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Figure 1. Our approach combines a novel, non-sequential autoregressive prior, capturing the distribution over 3D shapes, with task-
specific conditionals, to generate multiple plausible and high-quality shapes consistent with input conditioning. We show the efficacy of
our approach across diverse tasks such as shape completion, single-view reconstruction and language-guided generation.

Abstract

Powerful priors allow us to perform inference with in-
sufficient information. In this paper, we propose an au-
toregressive prior for 3D shapes to solve multimodal 3D
tasks such as shape completion, reconstruction, and gener-
ation. We model the distribution over 3D shapes as a non-
sequential autoregressive distribution over a discretized,
low-dimensional, symbolic grid-like latent representation of
3D shapes. This enables us to represent distributions over
3D shapes conditioned on information from an arbitrary
set of spatially anchored query locations and thus perform
shape completion in such arbitrary settings (e.g. generating

*indicates equal contribution

a complete chair given only a view of the back leg). We also
show that the learned autoregressive prior can be leveraged
for conditional tasks such as single-view reconstruction and
language-based generation. This is achieved by learning
task-specific ‘naive’ conditionals which can be approxi-
mated by light-weight models trained on minimal paired
data. We validate the effectiveness of the proposed method
using both quantitative and qualitative evaluation and show
that the proposed method outperforms the specialized state-
of-the-art methods trained for individual tasks. The project
page with code and video visualizations can be found at
https://yccyenchicheng.github.io/AutoSDF/.
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1. Introduction
3D representations are essential for applications in

robotics, self-driving, virtual/augmented reality, and online
marketplaces. This has led to an increasing number of di-
verse tasks that rely on effective 3D representations – a
robot might need to predict the shape of the objects it en-
counters, an artist may want to imagine what a ‘thin couch’
would look like, or a woodworker may want to explore pos-
sible tabletop designs to match the legs they carved. A com-
mon practice for tackling these tasks, such as 3D comple-
tion or single-view prediction is to utilize task-specific data
and train individual systems for each task, requiring a large
amount of compute and data resources.

While tasks such as shape completion or image-
conditioned prediction are seemingly different, they require
similar outputs – a distribution over the plausible 3D struc-
ture conditioned on the corresponding input. A general-
ized notion of what ‘tables’ are is useful for both predicting
the full shape from the left half and imagining what a ‘tall
round table’ may look like. In this work, we operationalize
this observation and show that a generic shape prior can be
leveraged across these different inference tasks. In particu-
lar, we propose to learn an expressive autoregressive shape
prior from abundantly available raw 3D data. This prior
can then help augment the task-specific conditional distri-
butions which require paired training data (e.g. language-
shape pairs), and significantly improve performance when
such paired data is difficult to acquire.

Learning such a prior directly over the continuous and
high-dimensional space of 3D shapes is computationally
intractable. Inspired by recent approaches that overcome
similar challenges for image synthesis, we first leverage
discrete representation learning to compute discretized and
low-dimensional representations for 3D shapes. This not
only preserves the essential information for decoding high-
quality outputs but also makes the training of autoregressive
models tractable. Moreover, to learn such a prior for a broad
set of tasks such as shape completion where arbitrary sub-
sets maybe observed e.g. 4 legs of a chair, we propose to
learn a ‘non-sequential’ autoregressive prior i.e. one capa-
ble of using random subsets as conditioning. To enable this,
we also enforce that the discrete elements over which this
prior is learned are encoded independently.

We then present a common framework for leveraging our
learned prior for conditional generation tasks e.g. single-
view reconstruction or language-guided generation (see
Figure 1). Instead of modeling the complex conditional dis-
tribution directly, we propose to approximate it as a product
of the prior and task-specific ‘naive’ conditionals, the lat-
ter of which can be learned without extensive training data.
Combined with the rich and expressive shape prior, we find
that this unified and simple approach leads to improvements
over task-specific state-of-the-art methods.

2. Related Work
Autoregressive Modeling. Autoregressive models [20,
21] factorize the joint distribution over structured out-
puts into products of conditional distributions (p(x) =
Πp(xi|x<i))). Unlike GANs [15], these can serve as pow-
erful density estimators [32], are more stable during train-
ing [25,32], and can generalize well on held-out data. They
have been successfully leveraged for modeling distributions
across domains, such as images [8, 20, 25, 33], audio [21],
video [18], or language [45], and our work explores their
benefits across a broad range of 3D generation tasks.

