38], 3D collages [13], LEGO [31], and

portraits [16]. 3DStyleNet [64] edits shape content with a

part-aware low-frequency deformation and synthesizes col-

ors in a texture map, guided by a target mesh. Mesh Ren-

derer [28] changes color and geometry driven by a target

image. Liu et al. [36] stylize a 3D shape by adding geo-

metric detail (without color), and ALIGNet [17] deforms a

template shape to a target one. The above methods rely on

3D datasets, while other techniques use a single mesh ex-

emplar for synthesizing geometric textures [20] or produc-

ing mesh refinements [35]. Shapes can be edited to contain

cubic stylization [34], or stripe patterns [29]. Unlike these

methods, we consider a wide range of styles, guided by an

intuitive and compact (text) specification.

Texture Transfer in 3D. Aspects of a 3D mesh style can

be controlled by texturing a surface through mesh parame-

terization [15, 33, 52, 55]. However, most parameterization

approaches place strict requirements on the quality of the

input mesh (e.g., a manifold, non-intersecting, and low/zero

genus), which do not hold for most meshes in the wild [51].

We avoid parameterization altogether and opt to modify ap-

pearance using a neural field which provides a style value

13494

Mesh

donut with

sprinkles

Text Prompt

Input

x, y, z
Vertex

Coordinates P
o

si
ti

o
n

a
l

E
n

co
d

in
g

Nc

Nd

Ns

Neural Style

+

Stylized

Mesh

Differentiable

Renderer

2
D

 A
u

g
m

e
n

ta
ti

o
n

s

Semantic Loss

d

Displacement

r, g, b
Color

Figure 4. Text2Mesh modifies an input mesh to conform to the

target text by predicting color and geometric details. The weights

of the neural style network are optimized by rendering multiple

2D images and applying 2D augmentations, which are given a

similarity score to the target from the CLIP-based semantic loss.

(i.e., an RGB value and a displacement) for every vertex on

the mesh. Recent work explored a neural representation of

texture [41], here we consider both color and local geome-

try changes for the manipulation of style.

Neural Priors and Neural Fields. A recent line of work

leverages the inductive bias of neural networks for tasks

such as image denoising [58], surface reconstruction [18,

19], point cloud consolidation [39], image synthesis, and

editing [50, 53, 70]. Our framework leverages the induc-

tive bias of neural networks to act as a prior which guides

Text2Mesh away from degenerate solutions present in the

CLIP embedding space. Specifically, our stylization net-

work acts as a neural prior, which leverages positional en-

coding [56] to synthesize fine-grained stylization details.

NeRF [40] and follow ups [42,65,69] have demonstrated

success on 3D scene modeling. They leverage a neural field

to represent 3D objects using network weights. However,

neural fields entangle geometry and appearance, which lim-

its separable control of content and style. They struggle to

accurately portray sharp features, are slow to render, and

difficult to edit. Thus, several techniques were proposed

enabling ease of control [62], and introducing acceleration

strategies [47]. Instead, we use a disentangled representa-

tion of a 3D object using an explicit mesh shape represen-

tation and a neural style field which controls appearance.

This avoids parametrization, and can be used to manipulate

appearance and generate high resolution outputs.

3. Method

An illustration of our method is provided in Fig. 4. As an

overview, the 3D object content is defined by an input mesh

M with vertices V ∈ R
n×3 and faces F ∈ {1, . . . , n}m×3,

and is fixed throughout training. The object’s style (color

and local geometry) is modified to conform to a target text

prompt t, resulting in a stylized mesh MS . The NSF learns

to map points on the mesh surface p ∈ V to an RGB color

and displacement along the normal direction. We render

MS from multiple views and apply 2D augmentations that

are embedded using CLIP. The CLIP similarity between the

rendered and augmented images and the target text is used

as a signal to update the neural network weights.

3.1. Neural Style Field Network

Our NSF network predicts a style attribute for every ver-

tex, resulting in a style field defined over the entire shape

surface. Our style field is encoded by an MLP, which maps

a point p ∈ V on the mesh M to a color and displacement

along the surface normal (cp, dp) ∈ (R3,R). This formu-

lation tightly couples the style field to the source mesh, en-

abling local geometric modifications.

