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Abstract

In this paper, a computation efficient regression frame-
work is presented for estimating the 6D pose of rigid
objects from a single RGB-D image, which is applica-
ble to handling symmetric objects. This framework is
designed in a simple architecture that efficiently extracts
point-wise features from RGB-D data using a fully con-
volutional network, called XYZNet, and directly regresses
the 6D pose without any post refinement. In the case
of symmetric object, one object has multiple ground-truth
poses, and this one-to-many relationship may lead to esti-
mation ambiguity. In order to solve this ambiguity prob-
lem, we design a symmetry-invariant pose distance metric,
called average (maximum) grouped primitives distance or
A(M)GPD. The proposed A(M)GPD loss can make the re-
gression network converge to the correct state, i.e., all min-
ima in the A(M)GPD loss surface are mapped to the cor-
rect poses. Extensive experiments on YCB-Video and T-
LESS datasets demonstrate the proposed framework’s sub-
stantially superior performance in top accuracy and low
computational cost. The relevant code is available in
https://github.com/GANWANSHUI/ES6D.git.

1. Introduction

Estimating the 6D object pose is important for real-
time applications such as augmented reality (AR) [24], au-
tonomous driving [3, 8], and robotics [4, 34]. In recent
years, methods based on the deep neural network (DNN)
have gradually emerged [17, 22, 25, 26, 40]. The RGB-D-
based method [35] fuses RGB features and point cloud fea-
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co-first authors.

†Corresponding author.

Figure 1. Comparison of A(M)GPD and ADD-S. Axis X shows
the rotation angle of the object (from 0° to 360°). Axis Y shows
the calculated distance. We set the initial pose as the ground truth.
As we can see, all minima are mapped to correct poses in the
A(M)GPD curve and several minima point to incorrect poses in
the ADD-S curve.

tures and shows exceptional robustness in handling heavy
occlusion and textureless situations. However, as discussed
below, regression methods [35, 38] will fail for some sym-
metric objects and its computational cost is still an obsta-
cle for real-time application. In this paper, we propose a
RGB-D-based 6D pose regression framework that is more
computation efficient and applicable to symmetric objects.

Feature extraction from RGB-D data is a crucial part of
our framework. The methods in [12, 19, 35] obtain robust
features through a dense fusion network, which fuses RGB
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and point cloud features with an indexing operation. How-
ever, an efficient network should avoid random memory ac-
cesses [23], which is the computational bottleneck of the
dense fusion network in [12,35]. For efficiency and simplic-
ity, a fully convolutional feature extraction network, named
XYZNet, is proposed in this paper. XYZNet is much more
efficient than the heterogeneous structure in [35] and [12].
The depth image is converted to the XYZ map, which is
strictly aligned with the RGB image, as shown in Figure
2. Therefore, the local features from RGB and the point
cloud can be simultaneously extracted with a 2D convolu-
tional kernel. Unlike the RGB-D-based method in [21], the
XYZ map is propagated to the rear layer to retain the spa-
tial information of the local features. Then, a CNN-based
PointNet [28] module is utilized to encode the point cloud
with local features. Finally, the different modality features
are aggregated. The experimental results reveal the superi-
ority of the proposed XYZNet.

In addition, learning-based manners easily fail toward
the symmetric object. To explain this problem, we model
the network training of 6D pose estimation as minimizing
the following loss:

l = loss(p, p̂) = loss(N(I, w), p̂), (1)
where p is the estimated pose from network N(I, w), p̂ is
the ground truth, I represents the input image, and w de-
notes the parameters of the network. The essence of the
training is constantly adjusting the parameters of the net-
work to the direction of the gradient of loss(p, p̂). Finally,
the network will converge to the global or local minimum
in the loss landscape. A symmetric object O has several
ground truths S(O) = {p̂1, p̂2, . . . , p̂k}, which are called
proper symmetries of the object O [1]. Typically, when us-
ing L1 loss to train the neural network of object O, it would
converge to the state that predicts the average of S(O),
which is mapped to the minimum of the L1 loss surface.
However, the average of S(O) is meaningless.