Following their recent successes in autoregressive mod-
eling [3,6,23,45], our work adapts a Transformer-based [34]
architecture. While these approaches typically assume a se-
quential sampling order, closer to our work, Tulsiani and
Gupta [30] extend these to allow non-sequential condition-
ing, which is important for tasks like completion. However,
as they model distributions over low-level pixels, their ap-
proach cannot synthesize high-resolution outputs due to the
quadratic complexity of Transformers. We therefore pro-
pose to first reduce high-dimensional 3D shapes to lower-
dimensional discrete representations, and learn an autore-
gressive prior over this latent space.

We build on the work by van den Oord et al. [22] who
proposed a method to learn quantized and compact latent
representations for images using Vector-Quantized Varia-
tional AutoEncoder (VQ-VAE), and later also introduced a
hierarchical version [24].

Inspired by Esser et al. [12] who learned autoregressive
generation over the discrete VQ-VAE representations, our
work extends these ideas to the domain of 3D shapes. Dif-
ferent from these prior methods, we learn a non-sequential
autoregressive prior while modifying the VQ-VAE architec-
ture to independently encode the symbols, and show that
this prior can be leveraged for downstream conditional in-
ference tasks.

Shape Completion. Completing full shapes from par-
tial inputs such as discrete parts, or single-view 3D, is an
increasingly important task across robotics and graphics.
Most recent approaches [1, 7, 29, 47–49] formulate it as
performing completion on point clouds and can infer plau-
sible global shapes but have difficulty in either capturing
fine-grained details, conditioning on sparse inputs, or gen-
erating diverse samples. Our non-sequential autoregressive
prior provides an alternative approach for shape completion.
Given observations for an arbitrary (and possibly sparse)
subregion of the 3D shape, we can sample diverse and high-
quality shapes from our learned distribution, and we show
that this generic approach performs comparably, if not bet-
ter than previous specialized methods. Concurrently with
our work, Yan et al. [44] proposes VQDIF to obtain the
sparse representation of the partial point cloud, and adopts
ShapeFormer to output the complete shapes.
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Figure 2. Overview of Autoregressive Modeling. (top) We use a VQ-VAE to extract a low-dimensional discrete representation of 3D
shapes. Using a patch-wise encoder enables independently encoding local context and allows downstream tasks with partial observations.
(bottom) We learn a transformer-based autoregressive model over the latent representation. Using randomized sampling orders allows
learning a ‘non-sequential’ autoregressive shape prior that can condition on arbitrary sets of partial latent observations.

Single-view Reconstruction. Inferring the 3D shape
from a single image is an inherently ill-posed task – an
image of a chair from the back does not remove ambi-
guities about the shape of its seat. Several approaches
have shown impressive single-view reconstruction results
using voxels [10, 14, 31, 38, 39], point clouds [13, 19, 41],
meshes [36, 37], and most recently implicit representations
of 3D surfaces like SDFs [17,43], UDFs [9] and CSPs [35].
However, these are often deterministic in nature and only
generate a 3D single output. By treating image-based pre-
diction as conditional distributions that can be combined
with a generic autoregressive prior, our work provides a
simple and elegant way of inferring multiple plausible out-
puts, while also yielding empirical improvements.

Language-based Generation. Language is a highly ef-
fective and parsimonious modality for describing real-world
shapes and objects. Chen et al. [5] proposed a method to
learn a joint text-shape embedding, followed by a GAN [15]
based generator for synthesizing 3D from texts. How-
ever, generating shapes from texts is a fundamentally multi-
modal task, and a GAN-based approach struggles to cap-
ture the multiple output modes. In contrast, learning naive-
language guided conditional distributions from text aimed
at disambiguation shapes [2] and combining these with a
generic prior, our work can generate diverse and plausible
shapes.