In practice, we treat the given vertices of M as query

points into this field, and use a differentiable renderer to vi-

sualize the style over the given triangulation. Increasing the

number of triangles in M for learning a higher resolution

neural field is trivial, e.g., by inserting a degree 3 vertex

(see Supplementary B). Even using a standard GPU (11GB

of VRAM) our method handles meshes with up to 180K tri-

angles. We are able to render stylized objects using very

high resolutions, as shown in Supplementary B.

full −net −aug −FFN−crop−displ −3D

0.36 0.26 0.20 0.26 0.30 0.29 0.29

Figure 5. Ablation on the priors used in our method (full) for a

candle mesh and target ‘Candle made of bark’: w/o our style field

network (−net), w/o 2D augmentations (−aug), w/o positional

encoding (−FFN), w/o crop augmentations for ψlocal (−crop),

w/o the geometry-only component of Lsim (−displ), and learning

over a 2D plane in 3D space (−3D). We show the CLIP score

(sim(Ŝfull, φtarget)); see Sec. 3 for more details.

Since our NSF uses low-dimensional coordinates as

input to an MLP, this exhibits a spectral bias [46] to-

ward smooth solutions (e.g. see Fig. 5). To synthesize

high-frequency details, we apply a positional encoding

using Fourier feature mappings, which enables MLPs to

overcome the spectral bias and learn to interpolate high-

frequency functions [56]. For every point p its positional

13495

encoding γ(p) is given by:

γ (p) = [cos (2πBp) , sin (2πBp)]
T

(1)

where B ∈ R
n×3 is a random Gaussian matrix where each

entry is randomly drawn from N
(

0, σ2
)

. The value of σ is

chosen as a hyperparameter which controls the frequency of

the learned style function. We show in Sec. 4.1 that this al-

lows for user control over the frequency of the output style.

First, we normalize the coordinates p ∈ V to lie inside a

unit bounding box. Then, the per-vertex positional encod-

ing features γ(p) are passed as input to an MLP Ns, which

then branches out to MLPs Nd and Nc. Specifically, the

output of Nc is a color cp ∈ [0, 1]3, and the output of Nd

is a displacement along the vertex normal dp. To prevent

content-altering displacements, we constrain dp to be in the

range (−0.1, 0.1). To obtain our stylized mesh prediction

MS , every point p is displaced by dp · n⃗p and colored by

cp. Vertex colors propagate over the entire mesh surface us-

ing an interpolation-based differentiable renderer [7]. Dur-

ing training we also consider the displacement-only mesh

MS
displ, which is the same as MS without the predicted ver-

tex colors (replaced by gray). Without the use of MS
displ in

our final loss formulation (Eq. (5)), the learned geometric

style is noisier (−displ ablation in Fig. 5).

3.2. Textbased correspondence

Our neural optimization is guided by the multi-modal

embedding space encoded by a pre-trained CLIP [44]

model. Given the stylized meshMS and the displaced mesh

MS
displ, we sample nθ views around a pre-defined anchor

view and render them using a differentiable renderer. For

each view, θ, we render two 2D projections of the surface,

I full
θ for MS and I

displ

θ for MS
displ. Next, we draw a 2D aug-

mentation ψglobal ∈ Ψglobal and ψlocal ∈ Ψlocal (details in

Sec. 3.3). We apply ψglobal, ψlocal to the full view and ψlocal

to the uncolored view, and embed them into CLIP space.

Finally, we average the embeddings across all views:

Ŝfull =
1

nθ

∑

θ

E
(

ψglobal

(

I full
θ

))

∈ R
512, (2)

Ŝlocal =
1

nθ

∑

θ

E
(

ψlocal

(

I full
θ

))

∈ R
512, (3)

Ŝdispl =
1

nθ

∑

θ

E
(

ψlocal(I
displ

θ

)

) ∈ R
512. (4)

That is, we consider an augmented representation of our in-

put mesh as the average of its encoding from multiple aug-

mented views. The target t is similarly embedded through

CLIP by ϕtarget = E (t) ∈ R
512. Our loss is then:

Lsim =
∑

Ŝ

sim
(

Ŝ, ϕtarget

)

(5)

where Ŝ ∈ {Ŝfull, Ŝdispl, Ŝlocal} and sim (a, b) = a·b
|a|·|b| is the

cosine similarity between a and b. We repeat the above with

new sampled augmentations naug times for each iteration.

We note that the terms using Ŝfull and Ŝlocal update Ns, Nc

and Nd while the term using Ŝdispl only updates Ns and

Nd. The separation into a geometry-only loss and geometry-

and-color loss serves to encourage meaningful changes in

geometry (−displ in Fig. 5).

3.3. Viewpoints and Augmentations

Given an input 3D mesh and target text, we first find an

anchor view. We render the 3D mesh at uniform intervals

around a sphere and obtain the CLIP similarity for each

view and target text. We select the view with the highest

(i.e. best) CLIP similarity as the anchor view. Often there

are multiple high-scoring views around the object, and us-

ing any of them as the anchor will produce an effective and

meaningful stylization. See Supplementary C for details.

