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Abstract

Lines are among the most used computer vision features,
in applications such as camera calibration to object de-
tection. Catadioptric cameras with rotationally symmetric
mirrors are omnidirectional imaging devices, capturing up
to a 360 degrees field of view. These are used in many ap-
plications ranging from robotics to panoramic vision. Al-
though known for some specific configurations, the mod-
eling of line projection was never fully solved for general
central and non-central catadioptric cameras. We start by
taking some general point reflection assumptions and de-
rive a line reflection constraint. This constraint is then used
to define a line projection into the image. Next, we com-
pare our model with previous methods, showing that our
general approach outputs the same polynomial degrees as
previous configuration-specific systems. We run several ex-
periments using synthetic and real-world data, validating
our line projection model. Lastly, we show an application
of our methods to an absolute camera pose problem.

1. Introduction

Catadioptric cameras are imaging devices combining
general mirrors with perspective cameras, [41]. These sys-
tems are used to get up to a 360-degree field of view with a
single image and are suitable for applications ranging from
robotics to medical imaging. In theory, particular cases of
catadioptric cameras can be modeled by the central perspec-
tive model [3]'. However, this modeling requires the use
of specific mirrors and that the camera is perfectly aligned
and at a specific distance concerning the mirror’s positions.
Therefore, even if possible in theory, as argued in [53], cata-
dioptric camera systems are non-central cameras.

Due to their non-linear distortions, modeling point and
line projections in catadioptric systems are significantly
more complex than in the perspective cameras. Researchers

Only two combinations of mirror settings and perspective camera po-
sitions are possible. Table 1 shows these two cases.
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made a big effort to derive a unified model for the projection
of points, firstly only for central systems, [4, 18], and for
general configurations, central and non-central, [1,2]. On
the other hand, although solved for some particular config-
urations, e.g., [1,4,7, 8], a unified model for line projection
was never proposed.

Line projections have been used in many computer vi-
sion applications, such as: i) camera calibration [15, 28,
36, 46]; ii) epipolar geometry [5, 25, 31, 50, 52]; iii) the
Structure-from-Motion, and pose estimation [12,20, 26,37,
43,47]; iv) and 3D reconstruction [10, 19, 35, 38]. In all
these examples, we assume the use of central systems. To
develop a similar application using catadioptric systems, we
need to derive the respective projection of straight lines. A
couple of papers [35,56] are published on self-calibration of
non-central catadioptric cameras using the epipolar geom-
etry. However, the authors assume central approximations
for computing epipolar lines, i.e., approximation of the pro-
jection of 3D lines by a central camera model. On the other
hand, imaging models for representing any camera (cen-
tral and non-central) have been proposed; see [24, 40, 49].
[51, 59] list the advantages of non-central cameras com-
pared to central. For example, when using a non-central
camera, a single image of the environment is enough to re-
cover the line’s 3D parameters, e.g., [11, 17,29, 54]).

This paper presents the first unified model for the pro-
jection of 3D straight lines in general catadioptric cameras
with rotationally symmetric mirrors; central and non-central
systems. In Tab. I, we show the degrees of the polynomi-
als of prior specifically-derived methods and some results
obtained from our derivations. Next, we present the related
work. Secs. 3 and 4 define the problem and derive the pro-
posed unified model. Section 5 presents the experiments
and Sec. 6 concludes the paper.

2. Related Work

This section shows the related work on modeling point
and line projections in omnidirectional cameras for central
and non-central systems.
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System Setup Curve .
D Previous?
Mirror Type Camera Position Mirror Parameters Central? egree
General Any A=, B=x%C==x No 6 -
General Axial A=%B=x%C==x No 6 -
Sphere Any A=1,B=0,C = x No 4 [1]
Cone Axial A=-1,B=0,C=0 No 4 [7,81F
. . . 2k
Ellipsoidal Axial A= C§2f2k, B = Cgffgk, C 26%} ot ’; No 6 _
Ellipsoidal Atthe foci, ie, [0 0 5] A= G2 B= 398 O = —oofy + & Yes 2 [4,18]
Hyperboloidal Axial A=—-24.B=25.C= ,:;1; -2 No 6 -
Hyperboloidal At the foci, i.e., [0 0 c3]* A=—24.B=25,C= ,:i]; -2 Yes 2 [4,18]

Table 1. We show a small set of specific configurations representing the degrees of the implicit equations derived in this paper against the
previous techniques when there is one. We note that previous methods only consider specific camera configurations in mirror parameters
and camera position. The parameter k in the table is a general mirror parameter representing central catadioptric cameras, as defined in [3].
tindicates these polynomial degrees are not directly derived in [7, 8].

