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Abstract

While datasets with single-label supervision have pro-
pelled rapid advances in image classification, additional
annotations are necessary in order to quantitatively as-
sess how models make predictions. To this end, for a sub-
set of ImageNet samples, we collect segmentation masks
for the entire object and 18 informative attributes. We
call this dataset RIVAL10 (RIch Visual Attributes with
Localization), consisting of roughly 26k instances over 10
classes. Using RIVAL10, we evaluate the sensitivity of a
broad set of models to noise corruptions in foregrounds,
backgrounds and attributes. In our analysis, we consider
diverse state-of-the-art architectures (ResNets, Transform-
ers) and training procedures (CLIP, SimCLR, DeiT, Adver-
sarial Training). We find that, somewhat surprisingly, in
ResNets, adversarial training makes models more sensitive
to the background compared to foreground than standard
training. Similarly, contrastively-trained models also have
lower relative foreground sensitivity in both transformers
and ResNets. Lastly, we observe intriguing adaptive abil-
ities of transformers to increase relative foreground sensi-
tivity as corruption level increases. Using saliency meth-
ods, we automatically discover spurious features that drive
the background sensitivity of models and assess alignment
of saliency maps with foregrounds. Finally, we quantita-
tively study the attribution problem for neural features by
comparing feature saliency with ground-truth localization
of semantic attributes.

1. Introduction
Large scale benchmark datasets like ImageNet [9] that

were constructed with single class label annotation have
propelled rapid advances in the image classification task
[18, 21, 50, 58]. Over the last decade, several network ar-
chitectures and training procedures were proposed to yield

Figure 1. Examples where background noise degrades perfor-
mance of highly accurate models more than foreground noise.
Gaussian ℓ∞ noise with standard deviation σ = 0.24 shown.
Probabilities are averaged over ten trials. While these examples
are cherry picked, we observe that they are surprisingly prevalent,
and model design can affect the degree to which such cases arise.

very high classification accuracies [10, 18, 45, 50]. How-
ever, methods to interpret these model predictions and to
diagnose undesirable behaviors are fairly limited. One of
the most popular class of approaches are saliency meth-
ods [43, 48, 49, 59] that use model gradients to produce a
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Figure 2. Accuracy under noise in foregrounds and backgrounds,
averaged over multiple noise levels. Marker size is proportional to
parameter count. Models with higher relative foreground sensitiv-
ity lie further from the diagonal.

saliency map corresponding to the most influential input re-
gions that yielded the resulting prediction. However, these
methods are qualitative, require human supervision, and can
be noisy, thus making their judgements potentially unreli-
able when made in isolation of other supporting analysis.

In this paper, we argue that to obtain a proper under-
standing of how specific input regions impact the predic-
tion, we need additional ground truth annotations beyond a
single class label. To this end, we introduce a novel dataset,
RIVAL10, whose samples include RIch Visual Attributions
with Localization. RIVAL10 consists of images from 20
categories of ImageNet-1k [9], with a total of 26k high res-
olution images organized into 10 classes, matching those
of CIFAR10 [26]. The main contribution of our dataset is
instance wise labels for 18 informative visual attributes, as
well as segmentation masks for each attribute and the en-
tire object. We present our dataset as a general resource for
understanding models trained on ImageNet. We then pro-
vide a study of the sensitivity of a diverse set of models to
foregrounds, backgrounds, and attributes.

Our study of background and foreground model sensitiv-
ity is motivated by some counter-intuitive model behaviors
on images whose background and foreground regions were
corrupted with Gaussian noise: Figure 1 shows instances
where highly accurate models have performance degraded
much more due to the background noise than the foreground
noise. While this is not the norm (i.e. models are more sen-
sitive to foregrounds on average), the existence of these ex-
amples warrants greater investigation, as they expose a stark
difference in how deep models and humans perform object
recognition. Quantifying the degree to which different ar-
chitectures and training procedures admit these examples
can shed new insight on how models incorporate foreground
and background information.

To this end, we conduct a noise analysis that leverages
object segmentation masks to quantitatively assess model
sensitivity to foregrounds relative to backgrounds. We
proxy sensitivity to a region by observing model perfor-
mance under corruption of that region. We propose a nor-
malized metric, relative foreground sensitivity (RFS), to
compare models with various general noise robustness. A
high RFS value indicates that the model uses foreground
features in its inferences more than background ones since
corrupting them result in higher performance degradation.