We render multiple views of the object from ran-

domly sampled views using a Gaussian distribution cen-

tered around the anchor view (with σ = π/4). We average

over the CLIP-embedded views prior to feeding them into

our loss, which encourages the network to leverage view

consistency. For all our experiments, nθ = 5 (number of

sampled views). We show in Supplementary C that setting

nθ beyond 5 does not meaningfully impact the results.

‘Donkey wearing jeans’

Figure 6. Our neural texture field stylizes the entire 3D shape.

The 2D augmentations generated using ψglobal and ψlocal

are critical for avoiding degenerate solutions (see Sec. 4.2).

ψglobal involves a random perspective transformation and

ψlocal generates both a random perspective and a random

crop that is 10% of the original image. Cropping allows

the network to focus on localized regions when making fine

grained updates to the surface geometry and color. (-crop in

Fig. 5). Additional details are given in Supplementary D.

4. Experiments

We examine our method across a diverse set of input

source meshes and target text prompts. We consider a va-

riety of sources including: COSEG [54], Thingi10K [71],

Shapenet [5], Turbo Squid [57], and ModelNet [59]. Our

method requires no particular quality constraints or prepro-

cessing of inputs, and the breadth of shapes we stylize in

this paper and in our project webpage illustrates its ability to

13496

handle low-quality meshes. Meshes used in the main paper

and the project webpage contain an average of 79,366 faces,

16% non-manifold edges, 0.2% non-manifold vertices, and

12% boundaries. Our method takes less than 25 minutes

to train on a single GPU, and high quality results usually

appear in less than 10 minutes.

In Sec. 4.1, we demonstrate the multiple control mech-

anisms enabled by our method. In Sec. 4.2, we conduct

a series of ablations on the key priors in our method. We

further explore the synergy between learning color and ge-

ometry in tandem. We introduce a user study in Sec. 4.3

where our stylization is compared to a baseline method. In

Sec. 4.4, we show that our method can easily generalize to

other target modalities beyond text, such as images or 3D

shapes. Finally, we discuss limitations in Sec. 4.6.

4.1. Neural Stylization and Controls

Our method generates details with high granularity while

still maintaining global semantics and preserving the under-

lying content. For example in Fig. 2, given a vase mesh

and target text ‘colorful crochet’, the stylized output in-

cludes knit patterns with different colors, while preserving

the structure of the vase. In Fig. 3, our method demonstrates

a global semantic understanding of humans. Different body

parts such legs, head and muscles are stylized appropriately

in accordance with their semantic role, and these styles are

blended seamlessly across the surface to form a cohesive

texture. Moreover, our neural style field network generates

structured textures which are aligned to sharp curves and

features (see bricks in Figs. 1 and 2 and in the project web-

page). We show in Fig. 6 and in the project webpage that

our method styles the entire mesh in a consistent manner

that is part-aware and exhibits natural variation in texture.

σ = 3 σ = 5 σ = 8

‘Stained glass donut’

Figure 7. Increasing the range of input frequencies in the posi-

tional encoding using increasing SD σ for matrix B in Eq. (1).

Fine Grained Controls. Our network leverages a posi-

tional encoding which enables direct control over the en-

coding frequency through the σ term of the B matrix in

Eq. (1). In Fig. 7, we show the results of three different

frequency values when stylizing a source mesh of a torus

with the target text ‘stained glass donut’. Increasing the fre-

quency value increases the frequency of style details on the

mesh and encourages sharper geometric detail. Our method

can also synthesize consistent styles of varying levels of

specificity. Fig. 8 displays styles of increasing detail and

(a) (b) (c) (d)

Figure 8. Increasing the target text prompt granularity for a source

mesh of a lamp and iron. Top row targets: (a). ‘Lamp’, (b). ‘Luxo

lamp’, (c). ‘Blue steel luxo lamp’, (d). ‘Blue steel luxo lamp with

corrugated metal. Bottom row targets: (a). ‘Clothes iron’, (b).

‘Clothes iron made of crochet’, (c). ‘Golden clothes iron made of

crochet’, (d). ‘Shiny golden clothes iron made of crochet’.

specificity for two input shapes. Note the retention of the

style details from each level of target granularity to the next.

Though the primary mode of style control is through the

text target, we explore how the network adapts to the source

shape geometry. In Fig. 10, the target text prompt is fixed

to ‘cactus’. We consider different input source spheres with

increasing protrusion frequency. Observe that both the fre-

quency and structure of the generated style fits to the pre-

existing structure of the input surface. Thus our method can

preserve the content of the input mesh without compromis-

ing the quality of the stylization.