To avoid this problem, the loss function should satisfy
two requirements: (1) all minima in the loss surface are
mapped to the correct poses; and (2) the loss function is
continuous, as Deep Networks can only approximate the
continuous functions [9, 18]. ADD-S is widely used as the
loss in prior regression frameworks [33, 35, 38, 39] to han-
dle symmetries. The ADD-S loss is always continuous but
does not satisfy requirement (1) in some cases. As shown in
Figure 1, several local minima in the ADD-S landscape are
mapped to incorrect poses because of the particular shape
of the objects. The motivation of our solution is to design
a novel pose distance metric that is in the 3D metric space
(meter, for instance) like ADD-S, and satisfies requirements
(1) and (2). To this end, we introduce a novel shape rep-
resentation for arbitrary objects named grouped primitives
(GP). The GP is only associated with the proper symmetries
S(O) and ignores the details of the shape. Then, we di-

vide symmetric objects into five categories and give the cor-
responding distance metric called the average (maximum)
grouped primitives distance, or A(M)GPD. For typical sym-
metric objects, the validity of A(M)GPD is verified by a nu-
merical and visualization method.

We evaluate the proposed framework on the YCB-Video
[38] and T-LESS datasets [15] and demonstrate its superior-
ity by taking into account the trade-off between speed and
accuracy. In summary, the main contributions of this work
are as follows.

• We propose a novel feature extraction network
XYZNet for the RGB-D data, which is suitable for
pose estimation with low computational cost and su-
perior performance.

• The compact shape representation GP and the distance
metric A(M)GPD are introduced to handle symme-
tries. The loss based on A(M)GPD can constrain the
regression network to converge to the correct state.

• A numerical simulation and visualization method is
carried out to analyze the validity of the A(M)GPD
loss. This analytical method is applicable to other
frameworks in 6D pose estimation.

• The framework ES6D is proposed by using XYZNet
and the A(M)GPD loss and achieves competitive per-
formance on the YCB-Video and T-LESS datasets.

2. Related Work

2.1. Pose estimation from RGB-D data

To make good use of the texture and geometry informa-
tion of the RGB-D data, works in [11, 12, 19, 35] leverage a
dense fusion network to fuse RGB and point cloud features
by the indexing operation. However, the indexing operation
is inefficient due to random memory access. The algorithm
in [21] relates work to our network, as it also tries to ex-
tract RGB and point cloud features simultaneously with 2D
convolutional kernels. However, the geometric information
of the point cloud is discarded during the convolution op-
eration, which results in lower estimation accuracy. Unlike
the above methods, our framework introduces a fully con-
volution network, XYZNet, to obtain the point-wise fea-
tures, from which poses will be regressed. Moreover, none
of [11, 12, 19, 21, 35] can handle symmetries.

2.2. Handling symmetries in pose estimation

A symmetric object with different poses can have an
identical appearance, which leads to ambiguity as described
in [27]. To solve this problem, the methods in [27, 30] limit
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Figure 2. Network overview. First, the RGB-XYZ data is generated from the RGB-D image. The RGB-XYZ data is fed into a CNN
module to extract local features, which encode color and geometry information. Second, the point cloud features are obtained by a
PointNet-like CNN module and padded to the same size as the local features. Then, the local features and point cloud features are
concatenated as the point-wise features for poses estimation. Finally, the pose with the maximum confidence is chosen as the final result.

the range of rotation in the training phase and use an addi-
tional classifier to identify the range of a rotation in the test-
ing phase. The methods in [25,36] calculate the average dis-
tance of the corresponding pixels of all the proper symme-
tries S(O), and choose the minimum as the final loss. The
object is represented by compact surface fragments in [14],
which enable the symmetries to be handled in a systematic
manner. The regression methods [35, 38] avoid ambiguity
by utilizing ADD-S as the loss in the training stage. The
ADD-S, however, is not suitable to some symmetric objects,
e.g., the bowl and large clamp in the YCB-Video dataset, as
shown in Figure 1. Three ambiguity-invariant pose distance
metrics ACPD, MCPD, and VSD proposed in [16] evalu-
ate the error between the estimated pose and ground-truth
pose. However, whether the surface of these metrics have
incorrect minima has not been identified. Compared with
the above methods, our A(M)GPD loss satisfies the follow-
ing two properties at the same time: (1) all minima in the
loss surface are mapped to the correct poses; and (2) the loss
function is continuous.

3. The Proposed Method

3.1. Overview

The aim of this paper is to detect rigid objects and es-
timate the corresponding rotations R ∈ SO(3) and trans-

lations t ∈ R3 in the camera coordinate system from an
RGB-D image. A two-stage scheme is proposed as below.