In Figure 2, we see different architectures and train-
ing procedures lead to variations in both general noise ro-
bustness (projection onto the main diagonal) and relative
foreground sensitivity (normalized distance orthogonal to
the diagonal). Notably, we find that adversarially training
ResNets significantly reduces RFS, surprisingly suggest-
ing that robust ResNet models make greater use of back-
ground information. We also observe contrastive training to
reduce RFS, and transformers to uniquely be able to adjust
RFS across noise levels, reducing their sensitivity to back-
grounds as corruption level increases. Lastly, we find object
classes strongly affect RFS across models.

We couple our noise analysis with saliency methods to
add a second perspective of model sensitivity to different in-
put regions. Using RIVAL10 segmentations, we can quan-
titatively assess the alignment of saliency maps to fore-
grounds. We also show how we can discover spurious back-
ground features by sorting images based on the saliency
alignment scores. We observe that performance trends that
our noise analysis reveals are not captured using qualitative
saliency methods alone, suggesting our noise analysis can
provide new insights on model sensitivity to foregrounds
and backgrounds.

Lastly, we utilize RIVAL10 attribute segmentations to
systematically investigate the generalizability of neural fea-
ture attribution: for a neural feature (i.e., a neuron in the
penultimate layer of the network) that achieves the highest
intersection-over-union (IOU) score with a specific attribute
mask on top-k images within a class, how the IOU scores
of that neural feature behave on other samples in that class.
For some class-attribute pairs (e.g. dog, floppy-ears), we in-
deed observe generalizability of neural feature attributions,
in the sense that test set IOUs are also high.

In summary, we present a novel dataset with rich anno-
tations of object and attribute segmentation masks that can
be used for a myriad of applications including model inter-
pretability. We then present a study involving three quan-
titative methods to analyze the sensitivity of models to dif-
ferent regions in inputs. We hope the RIVAL10 dataset will
help study failure modes of current deep classifiers and pave
the way for building more reliable models in the future.
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2. Review of Literature

2.1. Related Datasets

Prior to the rise of deep learning, a number of works
studied attribute classification, leading to the construction
of datasets such as Animals with Attributes [27] and aPAS-
CAL VOC 2008 [14] (adding annotations to [13]). [54] pub-
lished CUB 200, a fine-grained classification dataset of bird
species with object segmentations and part localizations in
the form of single coordinates, as opposed to segmenta-
tion masks like in RIVAL10. Finally, [41] collected ob-
ject attributes on a small-scale subset of ImageNet. More
recently, [36] publish a large-scale object attribute dataset
on a subset of ImageNet. The Celeb-A dataset [29] con-
tains attribution with applications to generative modeling,
but limited utility for general representation learning since
it only contains face images. The broader dataset Visual At-
tributes in the Wild (VAW) [38] provides large-scale in the
wild attribute annotations for 250k object instances.

Many datasets aim to stress test models to reveal limita-
tions. [19] introduces ImageNet variants under diverse cor-
ruption types, including Gaussian noise. [20] adds two more
ImageNet variants that include challenging natural samples
and out of distribution samples, on which top models see
massive accuracy drops. Models evaluated on [2] simi-
larly see large drops, though this dataset differs in that it is
strictly a test set. Other works introduce synthetic datasets
to assess spatial biases [57] or background reliance of clas-
sifiers, such as [56] and [42], which perform some varia-
tion of swapping or altering foregrounds and backgrounds.
Though similar, these works differ in objective and techni-
cal contribution to ours. [42] focuses on developing a novel
distributionally robust optimization procedure. [56] empha-
sizes designing a multitude of test datasets through creative
editing of foreground and background regions to serve as
a general benchmark to evaluate models. In contrast, our
work presents a novel method to analyze foreground sensi-
tivity, and demonstrates its utility by applying it to a breadth
of cutting-edge architectures and training paradigms, lead-
ing to model-specific observations. Further, our RIVAL10
dataset is significantly larger and richer in annotation.

Recently, [46] uses saliency maps and feature visualiza-
tion in a semi-automated process to identify deep neural
nodes corresponding to core or spurious features for an ob-
ject of a given class, resulting in a large-scale dataset with
segmentations corresponding to salient features. However,
annotation of the segmented regions are limited to just la-
beling them as ‘core’ or ‘spurious’.