Our ability to modify style while preserving the input

mesh enables morphing [3] (see Fig. 9). To morph between

two stylizations, we apply linear interpolation between the

style values of every point on the mesh.

Figure 9. Morphing between two different stylizations (geometry

and color). Left: ‘wooden chair’, right: ‘colorful crochet chair’.

4.2. Text2Mesh Priors

Our method incorporates a number of priors that allow us

to perform stylization without a pre-trained GAN. We show

an ablation for each prior in Fig. 5. Removing the style field

network (−net), and instead directly optimizing the vertex

colors and displacements, results in noisy and arbitrary dis-

placements over the surface. In [11] random 2D augmen-

tations are necessary to generate meaningful CLIP-guided

drawings. Similarly in our method, removing 2D augmenta-

tions results in a stylization completely unrelated to the tar-

get text prompt. Without Fourier feature encoding (−FFN),

the generated style loses all fine-grained details. Without

the cropping augmentation (−crop), the output is similarly

13497

unable to synthesize fine-grained style details. Removing

the geometry-only component of Lsim (−displ) hinders ge-

ometric refinement, and the network instead compensates

by simulating geometry through shading (see also Fig. 11).

Without a meaningful geometric prior (−3D) offered by a

source mesh, the 2D plane mesh is treated as an image can-

vas. For each result in Fig. 5, we report the CLIP similarity

score, sim(Ŝfull, ϕtarget), as defined in Sec. 3. We obtain

the highest score across different ablations, see Fig. 5. Ide-

ally, visual quality and CLIP score would be directly corre-

lated. However, -3D obtains a high CLIP similarity, despite

having no relation to the target content. This establishes the

importance of the geometric prior in steering our method

away from potential degenerate solutions.

Figure 10. Texturing input source spheres (yellow) with protru-

sions of increasing frequency and with a fixed target of a ‘Cactus’.

As can be seen, the final style frequency increases accordingly.

Interplay of Geometry and Color. Our method utilizes

the interplay between geometry and color for effective styl-

ization, as shown in Fig. 11. Learning to predict only geo-

metric manipulations produces inferior geometry compared

to learning geometry and color together, as the network at-

tempts to simulate shading by generating displacements for

self-shadowing. For example in “Batman” in Fig. 3 the bat

symbol on the chest is the result of a deep concavity formed

through displacements alone. Similarly learning to predict

only color results in the network attempting to hallucinate

geometric detail through shading, leading to a flat and un-

realistic texture that nonetheless is capable of achieving a

relatively high CLIP score when projected to 2D. Fig. 11 il-

lustrates this adversarial solution, where the “Color” mode

achieves a similar CLIP score as our “Full” method.

4.3. Stylization Fidelity

Our method performs the task of general text-driven styl-

ization of meshes. Given that no approaches exist for this

task, we evaluate our method’s performance by extending

VQGAN-CLIP [9]. This baseline synthesizes color inside a

binary 2D mask projected from the 3D source shape (with-

out 3D deformations) guided by CLIP. Further, the baseline

is initialized with a rendered view of the 3D source. We

conduct a user study to evaluate the perceived quality of

the generated outputs, the degree to which they preserve the

source content, and how well they match the target style.

‘Alien made of bark’

Full Geometry Color

0.322 0.250 0.320
Figure 11. Interplay between geometry and color for stylization.

Full - our method, Color - only color changes, and Geometry -

only geometric changes. We also display the CLIP similarity.

(Q1): Overall (Q2): Content (Q3): Style

VQGAN 2.83 (±0.39) 3.60 (±0.68) 2.59 (±0.44)

Ours 3.90 (±0.37) 4.04 (±0.53) 3.91 (±0.51)

Table 1. Mean opinion scores (1-5) for Q1-Q3 (see Sec. 4.3), for

our method and baseline (control score: 1.16).

We had 57 users evaluate 8 random source meshes and

style text prompt combinations. For each combination, we

display the target text and the stylized output in pairs. The

users are then asked to assign a score (1-5) to three factors:

(Q1) “How natural is the output depiction of {content} +

{style}?” (Q2) “How well does the output match the origi-

nal {content}?” (Q3) “How well does the output match the

target {style}?”. We report mean opinion scores (MOS)

with standard deviations for each factor averaged across all

style outputs for our method and the baseline in Tab. 1. Our

method outperforms the VQGAN baseline across all ques-

tions, with a difference of 1.07, 0.44, and 1.32 for Q1-Q3,

respectively. Though VQGAN is somewhat effective at rep-

resenting the natural content, it struggles to synthesize these

representations with style in a meaningful way. Examples

of our baseline outputs are provided in Supplementary E.