3. Approach
We propose an autoregressive method to learn the dis-

tribution p(X) over possible 3D shapes X. Our method
uses a volumetric Truncated-Signed Distance Field (T-SDF)
for representing a 3D shape and learns a Transformer-

based [34] neural autoregressive model. However, as
the computational complexity of transformers increases
quadratically with the input dimension, we first map the
high dimensional 3D shape to a corresponding low dimen-
sional, discretized latent space. We then learn a ‘non-
sequential’ autoregressive prior over this compressed dis-
crete representation, and show that this learned prior can be
leveraged across diverse conditional generation tasks.

3.1. Discretized Latent Space for 3D Shapes
To learn an effective autoregressive model, we aim to re-
duce the high-dimensional continuous 3D shape representa-
tion to a lower-dimensional discrete latent space. Towards
this, we adapt the VQ-VAE [22] framework and learn a 3D-
VQ-VAE whose encoder Eψ can compute the desired low-
dimensional representation, and the decoder Dψ can map
this latent space back to 3D shapes. Given a 3D shape X
with spatial dimension of D3, we have

Z = V Q(Eψ(X)), X′ = Dψ(Z),

where Z ∈ {1, · · · , |Z|}d
3 (1)

where V Q is the Vector Quantization step that maps a vec-
tor to the nearest element in the codebook Z which is jointly
learned while training the VQ-VAE [22]. The latent repre-
sentation Z is thus a 3D grid of elements from the codebook,
and can equivalently be thought of as a grid of indices re-
ferring to the corresponding codebook entry. We use zi to
denote the latent variable in the grid Z at position i.

While the above framework allows learning a compact
and quantized latent space, the encoder jointly processes an
input shape, and thus can use a large receptive field to en-
code each latent symbol. Unfortunately, this is not a desir-
able property for tasks such as shape completion since the
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Figure 3. Overview of conditional generation. The proposed autoregressive prior can be used across diverse conditional generation tasks.
For each task, we use a domain specific encoder followed by 3D up-convolutions to learn task specific conditional distributions. During
inference, we can sample from the product distribution of the predicted conditionals and the learned autoregressive prior.

latent codes for encoded partial shapes may differ signifi-
cantly from those of the encoded full shape – thus partial
observations of shape may not correspond to partial obser-
vations of latent variables. To overcome this challenge, we
propose Patch-wise Encoding VQ-VAE or P-VQ-VAE that
encodes the local shape regions independently, while de-
coding them jointly – this allows the discrete encodings to
only depend on local context, while still allowing the de-
coder to reason more globally when generating a 3D shape.
We visualize this proposed architecture in Figure 2, and
train it using a combination of three losses proposed by van
den Oord et al. [22]: reconstruction loss, the vector quanti-
zation objective, and the commitment loss .

3.2. Non-sequential Autoregressive Modeling
The latent space Z is a 3D grid of tokens representing the

original 3D shape. We can thus reduce the task of learning
the distribution over continuous 3D shapes to learning p(Z),
which is a distribution over the lower-dimensional discrete
space. Assuming some ordering of the latent variables e.g.
a raster scan, typical autoregressive model can approximate
this distribution by factorizing it as a product of location
specific conditionals: p(Z) =

∏[d,d,d]
i=[1,1,1] p(zi|z<i).

However, this factorization assumes a fixed ordering in
which the tokens are observed/generated. More specifically,
this factorization implies that we need to know all z<i be-
fore we predict the ‘next’ symbol zi. However, such condi-
tioning is not always possible. For example, if we only ob-
serve the wheels of a car, the corresponding symbols would
not be the first k elements in a predefined sequence but
rather occupy some spatially arbitrary locations. To allow
for such arbitrary conditioning in our autoregressive model,
we propose an autoregressive model which can predict a
categorical distribution over tokens conditioned on a ran-
dom input sequence, and use the term ‘non-sequential’ au-
toregressive model to highlight this capability.

We follow the observation from [30] that the joint dis-
tribution P (Z) can be factorized into terms of the form

p(zi|O), where O is a random set of observed variables.
As illustrated in Figure 2, instead of using a rasterized sam-
pling order, we use a randomly permuted sequence of latent
variables {zg1

, zg2
, zg3

, · · · } for autoregressively modeling
the distribution P (Z):

p(Z) = pθ(zg1
|∅) · pθ(zg2

|zg1
) · pθ(zg3

|zg1
, zg2

) · · · (2)

We model the distribution pθ(zi|O) using a transformer-
based architecture which is parameterized by θ and takes in
an arbitrary set O ≡ ({gj}kj=1) of observed latent variables
with known locations and predicts the categorical distribu-
tion for an arbitrary query location i. We learn this model
by simply maximizing the log-likelihood of the encoded
latent representations using randomized orders for autore-
gressive generation. The non-sequential autoregressive net-
work models the distribution over the latent variables Z,
which can be mapped to full 3D shapes X̂ = Dψ(Z).
Please see appendix for details.