2.2. Interpretability Methods

A number of methods have been proposed to interpret
model predictions, such as saliency or class activation maps
[43], influence functions [25], and surrogate white box

models [40, 55]. However, saliency maps have been found
to be noisy and influence functions are fragile [3,16]. Some
methods seek to interpret the function of a neural node via
synthesizing inputs that maximize its activation [33,35,47],
though these methods are limited when non-adversarially
robust models are used [34], and offer qualitative insights.

A motivation behind the development of interpretability
methods is to work towards addressing the ‘shortcut learn-
ing’ issue, where models rely on easy-to-learn features that
lead to high performance on training sets, but poor gen-
eralization in other settings. [15] discusses this at length,
recommending the development and usage of challenging
datasets whose inputs are out-of-distribution with respect
to standard benchmarks. RIVAL10’s rich annotations open
the door to the construction of many challenge datasets,
in which shortcuts are broken via swapping backgrounds,
foregrounds, and attributes (examples in Appendix).

Other constructive works aimed to reduce the reliance of
deep models on spurious features appeal to counterfactual
data generation [1, 6, 17], often appealing to disentangled
representations or explicit annotations to break correlations
of texture, shapes, colors, and backgrounds. Further, [23]
found that removing spurious features can in fact hurt accu-
racy and disproportionately affect groups. Thus, the notion
that spurious features are always harmful is incomplete, and
a closer look is required to ground discussions regarding
the shortcut learning issue. Lastly, [52] provides theoretical
context for stress testing models to discern causal factors.

3. RIVAL10

3.1. Overview

RIVAL10 differs from previous attributed datasets in that
it provides attribute-specific localizations. That is, for every
positive instance of an attribute, a binary segmentation mask
identifies the image region in which the attribute occurs.

Perhaps, the most similar dataset in this regard is the
recent Fashionpedia [22], a dataset providing attributes
and localizations of 27 apparel categories. However, the
dataset is proposed for the fashion domain which limits
its utility for general purpose object recognition task. To
the best of our knowledge, RIVAL10 is the first general
domain dataset to provide both rich semantic attributes
and localization, the combination of which we envision
to aid in analyzing the robustness and interpretability of
deep networks. While other datasets used for semantic
segmentation and object detection go beyond single label
annotations [8,12,28], they are not designed with classifiers
specifically in mind, like RIVAL10.

Classes were chosen to be aligned with CIFAR-10 to en-
able analyzing the existing architectures and training tech-
niques developed for the object recognition task. In partic-
ular, the classes we provide are: bird, car, cat, deer, dog,
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Figure 3. (Left): Correlations between attributes in the training split. (Right): Class-wise means of attribute vectors in the training split.

equine, frog, plane, ship, truck. We collected the following
attributes for these object categories: beak, colored-eyes,
ears, floppy-ears, hairy, horns, long, long-snout, mane,
metallic, patterned, rectangular, tail, tall, text, wet, wheels,
wings. Some attributes were inspired from [41].

We chose attributes to be intuitively informative, captur-
ing semantic concepts that humans may allude to in classi-
fying RIVAL10 objects. While the attributes contain some
redundant information, they are nonetheless discriminative
in the sense that a linear classifier on attributes achieves
93.3% test accuracy. We visualize attribute correlations and
class-wise frequencies in Figure 3.

3.2. Data Collection

All images were sourced from ImageNet [9]. The images
used in each RIVAL10 class were derived from pairs of re-
lated ImageNet classes. In other words, 20 classes from Im-
agenet were used to build the 10 RIVAL10 classes (details
in appendix). To collect our attributes and localizations, we
hired workers from Amazon Mechanical Turk (AMT). Data
collected through AMT without careful control may be of
low quality. To encourage quality annotations, we utilize
strategies recommended by the HCI community [31]: pro-
viding detailed instructions, screening workers for aptitude,
and monitoring worker performance with attention checks.

Binary attributions were collected first. Workers were
required to pass a qualification test of 20 images with
known ground truth attributes: only workers who achieved
a minimal overall precision and recall of 0.75 were hired
for full data collection. Because the task of segmenta-
tion is more involved than indicating whether or not an at-
tribute is present, we required a second qualification test, as-
sessing annotation quality by computing intersection-over-
union (IOU) of the submitted attribute masks with ground
truth masks. Workers were required to complete five seg-
mentations with an average IOU of at least 0.7.