Visual examples of generated styles and screenshots of the

user study are also discussed in Supplementary E.

Figure 12. Stylization driven by an image target. Our method can

stylize meshes using an image to describe the desired style.

13498

4.4. Beyond Textual Stylization

Beyond text-based stylization, our method can stylize

meshes toward different target modalities such as a 2D im-

age or even a 3D object. For a target 2D image It, ϕtarget
in Eq. (5), represents the image-based CLIP embedding of

It. For a target mesh T , ϕtarget is the average embedding in

CLIP space of the 2D renderings of T , with equivalent view

samples as those for the source mesh. Furthermore, we can

combine targets across different modalities by simply sum-

ming Lsim over each target. In Fig. 12 we consider a source

pig mesh with different image targets. In Fig. 13(a-b), we

consider stylization using a target mesh and in Fig. 13(c-d),

we combine both a target mesh and target text. Our method

successfully adheres to the target style.

(a) (b) Target 1 (c) (d) Target 2

Figure 13. Neural stylization driven by mesh targets. (a) & (c) are

styled using Targets 1 & 2, respectively. (b) & (d) are styled with

text in addition to the mesh targets: (b) ‘a cactus that looks like a

cow’, (d) ‘a mouse that looks like a duck’.

Input No Symmetry Prior Symmetry Prior

Figure 14. Effect of the symmetry prior on a UFO mesh input with

text prompt: ‘colorful UFO’.

4.5. Incorporating Symmetries

We can make use of shape symmetry priors to enforce

style consistency across the axis of symmetry. Such sym-

metries can be introduced into our model by modifying the

input to our positional encoding in Eq. (1). For instance,

given a point p = (x, y, z) and a shape with bilateral sym-

metry across the X-Y plane, one can apply a function prior

to the the positional encoding such that γ(x, y, |z|). We

show the effect of this symmetry prior on a UFO mesh in

Fig. 14. This prior is effective even when the triangulation

is not perfectly symmetrical. A full investigation into incor-

porating additional symmetries within positional encoding

is an interesting direction for future work.

4.6. Limitations

Our method implicitly assumes a synergy between the

input 3D geometry and the target style prompt (see Fig. 15).

However, stylizing a 3D mesh (e.g., dragon) towards an

unrelated/unnatural prompt (e.g., stained glass) may result

in a stylization that ignores the geometric prior and effec-

tively erases the source shape content. Therefore, in order

‘Stained glass’
‘Stained glass

dragon’ ‘Candy’
‘Candy

Aramdillo’
Figure 15. Geometric content and target style synergy. If the tar-

get style is unrelated to the 3D mesh content, the stylization may

ignore the 3D content. Results are improved when including the

content in the target text prompt.

to preserve the original content when editing towards a mis-

matched target prompt, we simply include the object cate-

gory in the text prompt (e.g., stained glass dragon) which

adds a content preservation constraint into the target.

5. Conclusion

We present a novel framework for stylizing input meshes

given a target text prompt. Our framework learns to predict

colors and local geometric details using a neural styliza-

tion network. It can predict structured textures (e.g. bricks),

without a directional field or mesh parameterization. Tra-

ditionally, the texture structure over 3D surfaces has been

guided by 3D shape analysis techniques (as in [60]). In this

work, the texture structure is driven by rendered images,

which is how they are perceived in the real world.

Without relying on a pre-trained GAN network or a 3D

dataset, we are able to manipulate a myriad of meshes to

adhere to a wide variety of styles. Our system is capable

of generating out-of-domain stylized outputs, e.g., a stained

glass shoe or a cactus vase (Fig. 2). Our framework uses

a pre-trained CLIP [44] model, which has been shown to

contain bias [1]. We postulate that our proposed method can

be used to visualize, understand, and interpret such model

biases in a more direct and transparent way.

As future work, our framework could be used to manipu-

late 3D content as well. Instead of modifying a given input

mesh while preserving its topology, one could learn to gen-

erate meshes from scratch driven by a text prompt. More-

over, our NSF is tailored to a single 3D mesh. It may be

possible to train a network to stylize a collection of meshes

towards a target style in a feed-forward manner.

6. Acknowledgements

We thank Greg Shakhnarovich, Haochen Wang, Hsueh-

Ti Derek Liu and Xiaodan Du for their comments. We thank

Vincent LaGrassa for help with figures. Finally, we thank

the rest of the 3DL lab for their invaluable feedback and

support.