3.3. Conditional Generation
Given the autoregressive model trained to predict the dis-

tribution over the latent representation of 3D shapes, we can
leverage it to solve various conditional prediction tasks like
shape completion, or generation based on modalities like
image and language.
Shape Completion. The proposed P-VQ-VAE encodes
local regions independently. This enables us to map par-
tially observed shape Xp to corresponding observed latent
variables O = {zg1

, zg2
, · · · , zgk

}. Although these obser-
vations can be at arbitrary spatial locations, our transformer-
based autoregressive model is specifically trained to han-
dle such inputs. In particular, we can formulate the task of
shape completion as:

p(X|Xp) ≈ p(Z|O) =
∏
j>k

pθ(zgj
|zg<j

,O) (3)

Based on the above formulation, we can directly use our
model from Section 3.2 to autoregressively sample com-
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plete latent codes from partial observations. These can then
be converted to 3D shapes via the P-VQ-VAE decoder.
Approximating generic conditional distributions.
While shape completion could be reduced to conditional
inference given a partially observed latent code, this
reduction does not apply to other generation tasks. More
generally, we are interested in inferring shape distributions
p(X|C), where C represents some conditioning e.g. an
image, or a text description. Approximating this as a distri-
bution over the latent space, our goal is to learn models for
p(Z|C). A possible approach would be to model the terms
of the full joint distribution p(Z|C) =

∏
i p(zi|z<i, C).

However, in absence of abundant training data, learning
this complex joint distribution may not be feasible.

Instead of modeling this complex distribution, we make
a simplifying assumption and propose to model this joint
distribution as a product of the shape prior, coupled with
independent ‘naive’ conditional terms that weakly capture
the dependence on the conditioning C:∏

j

p(zgj
|zg<j

, C) ≈
∏
j

pθ(zgj
|zg<j

) ·
∏
j

pϕ(zgj
|C)

This factorization corresponds to assuming a factor graph
where the conditioning C is connected to each latent vari-
able zi with only a pairwise potential p(zi|C). While this is
an approximation of the more general case, it enables effi-
cient learning and inference.
Learning Naive Conditionals. This per-location distri-
bution intuitively corresponds to an independent ‘naive‘
conditional distribution for each variable in the latent repre-
sentation. E.g., if the language described a ‘thin chair’, this
term may capture that we expect thin structures around legs.
We model this distribution using a neural network parame-
terized by ϕ, and can train this network using task-specific
paired supervision. In particular, given (X, C) pairs, we
learn ϕ by maximizing the log-likelihood log pϕ(zi|C) for
each variable in the encoded shape Z. As illustrated in Fig-
ure 3, our task-specific network (ϕ) comprises of domain-
specific Encoders (e.g. ResNet [16] for images; BERT [11]
for language etc.) followed by up-convolutional decoders
to the predict the conditional distribution over elements in
Z i.e. pϕ(zi|C).
Prior-guided conditional inference. Using the learned
task-specific network to model the naive distributions
pϕ(zi|C), we can use to combine it with our autoregres-
sive prior to obtain a conditional distribution over shapes
which can be used for multimodal generation.

4. Experiments
To demonstrate the efficacy of our autoregressive prior

for generic 3D tasks, we quantitatively and qualitatively
evaluated our method on three tasks – a) shape completion,
b) 3D reconstruction, and, c) language-guided generation.

Table 1. Quantitative comparison on Shape Completion.

Bottom Half Octant

Method UHD � TMD � UHD � TMD �

MPC [40] 0.0627 0.0303 0.0579 0.0376
PoinTr [46] 0.0572 N/A 0.0536 N/A
Ours 0.0567 0.0341 0.0599 0.0693

4.1. Multi-modal Shape Completion
Our learned non-sequential autoregressive prior can nat-

urally be adapted to the task of shape completion. We en-
code partial observations (in the form of local TSDFs) to
obtain discrete symbols via the patchwise VQ-VAE encoder
for the seen regions and sample full shapes conditioned on
these observed symbols using the autoregressive prior.