In the first stage, the segmentation network of PoseCNN
[38] is utilized to obtain the mask and bounding box of the
target object. Each mask and RGB-D image patch cropped
by the bounding box is transmitted to the second stage.

In the second stage, a real-time framework, called ES6D,
is proposed to estimate the pose. The pipeline of this frame-
work is illustrated in Figure 2. First, the masked depth pix-
els are transformed into the XYZ map after normalization.
Second, the XYZNet extracts the point-wise features from
the concatenation of the RGB patch and XYZ map. Then,
three convolution heads are utilized to predict the point-
wise translation offsets, quaternions, and confidences. Fi-
nally, the pose with the maximum confidence is chosen as
the final result.

3.2. Point-wise feature extraction

It has been verified that the point-wise feature from
RGB-D data is more effective and robust than the fea-
ture from the RGB image for 6D pose estimation [12, 35].
The state-of-the-art method PVN3D [12] adopts a hetero-
geneous structure that obtains the point cloud features by
PointNet++ [29], and then concatenates the point cloud fea-
tures with the RGB features through the indexing operation.
PointNet++ extracts the local features by a series of set ab-
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straction layers (SAL) that groups the point cloud in a pre-
defined search radius. However, dealing with the massive
point cloud is time-consuming, and the representation abil-
ity would decrease if we cut down the set abstraction layer.
One trait of the 2D convolution operation is grouping neigh-
boring information to extract local features. Therefore, the
proposed XYZNet intends to simultaneously extract the lo-
cal features by doing the 2D convolution operation on the
RGB-XYZ image.

First, the masked depth pixels are transformed into the
point cloud P = {(xi, yi, zi)}Ni=1, and then the points P
are translated and scaled to [−1, 1] with the center of points
pc = mean(P) and a scale factor γ. The normalized points
are denoted as Ṗ = {(ẋi, ẏi, żi)}Ni=1 and formatted as an
XYZ map. The strictly aligned RGB-XYZ data can be ob-
tained by concatenating the XYZ map with the correspond-
ing RGB patch. The method in [21] also adopts the 2D con-
volution network to extract point cloud features from the
XYZ map, but the performance is far worse than the het-
erogeneous structure methods [12,35]. The main reason for
this is that the spatial information of the point cloud would
be discarded when using the 2D convolution operation on
the XYZ map. We design the XYZNet based on the above
observations, as illustrated in Figure 2.

The XYZNet consists of three parts. (1) Local feature
extraction module. 2D convolution layers are used to learn
the local features. The different convolution kernel sizes
and the downsample rates are set to enlarge the receptive
field. (2) Spatial information encoding module. The main
function of this module is to extract the point cloud features.
The module concatenates the local features with the XYZ
map to regain the spatial structure and utilizes the 1 × 1
convolution to encode the local feature and coordinate of
each point. Then, the global feature is obtained by max-
pooling and concatenated to each point feature to provide a
global context. (3) Feature aggregation. The local features
and point cloud features are concatenated as the point-wise
features. The fusion of the two modalities makes pose esti-
mation robust against less texture and heavy occlusion.

3.3. 6D pose regression

After the XYZNet is completed, the set of point-wise
features F = {f i}

N
i=1, f i ∈ Rd, are obtained. In this

subsection, we describe how to exploit the point-wise fea-
ture f i and the corresponding visible point ṗi ∈ Ṗ to
estimate the rotation Ri ∈ SO(3) and translation ti ∈
R3. As shown in Figure 2, three 1 × 1 convolution heads
(BT ,BQ,BC) are adopted to regress the translation off-
set

(
∆ṫi ∈ R3

)
, quaternion

(
qi ∈ R4, ∥qi∥ = 1

)
and con-

fidence (ci ∈ [0, 1]).
3D translation regression Regarding the origin of the

normalized object coordinate system as a virtual keypoint,
the translation ti can be obtained by calculating the offset

∆ṫi between the visible point ṗi and the origin. The equa-
tion could be given as:

∆ṫi = BT (f i) , (2)

ti =

(
ṗi +∆ṫi

)
γ

+ pc, (3)

where the offset of the visible point ṗi is distributed in a
specific sphere. This regression function gets a smaller out-
put space than directly regressing the object translation [7].