References

[1] Sandhini Agarwal, Gretchen Krueger, Jack Clark, Alec Rad-

ford, Jong Wook Kim, and Miles Brundage. Evaluating

13499

clip: towards characterization of broader capabilities and

downstream implications. arXiv preprint arXiv:2108.02818,

2021.

[2] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman.

Real-Time Rendering, Fourth Edition. A. K. Peters, Ltd.,

USA, 4th edition, 2018.

[3] Marc Alexa. Recent advances in mesh morphing. In Com-

puter graphics forum, volume 21, pages 173–198. Wiley On-

line Library, 2002.

[4] Xu Cao, Weimin Wang, Katashi Nagao, and Ryosuke Naka-

mura. Psnet: A style transfer network for point cloud

stylization on geometry and color. In Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer

Vision, pages 3337–3345, 2020.

[5] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:

An information-rich 3d model repository. arXiv preprint

arXiv:1512.03012, 2015.

[6] Hila Chefer, Sagie Benaim, Roni Paiss, and Lior Wolf.

Image-based clip-guided essence transfer. arXiv preprint

arXiv:2110.12427, 2021.

[7] Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith,

Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler. Learn-

ing to predict 3d objects with an interpolation-based differ-

entiable renderer. Advances in Neural Information Process-

ing Systems, 32:9609–9619, 2019.

[8] Zhiqin Chen, Vladimir G Kim, Matthew Fisher, Noam

Aigerman, Hao Zhang, and Siddhartha Chaudhuri. Decor-

gan: 3d shape detailization by conditional refinement. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 15740–15749, 2021.

[9] Katherine Crowson. Notebook to generate im-

ages from text phrases with vqgan and clip, 2021.

https://github.com/justinjohn0306/VQGAN-CLIP.

[10] Patrick Esser, Robin Rombach, and Björn Ommer. Taming

transformers for high-resolution image synthesis, 2020.

[11] Kevin Frans, Lisa B. Soros, and Olaf Witkowski. Clipdraw:

Exploring text-to-drawing synthesis through language-image

encoders. CoRR, abs/2106.14843, 2021.

[12] Rinon Gal, Or Patashnik, Haggai Maron, Gal Chechik,

and Daniel Cohen-Or. Stylegan-nada: Clip-guided do-

main adaptation of image generators. arXiv preprint

arXiv:2108.00946, 2021.

[13] Ran Gal, Olga Sorkine, Tiberiu Popa, Alla Sheffer, and

Daniel Cohen-Or. 3d collage: expressive non-realistic mod-

eling. In Proceedings of the 5th international symposium

on Non-photorealistic animation and rendering, pages 7–14,

2007.

[14] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-

age style transfer using convolutional neural networks. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 2414–2423, 2016.

[15] Mark Gillespie, Boris Springborn, and Keenan Crane. Dis-

crete conformal equivalence of polyhedral surfaces. ACM

Transactions on Graphics (TOG), 40(4):1–20, 2021.

[16] Fangzhou Han, Shuquan Ye, Mingming He, Menglei Chai,

and Jing Liao. Exemplar-based 3d portrait stylization. arXiv

preprint arXiv:2104.14559, 2021.

[17] Rana Hanocka, Noa Fish, Zhenhua Wang, Raja Giryes,

Shachar Fleishman, and Daniel Cohen-Or. Alignet: partial-

shape agnostic alignment via unsupervised learning. ACM

Transactions on Graphics (TOG), 38(1):1, 2018.

[18] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar

Fleishman, and Daniel Cohen-Or. Meshcnn: a network with

an edge. ACM Transactions on Graphics (TOG), 38(4):1–12,

2019.

[19] Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-

Or. Point2mesh: A self-prior for deformable meshes. arXiv

preprint arXiv:2005.11084, 2020.

[20] Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel Cohen-

Or. Deep geometric texture synthesis. ACM Transactions on

Graphics (TOG), 39(4):108–1, 2020.

[21] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian

Curless, and David H. Salesin. Image analogies. In Proceed-

ings of the 28th Annual Conference on Computer Graphics

and Interactive Techniques, New York, NY, USA, 2001. As-

sociation for Computing Machinery.

[22] Ruizhen Hu, Wenchao Li, Oliver Van Kaick, Hui Huang,

Melinos Averkiou, Daniel Cohen-Or, and Hao Zhang. Co-

locating style-defining elements on 3d shapes. ACM Trans-

actions on Graphics (TOG), 36(3):1–15, 2017.

[23] X. Huang and S. Belongie. Arbitrary style transfer in real-

time with adaptive instance normalization. In 2017 IEEE In-

ternational Conference on Computer Vision (ICCV), Venice,

Italy., pages 1510–1519, 2017.