To ensure that quality is maintained in both the attribu-
tion and segmentation phases, roughly 5% of images pro-
vided to workers to annotate already had ground truth la-
bels. These so-called attention checks allowed for the mon-
itoring of annotation quality during the collection process.
In the first stage of collecting binary attribute labels, the av-
erage precision and recall scores were 0.81 and 0.84 respec-
tively. For each positive instance of an attribute marked in
the first phase of data collection, an attribute segmentation
was collected in the second phase. Completeing attribute
segmentations in a second pass allowed for the review of the
binary attributions and the removal of any false positives.
Average IOU of attention checks completed during the sec-
ond phase of data collection was 0.745. Further details on
our data collection pipeline, including images of instruc-
tions shown to workers, payments, and quality-assurance
metrics, can be found in the appendix.

4. Models

In our analyses, we focus on ResNets and Vision Trans-
formers [10, 18]. We inspect ResNets trained (i) in a stan-
dard supervised fashion, (ii) adversarially via ℓ2 projected
gradient descent [30], and (iii) contrastively (i.e. no direct
label supervision), with SimCLR and CLIP [7,39]. We also
consider CLIP Vision Transformers, as well as standard Vi-
sion Transformers (ViT) and Data efficient Image Trans-
formers (DeiT) [51]. DeiTs differ from ViTs primarily in
their training set, solely using ImageNet-1k while ViTs used
ImageNet-21k. To make up for not having the inductive bi-
ases of ResNets, ViTs increased the amount of training data,
while DeiTs instead rely upon extensive augmentation. All
other models, with the exception of those trained with CLIP,
use ImageNet-1k as the pretraining set. CLIP, on the other
hand, uses a much larger dataset of images and associated
text. A full discussion on models is offered in the appendix.
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Figure 4. Accuracy under noise in foreground (left) and background (middle) at various noise levels. Models are grouped by architecture
and training procedure, with a curve corresponding to the average over all models in a group. (Right): RFS by group.

To perform classification on RIVAL10 dataset, we ap-
pend a linear head to the penultimate layer of each base
model. Only the linear head is fine-tuned on RIVAL10’s
train split (i.e. other weights are frozen), so to preserve the
feature space learned in the original pretraining. All models
achieve upwards of 90% accuracy on the RIVAL10 test set,
essentially controlling for classification ability. We note that
while there is leakage between ImageNet-1k and the RI-
VAL10 test set, the purpose of this study is not to improve
model’s predictive accuracy directly, but instead to better
understand the information used in making predictions.

Recently, a number of works compare the robustness of
ViTs to ResNets. While there are mixed findings on adver-
sarial robustness [4, 44], there is agreement that ViTs have
stronger out-of-distribution generalization, likely due to self
attention [5, 37]. In contrast, our work focuses on relative
robustness to noise in foreground and background regions.

5. Foreground and Background Sensitivity
5.1. Noise Analysis

We add noise to the foreground and background sepa-
rately to see how corrupting each region degrades model
performance. Consider a sample x with a binary object
mask m where mi,j = 1 if the pixel xi,j is a part of the ob-
ject. We first construct a noise tensor n that has pixel values
drawn i.i.d. from N (0, σ2), where σ is a parameter control-
ling the noise level. Then, we obtain noisy-background x̃bg

and noisy-foreground x̃fg samples as:

x̃fg = clip(x+ n⊙m), x̃bg = clip(x+ n⊙ (1−m))

where ⊙ is the hadamard product, and ‘clip’ refers to
clipping all pixel values to the [0, 1] range. We add
Gaussian noise so to preserve the image content. Note that
additive pixel-wise noise leads to the same magnitude of
perturbation in the foreground and background under the

ℓ∞ norm. We also repeat our analysis with ℓ2 normalized
noise (presented in the appendix) to avoid a bias against
larger regions and obtain similar results.

We seek to quantify the sensitivity of a model to fore-
grounds relative to its sensitivity to backgrounds. To this
end, we introduce relative foreground sensitivity (RFS).
Let afg and abg denote accuracy under noise in the fore-
ground and background, respectively, and ā := (afg +
abg)/2 denote their mean (referred to as the general noise
robustness). We then define RFS for a model F as

RFS(F) =
abg − afg

2min(ā, 1− ā)
.

Essentially, RFS normalizes the gap in model perfor-
mance under foreground and background noise by the to-
tal possible gap, given the general noise robustness of the
model. In Figure 2, RFS takes on the geometric mean-
ing of the ratio between the distance of (afg, abg) to (ā, ā),
to the largest possible distance from the diagonal in the unit
square for a point with general noise robustness ā. The scale
factor in the denominator gives RFS a range of [−1, 1].