Points and central systems: This has been extensively
studied for perspective cameras [25,31]. For the conditions
derived in [3], [18] proposes a unified projection model for
central omnidirectional cameras. This method uses a two
projections pipeline. It first consists of projecting the points
into a sphere, then projecting them into the image using
a changed perspective projection model. [33] adapts this
model and considers planar grids for a flexible calibration
technique. Other well-known works on the image forma-
tion of omnidirectional systems consider projection approx-
imations, such as [16,48]. [55] presents another interesting
work. A point is projected into a line in the image, making
it model-independent from distortion.

Lines and central systems: Line projection for perspec-
tive cameras is well defined; see [25,31]. We also find
their modeling for central catadioptric systems. [18] is the
first work exploring this problem. The authors follow the
same two projections strategy used to project 3D points.
In [4], the authors further explore this line projection prob-
lem. They present some relevant properties and their ad-
vantages in camera calibration. Some other authors focus
on line projection fitting; see for example [6,9,32]. Table 1
lists current central solutions.

Points and non-central systems: One of the first works
addressing the image formation of non-central catadioptric
cameras is [53], in which the authors use caustics on the
modeling. Most authors use polynomials (implicit equa-
tions) to represent these 3D point projections at the mir-
ror. [1] starts by proposing a polynomial equation of de-
gree 6 to represent the projection of 3D points in axial non-
central catadioptric cameras (camera aligned with the mir-
rors axis of symmetry). This work is extended for general
camera positions in [2], with a polynomial equation of de-
gree 8. In [21-23], the authors follow a different approach.
They notice that the problem could not be solved using

closed-form operations and focus on defining efficient it-
erative techniques.

Lines and non-central catadioptric: Analytical solutions
to the line-image for non-central catadioptric cameras were
only analyzed for two camera positions/mirror configura-
tions. As in the latest works on modeling 3D projection of
points, previous authors rely on modeling these projections
using implicit equations in the form of polynomials. [1]
proposes a solution to the 3D projection of lines into non-
central catadioptric cameras with spherical mirrors. The au-
thors obtain a 4-degree polynomial to represent the curve
in the image. In [7, 8], the line projection model and their
fitting for conical non-central catadioptric cameras are pro-
posed. Concerning the model, the authors assume an ax-
ial system and get a 4-degree polynomial to represent the
curve in the mirror. Other authors admit approximate solu-
tions for this line projection. [14] study the projection of 3D
lines using the Generalized Linear Camera model, show-
ing good results for a small local window. Yang et al. [57]
fit several lines using an approximate projection that makes
use of a set of basis functions and a look-up table. Other
authors present analytical solutions to different non-central
systems; see [27,34,44,58].

Unlike prior work, this paper offers a general and an-
alytical model for the 3D projection of lines in the entire
image space. Our solution can be used to model systems
with any rotationally symmetric mirror and camera posi-
tions, i.e., central and non-central imaging devices.

3. Problem Definition

As in previous catadioptric image formation works, [1,4,
7,8, 18], we use rotationally symmetric mirrors, represented
by Q(m) = 0, where

Q(m) = 2? +y> + A2*> + Bz - C, €))
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Mapped line to
coordinates
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(u,v)

Line coordinates in
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s = Rusy
q-= Rw(qu.' - cw)

Line in the world

Figure 1. Projection model: The input is a line in the world (q.,
and a direction d,). The first step transforms the line parameters
to the mirror’s reference frame by applying a rigid transformation
R, € SO(3) and c,, € R? (the rotation and world frame posi-
tion of the mirror, respectively). Next, we map the 3D line from
the world into the normalized image space. Last step applies a
standard collineation between two projective planes; H = KR.

and m = [z y z]7 is a point on the mirror’s surface. From

(1), the normal vector at the mirror point m is given by

n(m)=VQm)=[z y Az+B/2]T. ()

Taking the perspective projection equation (see [25]), the
image of a point in the mirror’s surface is given by

¢ = KR (m —c) 3)

_ e

where K € R?*3 represents the camera intrinsics. [u v] are
an image point in pixel coordinates. R € SO(3) and ¢ € R3
are the rotation of the camera and its center with respect to
the mirror’s reference frame, respectively. As in [1], with-
out loss of generality, given its symmetry, one can rotate the
mirror’s coordinate system, getting ¢ = [0 cg c3]7.