[24] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-image translation with conditional adver-

sarial networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1125–1134,

2017.

[25] Nikolay Jetchev. Clipmatrix: Text-controlled creation of 3d

textured meshes. arXiv preprint arXiv:2109.12922, 2021.

[26] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 4401–4410, 2019.

[27] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,

Jaakko Lehtinen, and Timo Aila. Analyzing and improv-

ing the image quality of stylegan. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 8110–8119, 2020.

[28] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-

ral 3d mesh renderer. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 3907–

3916, 2018.

[29] Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter

Schröder. Stripe patterns on surfaces. ACM Transactions

on Graphics (TOG), 34(4):1–11, 2015.

[30] Nicholas Kolkin, Jason Salavon, and Gregory

Shakhnarovich. Style transfer by relaxed optimal transport

and self-similarity. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

10051–10060, 2019.

13500

[31] Kyle Lennon, Katharina Fransen, Alexander O’Brien, Yu-

meng Cao, Matthew Beveridge, Yamin Arefeen, Nikhil

Singh, and Iddo Drori. Image2lego: Customized lego set

generation from images, 2021.

[32] Honghua Li, Hao Zhang, Yanzhen Wang, Junjie Cao, Ariel

Shamir, and Daniel Cohen-Or. Curve style analysis in a set

of shapes. In Computer Graphics Forum, volume 32, pages

77–88. Wiley Online Library, 2013.

[33] Minchen Li, Danny M. Kaufman, Vladimir G. Kim, Justin

Solomon, and Alla Sheffer. Optcuts: Joint optimization of

surface cuts and parameterization. ACM Transactions on

Graphics, 37(6), 2018.

[34] Hsueh-Ti Derek Liu and Alec Jacobson. Cubic stylization.

arXiv preprint arXiv:1910.02926, 2019.

[35] Hsueh-Ti Derek Liu, Vladimir G Kim, Siddhartha Chaud-

huri, Noam Aigerman, and Alec Jacobson. Neural subdivi-

sion. ACM Transactions on Graphics (TOG), 39(4):124–1,

2020.

[36] Hsueh-Ti Derek Liu, Michael Tao, and Alec Jacobson. Pa-

parazzi: surface editing by way of multi-view image process-

ing. ACM Trans. Graph., 37(6):221–1, 2018.

[37] Zhaoliang Lun, Evangelos Kalogerakis, and Alla Sheffer. El-

ements of style: learning perceptual shape style similarity.

ACM Transactions on graphics (TOG), 34(4):1–14, 2015.

[38] Zhaoliang Lun, Evangelos Kalogerakis, Rui Wang, and Alla

Sheffer. Functionality preserving shape style transfer. ACM

Transactions on Graphics (TOG), 35(6):1–14, 2016.

[39] Gal Metzer, Rana Hanocka, Raja Giryes, and Daniel Cohen-

Or. Self-sampling for neural point cloud consolidation. ACM

Transactions on Graphics (TOG), 40(5):1–14, 2021.

[40] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view syn-

thesis. In European conference on computer vision, pages

405–421. Springer, 2020.

[41] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo

Strauss, and Andreas Geiger. Texture fields: Learning tex-

ture representations in function space. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,

pages 4531–4540, 2019.

[42] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien

Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo

Martin-Brualla. Deformable neural radiance fields. arXiv

preprint arXiv:2011.12948, 2020.

[43] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or,

and Dani Lischinski. Styleclip: Text-driven manipulation of

stylegan imagery, 2021.

[44] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,

Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-

ing transferable visual models from natural language super-

vision. arXiv preprint arXiv:2103.00020, 2021.

[45] Alec Radford, Ilya Sutskever, Jong Wook Kim, Gretchen

Krueger, and Sandhini Agarwal. Clip: Connecting text and

images, 2021.

[46] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix

Draxler, Min Lin, Fred A. Hamprecht, Yoshua Bengio, and

Aaron Courville. On the spectral bias of neural networks,

2019.

[47] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas

Geiger. Kilonerf: Speeding up neural radiance fields with

thousands of tiny mlps, 2021.

[48] Aditya Sanghi, Hang Chu, Joseph G Lambourne, Ye Wang,

Chin-Yi Cheng, and Marco Fumero. Clip-forge: To-

wards zero-shot text-to-shape generation. arXiv preprint

arXiv:2110.02624, 2021.

[49] Mattia Segu, Margarita Grinvald, Roland Siegwart, and Fed-

erico Tombari. 3dsnet: Unsupervised shape-to-shape 3d

style transfer. arXiv preprint arXiv:2011.13388, 2020.