Baselines and Evaluation Setup. We evaluate our ap-
proach on the ShapeNet [4] dataset using the train/test splits
provided by Xu et al. [43]. We use two completion settings
for evaluation with varying fraction of observed shapes:

• Bottom half of complete shape as input
• Octant with front, left and bottom half of complete

shape as input
We compare our generations against two state-of-

the-art point-cloud completion methods, MPC [40] and
PoinTr [46]. The former can generate multiple plausible
shapes given the partial input, whereas the latter generates
only a single (more accurate) completion. Both the publicly
available PointTr [46] and our approach can use a single
model to handle genetic shape completion scenarios. How-
ever, MPC needs to train a separate model to handle com-
pletion in each different scenario. As our approach uses a
partial TSDF input, it can potentially ‘see’ information (up
to a small threshold) beyond the boundaries. For a fair com-
parison, we also give the baseline methods additional points
within the truncation threshold.

Evaluation Metrics. We adopt the metrics from
MPC [40] for the quantitative evaluation. These are given
below. For each partial shape, we generate k(= 10)
complete shapes.

• Completion fidelity: we compute the average of Uni-
directional Hausdorff Distance (UHD) from the input
partial shape to the k generated shapes. This measures
the completion fidelity given the partial inputs.

• Completion diversity: given k generated results for
each shape, we compute the average Chamfer distance
to other k− 1 shapes. The sum of the average distance
among k generation assesses the completion diversity
and is denoted as Total Mutual Difference (TMD).

Results. To compare the performance of our approach
with the baselines on the task of shape completion, we
use a set of held-out chairs from the ShapeNet dataset.
Please note that while all the methods are trained across all
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Figure 4. Comparative results for Shape Completion. Given the partial inputs, we visualize the generated results from different methods.
Our approach yields more diverse generations, while also better preserving the originally observed structure. For example, in the first row,
given 4 slanted legs of a chair, some MPC generations make them straighter in the full point cloud, while they are preserved in our approach

Input Multimodal Shape Completion Input Multimodal Shape Completion

Missing Regions

Figure 5. Qualitative results for Shape Completion. Our proposed approach is able to generate diverse plausible 3D shapes consistent
with the partial input. The generated shapes are visually consistent with realistic shapes even with significantly missing parts( in Red)

ShapeNet classes, the evaluation is performed on a limited
subset for computational reasons. The quantitative results
reported in Table 1 demonstrate that our autoregressive-
prior based completion method performs favorably against
the baselines, both in terms of fidelity and diversity on the
two protocols.

We also show qualitative comparisons to these baselines
in Figure 4 and observe that our approach yields more di-
verse generations, while also better preserving the origi-
nally observed structure e.g. given 4 slanted legs of a chair,
some MPC generations make them straighter in the full
point cloud, while the slants are preserved across the shapes
generated by our approach. More shape completion results
across other diverse shapes are shown in Figure 5. Our ap-
proach, while appropriately conditioning on the partial ob-
servations, generates a rich variety of diverse, high-quality

and realistic 3D shapes. It is noteworthy that although our
autoregressive model is trained only on random observa-
tion sequences, it is able to condition on structured partial
observations (anchored on a correlated set of anchored loca-
tions) that it was never trained explicitly to complete (unlike
the point cloud completion baselines which are specifically
trained for this task).

4.2. Single-view 3D Prediction
We next show that the learned prior can be leveraged

for the task of single-view 3D reconstruction. To obtain
the per-location image-conditioning, we train a modified
ResNet [16] using pairs of images and corresponding en-
coded 3D models from the training dataset.

Evaluation Setups. We evaluate the proposed method on
the ShapeNet rendered images [10], and the real-world
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Figure 6. Single-view 3D reconstruction. (Top) We show a sample single-view reconstruction using our approach and other baselines –
our shape prior helps the generated shape be more globally coherent. (Bottom) We visualize multiple shapes predicted by our approach
given the input images. We observe meaningful shape variation in the unobserved regions e.g. front of the chair in the left image.