To represent lines, we use a point q € R? and a direction
s € R?; any point on the line satisfies

p(A) = q+ Xs, forany A € R. 4)

Given the high degrees of some polynomials in the paper,

we use £ [.] to denote the i polynomials j™ total degree”.
We conclude this section by describing our problem:

Problem 1 (Line projection). The projection of lines in gen-
eral catadioptric cameras with rotationally symmetric mir-
rors is given by an implicit equation (in polynomial form),
Z(u,v), with coefficients specified as a function of the 3D
line, perspective camera, and mirror parameters.

4. Line Projection in Catadioptric Cameras

Figure 1 shows the projection model used for catadiop-
tric cameras. As in [1, 4], without loss of generality, we
assume that the world reference frame is aligned with the
mirror (i.e., R, = I and ¢c,, = 0). Then, this section fo-
cuses on mapping the line coordinates.

2The derived polynomial coefficients are available for download at
https://github.com/pmiraldo/line-projection-catadioptric.

CameraNC

(b) Snell Reflection Law

(a) Reflection Plane

Figure 2. Projection constraints: At the left, we show the planar
constraint defined by each point on the line, its reflection point on
the mirror, and the perspective camera center. At the right, we
show Snell’s reflection constraint. The red curve in the images
represents the line projection into the mirror.

Consider a 3D line, p(\), represented in the mirror
frame, as shown in (4). This section proposes a parametric
representation for the line projection, Z(u,v); i.e., solves
Problem 1. We start by defining some basic projection con-
straints in Sec. 4.1. The algebraic line-reflection constraint
we use to model line projections is derived in Sec. 4.2.
Section 4.3 presents the parameterization of the projection
curve in normalized image coordinates. To conclude, the
implications on the application of the standard collineation
is shown in Sec. 4.4 (affine transformation H in Fig. 1).

4.1. Projection Constraints

We use two basic properties of the catadioptric image
formation for deriving the line-projection constraint (to be
presented in the following subsection), see [2,21]:

Definition 1. A point on the line, p()), its reflection point
on the mirror, m(\), and the perspective camera’s center of
projection, ¢, define a plane 11(X) (see Fig. 2(a)); and

Definition 2. The incoming and reflected rays, dj ,(\)
(from p(A) to m(X)) and dy, () (from m(X) to c) respec-
tively, in Fig. 2(b), must satisfy the Snell’s law of reflection.

We start with the plane constraint at Definition 1. Using
the fact that k() = m(X) + pVQ(m), for 4 € R, is in
the 3D plane and intersects the mirror’s axis of symmetry at
w = —1, we write

k(N =[0 0 (1-A)z-B/2]". 6))
Now, stacking m()), k()\), ¢, and p()), such that

m(\) p(\) k(N c

M7 = ™
1 111

) (0)
since all these points are on the same plane, a constraint is
obtained; the determinant of M must be zero, C; (m, \) =
det (M) = 0. By expanding the determinant of M, we
describe the following Lemma:
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Lemma 1 (Plane reflection constraint). A 3D point on
the line, p()\), verifying Definition 1 provides a constraint
Ci1(m, \) = 0, such that

Ci(m, A) = w1[a, YNz + ka2, ylz + w3, yIA + s, y).
)
Let us now focus on Definition 2. Taking the Snell re-

flection law and the fact that d;, ,, () x dp ., (A) = 0, after
some simplifications, we obtain

(m(m),n(m)) [dpmA)], dm.c(A)—
2dm (A);n(m)) [dpm(M)], n(m) =0, (8)

in which [a]y is a skew-symmetric matrix that linearizes the
cross product, i.e., a X b = [a]yb = 0. In addition, by
definition, we have

dyc(A) = m(N) —c, and d, ., (\) = p(A) —m(N). (9)

Substituting (9) in (8), we get three algebraic constraints®
and define the following Lemma:

Lemma 2 (Reflection law constraints). Definition 2 gener-
ates the following three algebraic constraints:

Cis1(m,\) = K3 552, v, 2] A+KG 052, v, 2],

(10)

Next, we define the line reflection constraint, which will
use for modeling the 3D line projection.