3D rotation regression We exploit the quaternion as ro-
tation representation following [35,38]. We get the rotation
matrix as follow:

Ri = Quaternion matrix (Norm (BQ (f i))) , (4)

Norm(qi) =
qi

∥qi∥
, (5)

where Quaternion matrix(·) denotes the function that
transforms the quaternion into the rotation matrix [31].

Confidence regression To identify the best regression
result, we set a confidence estimation head to evaluate each
feature’s confidence ci. The equation is given as:

ci = Sigmoid (BC (f i)) . (6)

We train the confidence branch BC with the self-supervision
approach that is mentioned in [35].

3.4. Symmetry-aware loss

The existed symmetry-invariant distance metric depends
on the 3D shape of the object, such as ADD-S, ACPD,
MCPD, VSD [16, 35]. However, unique shape and point-
pair mismatch are the causes of incorrect minima. Besides,
objects, in reality, have various shapes and we cannot guar-
antee these metrics are valid for every shape. Therefore,
we designed grouped primitives, GP, that abstract objects
of the same category into several points to avoid the uncer-
tainty caused by the shape. Furthermore, we divide these
points into groups and calculate the distance between clos-
est points in the same group, according to Eq. 12 and 13,
which avoids point-pair mismatch.

Grouped primitives We illustrate the pipeline of the GP
construction in Figure 3. Having the 3D model of the spe-
cific object, we could calculate all symmetry axes according
to Eq. 9 and 10. The primitives for grouping are composed
of the endpoint of the symmetry axis and the object cen-
troid. Specifically, the following three steps are required.

Step 1 The basic properties of the symmetry axis-angle
are defined and explained. The appearance of the object O
looks the same after a rotation around axis e = (ex, ey, ez)
by angle θ. Thus, the axis e is a symmetry axis of O. The
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Figure 3. The pipeline of the GP construction.

axis e and the angle θ compose a symmetry axis-angle a ,
which is defined as:

a = (e, θ), ∥e∥ = 1 ∧ θ ∈ {2π/i}Mi=2. (7)

It is important to note that 2π must be an integer multiple
of the angle θ of symmetry [37], and the order of a can be
defined as:

|a| = 2π/θ(a). (8)

The symmetry axis-angle is a redundant form. For exam-
ple, a pyramid, the object of category 2 in Figure 4, has four
symmetry axis-angles: (e, π/2), (e, π), (−e, π/2), and
(−e, π), where e is parallel to the green line. In this case,
the four symmetry axis-angles have the same meaning for
this object because of the same axis e. The angles of these
four symmetry axis-angles must have a greatest common di-
visor π/2 due to the cyclic property of rotational symmetry.
Note that, only the symmetry axis-angle, whose angle is
the greatest common divisor, is used in this work, e.g.,
(e, π/2) and (−e, π/2).

Step 2 In the object coordinate system, in which the cen-
troid of the object is used as the origin, a set of rough sym-
metry axis-angles of object O can be obtained by using the
following formula:

ÂO = {a|h (PO, R(a)PO) < ε} , (9)

where h is the Hausdorff distance, PO represents the ver-
tices of the object model, R(a) is the associated rotation
matrix of symmetry axis-angle a, and the allowed deviation
is bounded by ε. Then, based on symmetry axes, the Mean-
Shift clustering algorithm [5] is applied to simplify ÂO:

AO = Mean Shift(ÂO). (10)

At this point, AO contains all symmetry axis-angles of the
object O without redundancy, where |AO| is the size of AO

and is a multiple of 2 because symmetry axis-angles always

come in pairs, e.g., (e, π/2) and (−e, π/2). Further, a sub-
set ACO of AO can be obtained as:

ACO = {a|a ∈ AO ∧ |a| > ρ}, (11)

where ρ is the relaxed threshold. When |a| > ρ, we con-
sider a as a continuous symmetry axis-angle, and most of
the applications are covered when ρ is set as 6, including all
the objects to be evaluated in the experiment section. Ac-
cording to the size of AO and ACO, symmetry objects can
be divided into five categories, as shown in Figure 4.

Step 3 As illustrated in Figure 3, if the primitive A could
overlap with primitive B after a specific angle around the
axis of symmetry, we regard primitive A and B lie in the
same group. The grouped primitives are denoted as G =
{gi}Ki=0, where K is the size of G. The details of grouping
principle are showed in the supplementary material.