Table 2. Quantitative evaluation of single-view reconstruction.

ShapeNet Pix3D

Method IoU � CD � F-Score � IoU � CD � F-Score �

Pix2Vox 0.467 2.521 0.335 0.504 3.001 0.385
ResNet2TSDF 0.478 2.684 0.320 0.475 4.582 0.351
ResNet2Voxel 0.457 2.501 0.316 0.505 4.670 0.357
Image-JE 0.486 1.972 0.338 0.480 2.983 0.394
Ours (Sequential) 0.554 1.448 0.393 0.516 2.254 0.412
Ours 0.577 1.331 0.414 0.521 2.267 0.415

benchmark Pix3D [27], using cropped and segmented im-
ages as input for reconstruction. For ShapeNet, we use the
same train/test split provided by Xu et al. [43], and evaluate
against the voxelized models provided by Choy et al. [10].
For Pix3D, we use the provided train/test splits for the chair
category. In the absence of official splits for other cate-
gories, we randomly split the dataset into disjoint 3D shapes
for training and testing. We evaluate all methods on the
ground truth voxels in Pix3D and follow the official imple-
mentation to downsample all predictions into 323 of voxels
for evaluation. We use 3D IoU, Chamfer Distance (CD),
and F-score@1% [28] as the metrics to measure the perfor-
mance across different methods.
Baselines We compare with the following methods:

• Pix2Vox [42]: a state-of-the-art approach for 3D re-
construction.

• ResNet2TSDF / ResNet2Voxel: baselines which use a
similar ResNet to ours but directly decode the output
shape without using any shape prior.

• Image-JE: a transformer-based baseline to predict
P (Si|S<i, I) jointly, where I is the input image.

• Ours (Sequential): a variant of the proposed method
where the transformer

Results. Quantitative results in Table 2 demonstrate that
our proposed method performs favorably across almost all

categories. Please refer to In Figure 6, we show some rep-
resentative results with comparisons against the compet-
ing methods (additional results are in the supplementary).
More crucially, as shown in the second row of Figure 6,
unlike baselines, our approach can generate multiple plau-
sible shapes given an input image. For example, given an
image with a back-view of a chair , our model produces
diverse reconstruction results with meaningful variation in
unobserved regions, such as different armrests or cushions
with varied shapes.

4.3. Language-guided Generation
Achlioptas et al. [2] released a dataset containing text

utterances describing the distinction between a target chair
and the two distractors from Shapenet [4]. We repurpose
this data to train a text-conditioned generative model as de-
scribed in Section 3.3. The distribution from this condi-
tional when combined with our autoregressive prior, allows
us to generate diverse shapes given a language description.

We compare our method with Text2Shape (T2S) [5] on
the text-guided 3D shape generation task. While T2S was
originally trained to generate color and shape from text de-
scriptions, after finetuning it on our dataset [2], we only use
the generated shape for comparison. In addition, we also
compare our method with a transformer-based Encoder-
Decoder Model (JE) trained on [2] to predict P (Si|S<i, T )
jointly which serves as a baseline where a joint distribu-
tion is learned as opposed to our factored approach. Our
approach combines two factors: a generic prior factor with
an input modality dependent conditional factor. The latter
may be potentially weak depending on the parsimony of the
input modality and the amount of training data available.

Quantitative Comparison. To enable a comparison on
this task, we train a neural evaluator similar to the one pro-
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Figure 7. Language Conditioned Generation. The results signify that our approach can meaningfully estimate the correlation between
input description and correspondingly plausible shapes while simultaneously generate the missing context required to generate them.

posed in [2]. The evaluator is trained to distinguish the
target shape from a distractor given the specified text, and
achieves a ∼ 83% accuracy on this binary classification
task. We use descriptions corresponding to held out test
objects for evaluation. For each description, we provide
the evaluator with two generations and report the quanti-
tative results in Table 3. We label an instance as ‘confused’
when the absolute difference between the evaluator’s con-
fidence is ≤ 0.2. We perform a seven way comparison by
reporting the following comparisons – Ours vs T2S, JE and
Ours(Sequential), and, GT vs Ours, Ours (Sequential) , JE,
and, T2S. We find that our approach is the preferred choice,
with a very large margin, over either of the baselines (66:18
over T2S and 61:23 over JE). In a direct comparison with
the GT, our generations are preferred 30% of the time while
the GT is preferred 49%, and is significantly better than the
other three baselines.