4.2. Line-Reflection Constraint

Line projection does not depend on the depth of the point
on the line, i.e., X\. To define the line-reflection constraint,
we use Lemmas | and 2 to get a constraint as a function of
only z, y and z. We start by taking Co(m, A) = 0, from
Lemma 1, and solve it as a function of \:

 rgla,ylz + wifa, y]
kilz, y)z + ki[z, y]
Now, taking Lemma 2, we substitute the A from (11) at (10),

and pre-multiply the resulting equations by the denominator
of (11). We obtain C;11(m) = 0 such that

A\ =

(1)

Civ1(m) = k2 [, y, 2)kh ey, 2], i =1,2,3. (12)

We note that (12) contain two polynomial factors of de-
grees 2 and 4, where the former depends only on the mirror
and camera’s parameters. These lower degree polynomial
factors are thus considered a system singularity and disre-
garded, leaving C;11(m) as a 4 degree polynomial. The
degree of (Zﬂ(m) can be further decreased by replacing
22 by C — 2% — y? — Bz. Doing this turns all 3 constraints
at (12) linear dependent. Taking one, we describe the fol-
lowing theorem:

3From (8), only two are linearly independent.

i=1,2,3.

Theorem 1 (Line-reflection constraint). The Line-
Reflection constraint is given by the points in the mirror
with coordinates x, y and z verifying the algebraic
constraints C;,(m) = 0, such that

Cr(m) = Ki5[x, ylz + Kig[z, y]. (13)

Although not needed to define the 3D line projection into
the image, Thm. 1 can be used to represent the 3D line re-
flection curve in the mirror:

Remark 1 (3D reflection curve on the mirror). Taking the
point on the mirror constraint Q(x,y,z) = 0, the line re-
flection constraint C-(m) = 0 in Thm. 1, and 2Cj,(m) =
0, we define

A B 2?2 +y?—C [2?
0 risle,yl  Rigle, ] z | =0.(14)
5%5 [iE, y] 5?6 [.’t, y] O ]-
N

With this, we define a constraint R(x,y) = det(N) = 0,
which is a 6-degree polynomial equation, parametrizing the
reflection curve as a function of x and y. To get the respec-
tive z for modeling the 3D curve on the mirror, we solve
(13), for a known {x, y}.

Combining our line-reflection constraint, the mirror
equation, and the perspective projection model, we ob-
tain bi-variable polynomials that implicitly parameterize the
projection curve of the 3D line on the image plane. These
derivations are given in the following subsections.

4.3. Modeling Line Projection

Here, we use the mirror’s equation, (1), the line-
reflections constraint (13), and the projection into the nor-
malized plane:

x (m—c) =0, (15)

— S R

which is obtained from (3) without the last collineation step;
i.e., without the application of the transformation H (see
Fig. 1). Notice that ¢ was removed from the camera equa-
tion (see (3)) by considering the cross product of [% ¥ 1]
on both sides. This operation provides two linearly indepen-
dent equations that can be use to write « and y as a function
of w, v and z:

B K3 [ﬂLﬁLz] Cand y = K
SN "

5[, 0]z + kg [T, ], (18)
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where in C;,.[#, 7, 2] we have replaced 22 by — (k25 [, 7] 2+
K34[, 0]) /K3, U, V.