Pose distance metric Based on the GP, the pose distance
metric A(M)GPD is designed. The A(M)GPD contains two
functions, the first of which is average grouped primitives
distance (AGPD):
AGPD = meangi∈G meanpj∈gi minpk∈gi,k ̸=j ∥p̂j − ṗk∥ ,

(12)
where p̂ = T̂ p, ṗ = Ṫ p, p ∈ g(G), and T̂ , Ṫ ∈ SE(3).
AGPD is used to measure the distance of two poses of object
O, when O is one of the symmetry categories {1, 3, 4, 5} or
the asymmetric object.

The category 2 is different from the others. It has only
one pair of symmetry axes, which have a finite order. This
property leads to an incorrect minimum in the rotation space
if AGPD is used as the loss, as illustrated in the second row
in Figure 1. To solve this problem, the second function max-
imum grouped primitives distance (MGPD) is introduced:
MGPD = maxgi∈G maxpj∈gi minpk∈gik ̸=j ∥p̂j − ṗk∥ .

(13)
Loss for regression training The total loss of our re-

gression framework is similar to the loss in [35], where the
difference is that A(M)GPD is used to calculate the error
between prediction and ground truth instead of ADD(S).
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Figure 4. Grouped primitives and the visualization of A(M)GPD landscape. Based on the size of AO and ACO , symmetric objects
can be classified into five categories. For each category, a typical toy model and its grouped primitives are presented in the first row plots.
The second row shows the A(M)GPD landscape of each object in the rotation space, where the darker color represents the smaller value of
A(M)GPD. The third row shows the minima in each landscape. Best viewed in color.

With PoseCNN segment mask With GT segment mask
FFB6D DenseFusion DenseFusion ES6D PVN3D [12] ES6D[11] (per-pixel) [35] (iterative) [35] (post process)

ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S)
bowl 96.3 96.3 86.0 86.0 89.5 89.5 96.4 96.4 88.7 88.7 96.8 96.8
wood block 92.6 92.6 89.5 89.5 92.8 92.8 94.4 94.4 91.5 91.5 96.0 96.0
large clamp 96.8 96.8 71.5 71.5 72.5 72.5 61.0 61.0 94.4 94.4 97.5 97.5
extra large clamp 96.0 96.0 70.2 70.2 69.9 69.9 59.6 59.6 91.1 91.1 96.8 96.8
foam brick 97.3 97.3 92.2 92.2 92.0 92.0 96.6 96.6 96.8 96.8 96.9 96.9
ALL 96.6 92.7 91.2 82.9 93.2 86.1 93.6 89.0 95.7 91.9 97.1 93.2

Table 1. Comparison of 6D pose (ADD-S, ADD(S)) on the YCB-Video dataset [38]. The listed objects are symmetric. More detail could
be found in the supplementary material.

3.5. Validation of A(M)GPD

In this subsection, a numerical and visualization method
is proposed to check whether A(M)GPD meets the require-
ment (1) described in the introduction. In order to get a
clearer view of the A(M)GPD landscape on R ∈ SO(3), we
first exploit the sampling technique to generate N rotations
RC = {Ri}Ni=1 that are densely distributed on R ∈ SO(3).
Second, the identity matrix I3×3 is treated as the ground
truth, and Ṙ ∈ RC is the prediction. The A(M)GPD of
I3×3 and Ṙ can be given as ḋ,

ḋ = A(M)GPD(I3×3, Ṙ). (14)

Then, we visualise ḋ with the help of the rotation vector
v = (vx, vy, vz), in which the direction is the rotation axis
and the length is the rotation angle θ ∈ [0, π]. As shown
in the second row plots in Figure 4, the coordinate of Ṙ
is v(Ṙ) and the color value of Ṙ is the corresponding ḋ
(the darker color represents the smaller ḋ). However, it is
hard to find minima in these plots, so we further simulate
the process of gradient descent by a simple algorithm. The
principle of this algorithm is that v(Ṙ) constantly moves
to v(R̂), which has the minimum d̂ in the neighborhood of
v(Ṙ) and this point will stop in a local minimum at last. We
perform this principle on each v(Ṙ), and the found minima
are labeled with red stars in the third row plots in Figure 4.