[50] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Sin-

gan: Learning a generative model from a single natural im-

age. In Proceedings of the IEEE/CVF International Confer-

ence on Computer Vision, pages 4570–4580, 2019.

[51] Nicholas Sharp. Intrinsic Triangulations in Geometry Pro-

cessing. PhD thesis, Carnegie Mellon University, August

2021.

[52] Nicholas Sharp and Keenan Crane. Variational surface cut-

ting. ACM Transactions on Graphics (TOG), 37(4):1–13,

2018.

[53] Assaf Shocher, Shai Bagon, Phillip Isola, and Michal Irani.

Ingan: Capturing and retargeting the ”dna” of a natural im-

age. In The IEEE International Conference on Computer

Vision (ICCV), 2019.

[54] Oana Sidi, Oliver van Kaick, Yanir Kleiman, Hao Zhang, and

Daniel Cohen-Or. Unsupervised co-segmentation of a set of

shapes via descriptor-space spectral clustering. In Proceed-

ings of the 2011 SIGGRAPH Asia Conference, pages 1–10,

2011.

[55] Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani

Lischinski. Bounded-distortion piecewise mesh parameteri-

zation. In IEEE Visualization, 2002. VIS 2002., pages 355–

362. IEEE, 2002.

[56] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara

Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-

mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier fea-

tures let networks learn high frequency functions in low di-

mensional domains. CoRR, abs/2006.10739, 2020.

[57] TurboSquid. Turbosquid 3d model repository, 2021.

https://www.turbosquid.com/.

[58] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.

Deep image prior. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 9446–9454,

2018.

[59] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1912–1920, 2015.

[60] Kai Xu, Daniel Cohen-Or, Tao Ju, Ligang Liu, Hao Zhang,

Shizhe Zhou, and Yueshan Xiong. Feature-aligned shape

texturing. ACM Trans. Graph., 28(5):1–7, dec 2009.

[61] Kai Xu, Honghua Li, Hao Zhang, Daniel Cohen-Or, Yue-

shan Xiong, and Zhi-Quan Cheng. Style-content separation

by anisotropic part scales. In ACM SIGGRAPH Asia 2010

13501

Papers, SIGGRAPH ASIA ’10, New York, NY, USA, 2010.

Association for Computing Machinery.

[62] Guandao Yang, Serge Belongie, Bharath Hariharan, and

Vladlen Koltun. Geometry processing with neural fields. In

Proceedings of the 31st International Conference on Neural

Information Processing Systems, 2021.

[63] Kangxue Yin, Zhiqin Chen, Hui Huang, Daniel Cohen-Or,

and Hao Zhang. Logan: Unpaired shape transform in latent

overcomplete space. ACM Transactions on Graphics (TOG),

38(6):1–13, 2019.

[64] Kangxue Yin, Jun Gao, Maria Shugrina, Sameh Khamis, and

Sanja Fidler. 3dstylenet: Creating 3d shapes with geometric

and texture style variations. In Proceedings of International

Conference on Computer Vision (ICCV), 2021.

[65] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.

pixelnerf: Neural radiance fields from one or few images.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 4578–4587, 2021.

[66] Fenggen Yu, Yan Zhang*, Kai Xu, Ali Mahdavi-Amiri, and

Hao Zhang. Semi-supervised co-analysis of 3d shape styles

from projected lines. ACM Transactions on Graphics (TOG),

37(2):1–17, 2018.

[67] Mehmet Ersin Yumer, Siddhartha Chaudhuri, Jessica K Hod-

gins, and Levent Burak Kara. Semantic shape editing us-

ing deformation handles. ACM Transactions on Graphics

(TOG), 34(4):1–12, 2015.

[68] M Ersin Yumer and Niloy J Mitra. Learning semantic defor-

mation flows with 3d convolutional networks. In European

Conference on Computer Vision, pages 294–311. Springer,

2016.

[69] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen

Koltun. Nerf++: Analyzing and improving neural radiance

fields. arXiv preprint arXiv:2010.07492, 2020.

[70] Gang Zhao and Jeff Huang. Deepsim: deep learning code

functional similarity. In Proceedings of the 2018 26th ACM

Joint Meeting on European Software Engineering Confer-

ence and Symposium on the Foundations of Software Engi-

neering, pages 141–151, 2018.

[71] Qingnan Zhou and Alec Jacobson. Thingi10k: A

dataset of 10,000 3d-printing models. arXiv preprint

arXiv:1605.04797, 2016.

13502