Now, to get the line in the image space, we want to
remove z from the constraints. Taking (17), (18), and
2Ci[@, v, z] = 0, we setup the following algebraic equa-
tion:

H‘%Z [’lj, 5] K‘%?) [’lj, 5] K‘%4 [’lj, 5] Z2
0 ras[t, 0] K3[w, ]| | 2 | =0. (19)
"535 [@, 7] "536 [u, 7] 0 1
NeR3x3

For (19) to be true, the determinant of N must be zero.
Then, by computing det(IN), after some simplifications, we
get a polynomial of maximum degree 6, which we use to
describe the following Theorem:

Theorem 2 (Projection curve on the normalized plane).
The projection curve on the normalized plane of a 3D line
is given by N

Z(w,v) =0, (20)

where T (w, ) is a polynomial of maximum degree 6.

With respect to the degree of Z (%, ¥), we define the fol-
lowing remark:

Remark 2. The degree of 7 (w, D) is lower for some specific
system configurations. For instance, for spherical and con-
ical systems the degree of T(u,?) is 4. The same happens
to the central cases, getting a 2 degree curve. These reduc-
tions are obtained by disregarding factors in Z(,v), which
are only system dependent. Some specific configurations
and corresponding polynomial degrees are summarized in
Tab. 1. They validate previous results.

MATLAB scripts with all our derivations are public at
https://github.com/pmiraldo/line-projection-catadioptric.

4.4. On the Application of the Collineation

As shown in Fig. 1, collineation between the normalized
and the image plane is expressed as

U u
(lv]|= KR |% Q1)
1 H 1

Assuming K as an upper triangular matrix, from the third
equation of (21) we have that

¢ = 731U + r320 + 733, (22)
and replacing ( in the first two equations of (21), a relation
1
between (u,?) and (u,v) is obtained as & = rgo[uv] and
Kaglu,v]

,l'\j — K“Ilil[uv’u]

kg [u,v]
are identical. Variables @ and 7 are replaced in (20) and,
after multiplication with (k34 [u,v])%, we get the following

result:

, where the denominators of the two fractions

Parameters

System

A B C Co C3
Elliptic 0 10 0 2 35
Parabolic 0.5 0 80 2 40
General -1.2 -1.4 -23.2 10 30
Hyperboloidal Central -0.4 14 35 0 35
Ellipsoidal Central 0.14 -4.9 7.0 0 35
Axial Cone -1 0 0 0 25

Table 2. Simulated Systems: Mirror parameters A, B, and C,
and the camera positions with respect to the mirror c2 and c3, used
in to generate the synthetic data (see results of Fig. 3 and Fig. 4).
The top three rows show three examples of systems that cannot be
modeled by previous models.

Theorem 3 (Projection curve on the image). The projec-
tion of a 3D line defined by a point q and direction s, a
perspective camera centered at c with rotation R, intrin-
sic calibration matrix X, and a quadratic mirror Q(m) is
defined by

Z(u,v) =0, (23)

where I(u,v) is a polynomial of maximum degree 6.

5. Experiments

We present the first unified model for line projection in
catadioptric cameras. Therefore, we start these experimen-
tal results by giving some line projections for general con-
figurations, mirror, and camera positions settings, validating
the theoretical contributions of the paper. In addition, we
consider cases where small misalignments of specific con-
figurations occur to show the advantages of using our uni-
fied model over previous specific ones. The reader can test
other catadioptric systems with the Mat lab scripts in the
link indicated above. Section 5.2 presents some results with
real data. Section 5.3 shows an application of our methods
in absolute pose estimation and AR problems.

5.1. Line Projection

We start with synthetic experiments for validation and
comparisons with prior modelings. Using Matlab, we
simulate systems with parameters in Tab. 2, and

750 0 600
K=|0 750 400| and R = diag(1,—1,—1),
o o0 1

(24
with images size 1200 x 800. Then, we apply results from
Thm. 3 and Rmk. 1, to obtain the projection curves in the
image and mirror, respectively.

Validation: We take the first three systems of Tab. 2, which
are examples of systems that previous techniques cannot
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Figure 3. Validation: We show the application of the proposed
unified line projection modeling in the images and mirrors for
three catadioptric systems. On the left, we show the camera sys-
tem, the 3D lines, and the reflection curve in the mirror (Rmk. 1).
At the right, we show the projection of the 3D lines into the im-
ages (Thm. 3). We consider two sets of three 3D parallel lines and
their respective projections for each system in orange and green
curves. We show that the curve matches the projection of 3D
points from [2], identified with purple dots in the images. The
3D graphs only show one sheet of the mirror and their respective
projection curves. We do not have this constraint in the image and,
therefore, get up to two curves per 3D line. We note that these are
three examples of systems that previous techniques cannot model
concerning the mirror and camera position parameters.

model, and use our unified model. Results are shown in
Fig. 3. Two sets of three parallel 3D lines are used in each
system. To validate our model, we sample a small number
of points from the 3D lines and project them into the image
using [2]. We see that the images of these 3D points lie on
the projection curves from Thm. 3, validating our results.