Qualitative Results. While the quantitative evaluation
above has been conducted for a smaller set of descriptions
in the dataset, the model is trained over a larger set and can
conditionally generate shapes for many more generic de-
scriptions. We present an exemplary set of generated sam-
ples conditioned on a variety of input text in Figure 7. The
results clearly demonstrate that our approach can (a) gener-
ate highly plausible and realistic shapes correlated to the in-
put description, (b) the shapes co-vary in a reasonable fash-
ion with variations in the input text, e.g. couch, revolving
chair etc., and, (c) that even when the descriptions refer only
to a specific part e.g. ‘a chair with one leg’, our model gener-
ates coherent global shapes consistent with this description.
Please see appendix for additional results.

Table 3. Language-guided Generation.

Target (Tr) Distractor (Dis) P (Tr) P (Dis) P (Conf)

Ours Text2Sshape [5] 66% 18% 16%
Ours Joint-Encoding 61% 23% 16%
Ours Ours (Sequential) 34% 27% 39%
Ours GT 30% 49% 21%

Ours (Sequential) GT 28% 52% 20%
Text2Sshape [5] GT 15% 74% 11%
Joint-Encoding GT 19% 67% 14%

5. Discussion
We proposed an approach for learning a generic non-

sequential autoregressive prior over 3D shapes useful for
multi-modal generation for a diverse set of tasks e.g. shape
completion, single-view reconstruction, and language-
guided synthesis. We find it encouraging that our unify-
ing approach yields compelling results across these differ-
ent tasks and is competitive with specifically designed base-
lines. However, a limitation of our conditional inference
formulation is that it can only approximate the joint dis-
tribution – while this helps in the low-paired data regime,
this would be suboptimal with large-scale task-specific data.
Moreover, our approach only applies to spatially structured
3D representations e.g. TSDF or voxels, and it is not obvi-
ous whether our autoregressive modeling framework can be
adapted to other 3D representations such as meshes or neu-
ral implicit functions [26]. Second, the proposed method
might also be sensitive with respect to shape alignment. Fi-
nally, our learned shape prior is biased towards artificial cat-
egories with abundantly available CAD models, and cannot
be leveraged for 3D generation beyond these.

8313



References
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative
models for 3d point clouds. In ICML, 2018. 2

[2] Panos Achlioptas, Judy Fan, Robert Hawkins, Noah Good-
man, and Leonidas J Guibas. Shapeglot: Learning language
for shape differentiation. In CVPR, 2019. 3, 7, 8

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In NeurIPS, 2020. 2

[4] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Tech-
nological Institute at Chicago, 2015. 5, 7

[5] Kevin Chen, Christopher B Choy, Manolis Savva, An-
gel X Chang, Thomas Funkhouser, and Silvio Savarese.
Text2shape: Generating shapes from natural language by
learning joint embeddings. In ACCV, 2018. 3, 7, 8

[6] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Hee-
woo Jun, David Luan, and Ilya Sutskever. Generative pre-
training from pixels. In ICML, 2020. 2

[7] Xuelin Chen, Baoquan Chen, and Niloy J Mitra. Unpaired
point cloud completion on real scans using adversarial train-
ing. In ICLR, 2020. 2

[8] Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter
Abbeel. Pixelsnail: An improved autoregressive generative
model. In ICML, 2018. 2

[9] Julian Chibane and Gerard Pons-Moll. Neural unsigned dis-
tance fields for implicit function learning. In NeurIPS, 2020.
3

[10] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3d-r2n2: A unified approach for
single and multi-view 3d object reconstruction. In ECCV,
2016. 3, 6, 7

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In NAACL, 2019. 5

[12] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In CVPR,
2021. 2

[13] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3d object reconstruction from a single
image. In CVPR, 2017. 3

[14] Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Ab-
hinav Gupta. Learning a predictable and generative vector
representation for objects. In ECCV, 2016. 3

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NeurIPS,
2014. 2, 3

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 5, 6

[17] Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker.
Sdfdiff: Differentiable rendering of signed distance fields for
3d shape optimization. In CVPR, 2020.
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