6723



Pose Est. eADI(VIVO) eV SD(VIVO) eADI(SISO) eV SD(SISO) ADD(S) A(M)GPD Training data Time (s)
PointNet++ [29] D 0.74 0.50 0.78 0.54 – – 37K 0.4
PPFNet [6] D 0.76 0.44 0.79 0.49 – – 37K 0.4
StablePose [32] D 0.86 0.69 0.88 0.73 – – 37K 0.4
Pix2Pose [25] RGBD – – – 0.30 – – 37K 0.6
CosyPose [20] RGBD 0.68 0.63 0.75 0.64 – – 1M 1.1
ES6D (ADD(S)) RGBD 0.79 0.68 0.80 0.69 93.08 55.99 1M 0.07
ES6D (A(M)GPD) RGBD 0.81 0.75 0.82 0.76 93.40 82.70 1M 0.07

Table 2. Comparison of 6D pose on the T-LESS dataset [15]. ES6D (ADD(S)) and ES6D (A(M)GPD) means the network is trained by the
ADD(S) and A(M)GPD loss, respectively. The inference time of ES6D includes the mask segmentation cost.

As we can see, all minima are mapped to the correct poses.
The other objects are presented in the supplement.

4. Experiments
4.1. Implementation detail

Our approach is implemented with Pytorch. We resize
the RGB patch and XYZ map into 128×128 before putting
them into the neural network. The local feature extraction
module in the XYZNet is modified from ResNet18 [10].
For better performance, the grouped primitives is scaled by
the object’s radius. All the experiments are on an Intel (R)
Xeon (R) 2.4GHz CPU with NVIDIA GTX 2080 Ti GPU.

4.2. Datasets

YCB-Video [38] is collected from 21 YCB [2] objects
including 5 symmetric objects, which is a challenging task
due to its various lighting conditions, significant image
noise, and occlusions. The dataset contains 92 RGB-D
videos, where each video shows a subset of the 21 objects
in different indoor scenes. We follow prior works and split
the dataset into 80 videos for training and 2,949 keyframes
from the remaining 12 videos for testing. We also use the
80,000 synthetic images released by [38] in our training set.

T-LESS [15] is a challenging dataset with 27 symmetric
objects and 3 asymmetric objects, which could effectively
evaluate our proposed symmetric-aware method. Since the
object is texture-less and has a similar appearance feature, it
is much more challenging than the YCB-Video dataset. We
use the mask result from [32] for a fair comparison.

4.3. Metrics

In YCB-Video dataset, following [12], the area under
curve (AUC) of ADD-S and ADD(S) is treated as perfor-
mance metrics for comparison of peer algorithms. In ad-
dition, the ADD(S) [13] calculates the ADD distance for
non-symmetric objects and ADD-S distance for symmetric
objects, which is more rigorous in evaluation than ADD-
S. The AUC of ADD-S and ADD(S) for the YCB-Video
dataset serve as the performance metrics.

In T-LESS dataset, we report the Average Closest Point
Distance (ADI) and Visible Surface Discrepancy (VSD) fol-

lowing the setting in [32]. In addition, to reveal the discrep-
ancy of ADD(S) and A(M)GPD, we compare the AUC of
ADD(S) and the proposed A(M)GPD for the ablation study
with the ground truth mask because the mask from [32] does
not offer the index to the ground truth label.

4.4. Comparison with SOTA methods

YCB-Video To ensure a fair comparison with DenseFu-
sion [35], we use the segmentation of PoseCNN for the test-
ing results. Note that the large clamp and extra-large clamp
in the dataset have the same appearance but with different
sizes, which would cause a poor segmentation result. The
failure cases in ES6D are shown in the supplemental ma-
terial. From Table 1, it is observed that our method out-
performs DenseFusion (iterative) by 2.9%. FFB6D [11] is
better than us, which gets a better instance segmentation
result by clustering after the segmentation but with an addi-
tional time cost. It is worth mentioning that no refinement
and post process are used in our method, while the Dense-
Fusion (iterative) includes the refinement and post process.
In addition, we take the ground truth masks as input both
in ES6D and PVN3D [12] for a comparison. In particu-
lar, our method outperforms PVN3D in symmetric objects
by a large margin, e.g., bowl (8.1%), wood block (4.5%),
large clamp (3.1%), and extra large clamp (5.7%).