Comparisons with previous modelings: In addition to the
validation experiments, we show how our model can be
used to represent systems that the current techniques can
only approximate. As described in the introduction, it is
impossible to have a perfectly aligned camera with the axis

0
200 1
2 n
A 400 N\ \\,
@ . |
800
0 200 400 600 800 1000 1200

(a) Hyperboloidal Central

0

Ao ;

800
0

200 400 600 800 1000 1200

(b) Ellipsoidal Central

200 400 600 800 1000 1200
(c) Axial cone

Figure 4. Exact vs. approximation models: Prior models con-
sider rigorous camera placements with respect to the mirror. In
practice, we cannot guarantee that this will happen. This figure
evaluates the effects of considering our unified model against the
previous specific models when computing the line projection with
small misalignments. We use the three cases listed in the three
last raws of Tab. 2, and a misalignment of 5%; i.e. corresponding
to systems with settings ¢ = 0.05c3. Green curves represent the
proposed model, and the red ones represent the approximations us-
ing previous methods. As we can see, the red curves are, in some
cases, significantly far from the correct point projection (computed
using [2]) that lies on top of our unified model.

of symmetry or have it at a specific distance. To test the
importance of these deviations and the advantages of the
use of the proposed unified model, we run a test using three
of the four systems” in which the specific models were de-
rived in the literature. Namely central cases [4,18] and axial
cone [7,8]). The settings are listed in the three last rows of
Tab. 2. Then, we consider small misalignment. Specifically,
we consider the cases in which the perspective camera de-
viates from the perfect system requirement position.

Figure 4 shows the results with misalignments in the y—
axis of only 5% with respect to the distance of the camera to
the mirror (instead of co = 0, we have co = 0.05¢3). In ad-
dition, we run an experiment that generates 300 points in the

“#In the spherical case we can always align the camera to get co = 0.
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System Misalignment

1% 5% 10% 15%

Hyperboloidal Central 2.6 12.5 26.4 41.3
Ellipsoidal Central 3.6 16.7 36.2 64.9
Axial Cone 11.2 58.0 119.1 181.7

Table 3. Misalignments: Average of the distance in pixels from
the projection of the 3D points and the approximated projection,
by considering camera misalignment and previous modelings. A
total of 300 points equally distributed in the environment were
considered and their projection lines were considered.

world incident with a set of distinct 3D lines. We vary the
misalignment from 1% of to 15% and compute the average
error in pixels corresponding to the distance between the 3D
projection of the points (exact projection) and the respec-
tive line projection approximated by the previous specific
models’, i.e., setting co = 0 and using perfect systems and
previous models. The errors in pixels are shown in Tab. 3.
The table concludes that the approximation of slightly mis-
aligned systems needed for using previous models can sig-
nificantly deteriorate the results. On the other hand, our
unified model always gives the perfect fit.

5.2. Results with Real Data

We use a non-central catadioptric camera with a com-
mercially available hyperbolical mirror and a FLIR Flea3,
model FL3-U3-13E4C-C, with a resolution of 1280x1024.
The perspective camera was previously calibrated, and the
mirror’s manufacturer gave its parameters. We use [45] to
get transformation between the mirror and camera.

Four images are used to evaluate our unified model.
First, we run an edge detection to extract candidate pixels
to line projections. We compute a 3D line using a straight-
forward RANSAC cycle, in which, for each iteration:

1. We sample a set of four pixels that are candidates for
images of a line;

2. Compute the four inverse projection rays correspond-
ing to each of the four pixels obtained in item 1;

3. Using [54]°, we compute the 3D line that passes
through four lines inverse projection rays of item 2.
This 3D line will be the hypothesis for the 3D line co-
ordinates obtained from the four points in item 1;

4. Using the 3D line estimated by item 3, we compute its
projection Z(u,v) = 0, using Thm. 3;

SFor the computation of this distance, we find the closest image point
on the line image projection (discretized) using pdist2 from Mat lab.

6In future work, we will explore the possibility of using our implicit
parameterization to represent the surface corresponding to the inverse pro-
jection of the line image.

5. We do inlier counting using Z(u,v) = 0 and com-
puting a distance to the remaining pixels in the image
listed as potential line images. The ones with a dis-
tance smaller than a defined threshold are considered
inliers. This distance is calculated as in Sec. 5.1, para-
graph “Comparisons with previous modelings.”

We repeat the process a certain number of iterations, and
the final 3D line estimate is given by the hypothesis that
obtained the largest number of inliers. Then, we apply our
3D projection line modeling again to the resulting 3D line
model. By running the previously defined RANSAC cycle
multiple times (and removing inliers from previous runs),
we can extract multiple 3D lines. Figure 5(a) shows the
results of fitting multiple lines with Z(u,v) = 0.

The same technique was applied to new images of a
chessboard in different positions. In this case, we apply
corner detection, select the corners within the chessboard,
define the chessboard’s rows and columns individually, and
run the pipeline described in the previous paragraph. The
results are shown in Fig. 5(b).

This section shows that our unified imaging model ob-
tains the correct projection of a 3D line and that, in combi-
nation with [54], our model can be used to fit multiple line
images. We ran additional experiments with the RANSAC-
based line fitting, namely synthetic data, evaluating differ-
ent noise levels, specific camera systems, and RANSAC 2D
vs. 3D. Due to space limitations, we send these experiments
in supplementary materials. Note that these results could be
refined using nonlinear optimization using the detected in-
liers, which we leave for future work.

5.3. Applications to Pose Estimation and AR

We propose a simple application for a camera localiza-
tion problem and Augmented Reality (AR) to evaluate our
methods further. We use a non-central catadioptric camera
with a spherical mirror, calibrated as described in the previ-
ous subsection. Four green 3D straight lines are placed on
for floor, and we consider the following procedure:

1. We run a color filter to get green pixels in the image;

2. Four projection curves are estimated using our
RANSAC-based fitting method described in the pre-
vious section. Figure 6(a) shows the fitted curves;

3. We compute the intersecting points of the projection
curves;

4. Using three of the four intersecting points and their
respective coordinates in the world, we compute the
camera pose using minimal data [13, 30, 39, 42], get-
ting up to four solutions for the camera pose; and

5. We get the correct transformation by selecting the pose
that minimizes the fourth point’s re-projection error.
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(b) Results for images of 3D straight lines given corner detection in a chessboard.

Figure 5. Line projection and fitting techniques using a non-central hyperbolic catadioptric camera. Images were acquired outside and
inside. Red or blue curves represent the projection curves, while green points are the inliers considered to fit each curve.

(a) We show curves representing the 3D projection lines in spherical cata-
dioptric cameras. Green points are the image point candidates for line
images.

(b) We estimate the 3D line using the RANSAC-based method in Sec. 5.2,
compute their intersections, and the camera’s pose. Using the estimated
pose, we offer a simple augmented reality application.

Figure 6. (a) shows two images acquired with a spherical catadioptric camera, four green 3D straight lines on the floor, and the respective
four-line images. (b) shows the augmented reality application. Four parallelepiped objects are correctly projected into the image.

To evaluate our results, we define four rectangular paral-
lelepipeds in the world and project their edges into the im-
age using our model. The results are shown in Fig. 6(b). We
conclude that the parallelepipeds are correctly projected.

6. Discussion

This paper proposes the first unified model for 3D line
projection in catadioptric cameras. We start by describing
the line-reflection constraint. Then, derive the reflection
curve on the mirror and get a projection curve in the im-
age. We ran several experiments with both synthetic & real
data and different types of catadioptric camera systems.

For future work, we plan to i) derive a unified method for
catadioptric camera calibration using line projections and ii)
add geometrical constraints for improving the RANSAC-

based line fitting for a better 3D and 2D estimation.
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