T-LESS Table 2 shows the comparison of 6D pose on
the T-LESS dataset [15]. Pix2Pose [25] regresses pixel-
wise 3D coordinates by an auto-encoder architecture. Cosy-
Pose [20] estimates the 6D pose based on the RGB image,
and then does the ICP refinement with the depth image.
StablePose [32] obtains 6D object pose by stable patch ex-
traction and patch pose estimation. Compared with these
methods, the proposed ES6D is a more simple and efficient
framework. We achieve the best result in the VSD metric in
both single instance of a single object (SISO) and varying
number of instances of varying number objects in single-
view RGBD images (VIVO). Besides, the inference time is
much lower in comparison to these methods.

4.5. Ablation study

XYZNet We further explore the effects of the individ-
ual modules in XYZNet in Table 3. The experiments are
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Method LEF CXYZ SIE FA A(M)GPD YCB Time FLOPs Parameters
Loss ADD(S) (ms) (G) (M)

Unified like [21] 91.50 8.4 7.39 17.85
XYZNet 1 Res18 91.86 5.1 7.90 16.29
XYZNet 2 Res18

√
92.04 5.7 9.16 17.52

XYZNet 3 Res18
√ √

92.42 5.8 9.16 17.52
XYZNet 4 Res18

√ √ √
93.03 5.9 10.17 18.51

ES6D Res18
√ √ √ √

93.23 5.9 10.17 18.51

Table 3. Ablation study on XYZNet. LFE: local feature extraction; CXYZ: concatenate XYZ map and local features; SIE: spatial informa-
tion encoding; FA: feature aggregation. The detailed structure of each module is illustrated in Figure 2.

based on our regression framework. All methods are trained
with the ADD(S) loss, except for ES6D. The experimental
results demonstrate that the complete network, which com-
prises LEF, CXYZ, SIE, and FA, is the optimal architecture
in these schemes. The Unified like [21] structure is not sat-
isfactory on both accuracy and inference time. Compared
with XYZNet 2, XYZNet 3 obtains a large improvement
by concatenating the XYZ map to local features, demon-
strating the effectiveness of this explicit concatenation op-
eration in practice. Furthermore, by adding the FA module,
the XYZNet 4 yields the improvement, which illustrates the
effectiveness of multimodal feature fusion (2D image and
3D point cloud).

A(M)GPD versus ADD(S) The motivation behind de-
veloping the A(M)GPD is the problem that the ADD(S)
metric is insensitive to the rotation error of symmetry ob-
jects. For the comparison between ADD(S) loss and the
proposed A(M)GPD loss, we conduct the experiment on the
proposed ES6D with different loss settings. From the Table
2, it can be seen that the AUC of ADD(S) is close but there
is a large gap in the A(M)GPD metric. For a more convinc-
ing result, we visualize part of the symmetric object in Fig-
ure 5. We observe that the ADD(S) loss result can have the
totally reversed pose, but the ADD(S) metric can not dis-
tinguish this situation. On the other hand, we also see that
the result from the A(M)GPD loss could correctly reflect
this situation. By combining it with the curve illustrated
in Figure 1, we can conclude that the proposed A(M)GPD
loss could effectively eliminate the local minima problem in
ADD-S loss during the training phase. In addition, the pro-
posed A(M)GPD metric is much more accurate in the pose
evaluation of a symmetric object.

5. Limitations

The performance of ES6D depends on the result of the
2D segmentation network [32, 38] and the quaternion has
been proved to be discontinuous in [41]. Therefore, a uni-
fied network for instance segmentation and pose estima-
tion, and the continuous rotation representation introduced
in [41] will be investigated in future work.

Figure 5. Visualization on the T-LESS dataset with different
training loss. The green, red, and blue lines represent the ground
truth pose, the result from A(M)GPD loss, and the result from
ADD(S) loss, respectively.

6. Conclusion

In this paper, a novel 6D pose estimation framework,
ES6D, is proposed based on the XYZNet and A(M)GPD
loss. The XYZNet is designed for feature extraction from
RGB-D data. It has a fully convolutional architecture and
achieves an excellent trade-off between efficiency and ef-
fectiveness. Additionally, the A(M)GPD loss is proposed
to handle symmetric objects, and performs better than
ADD(S) loss. Moreover, a novel numerical and visualiza-
tion method is introduced to check the potential incorrect
suboptimal in the loss surface.
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