We also consider an instance-wise version, iRFS, de-
fined for a model F and a sample x. Here, we use the prob-
ability that model F predicts sample x to belong to its true
class as the measure of model performance instead of accu-
racy. Let pfg and pbg denote this probability for x̃fg and
x̃bg , respectively. Thus, with p̄ := (pfg + pbg)/2,

iRFS(F,x) =
pbg − pfg

2min(p̄, 1− p̄)
.

In our experiments, we consider seven equally spaced
noise levels from σ = 30/255 to 210/255. For each sam-
ple in the test set, we take ten trials of adding noise to the
foreground and background separately per noise level. RI-
VAL10’s test set consists of roughly 5k images, so for each
model type, we assess 5k×7×10 = 350, 000 trials in total.
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Figure 5. Relative foreground sensitivity per instance for four classes and five models of roughly equal size. (Top): Histogram of iRFS;
positive denotes greater foreground sensitivity. (Bottom): Scatter; top left indicates high relative foreground sensitivity. Across models,
ships and birds have low foreground sensitivity, often being more sensitive to noise in the background than the foreground.

5.2. Empirical Observations

Fig. 2 shows different models have vastly different per-
formance in terms of both general noise robustness and rel-
ative foreground sensitivity. In Figure 2, transformers gen-
erally lie further up the main diagonal than ResNets, cor-
roborating observations that transformers are more robust to
common corruptions [32]. Increasing model size improves
general robustness, though it does so more for transformers
than ResNets. Models lie at different distances orthogonal
to the diagonal as well, indicating architecture and training
procedure affect relative foreground sensitivity.

In Figure 4, we categorize model types based on archi-
tecture and training procedure, averaging RFS over groups
to reveal general trends. Robust ResNets have the low-
est RFS, much lower than standard ResNets, a somewhat
surprising result given that background reliance has been
thought to be linked to increased adversarial vulnerability
in the past [53,56]. SimCLR has the next lowest RFS over-
all, and generally, contrastive training procedures (CLIP,
SimCLR) seem to reduce RFS in both ResNets and ViTs.

In comparing transformers to ResNets overall, we see at
low noise levels, transformers sometimes have lower RFS
than ResNets. Interestingly, as noise level rises, RFS in
transformers increases as well, while RFS is mostly sta-
ble for ResNets. This suggests that transformers can adap-
tively alter the attention paid to different image regions
based on the level of corruption. Comparing between trans-
formers, we see DeiTs with much lower RFS than ViTs,
suggesting that the heavy augmentations DeiTs leveraged
to achieve increased data efficiency may have also made the
models much more sensitive to backgrounds.

Figure 6. Controlled ablation studies. Average RFS over all noise
levels presented for brevity. (Left): Increasing patch size in ViTs
decreases relative foreground sensitivity. (Right) Robust models
are much less relatively sensitive to foregrounds, but ϵ used in ad-
versarial training does not affect RFS much.

In Figure 6, we more closely inspect the effect of patch
sizes in ViTs and the attack budget ϵ used in adversarial
training (which affects accuracy-robustness trade-off). We
find that increasing the patch size in ViTs from 16 × 16 to
32 × 32 reduces RFS when averaged over all noise lev-
els. The robustness ablation affirms that robust ResNets are
much less relatively sensitive to foregrounds than standard
ResNets, though the attack size seen in training does not
seem to significantly affect RFS.

Moving away from comparing models, in Figure 5, we
see foreground sensitivity is largely affected by class. In
particular, across models of roughly equal size, ships and
cats are often more sensitive to background noise, suggest-
ing models learn to utilize background content more than
foreground content in recognizing them. The class dis-
tinction is less pronounced in DeiTs and ViTs, with ViTs
assigning high foreground sensitivity for all classes, and
DeiTS having mixed sensitivity across classes, with many
negative iRFS scores (i.e. higher background sensitivity).
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Figure 7. Instances of images with low saliency alignment, highlighting spurious features of water for ships, and branches and bird feeders
for birds. (Left): Spurious features leading to misclassification (in red). (Right): Other instances of spurious features.

Figure 8. Model accuracy on images with backgrounds ablated via
graying. The right plot shows accuracies for models finetuned on
the images with backgrounds ablated. Only transformers can fit a
linear layer on the features of background ablated images without
compromising performance.

5.3. Removing Backgrounds Entirely

We also inspect the accuracy of models on images with
backgrounds grayed out, similar to [56], though now con-
sidering ViTs, CLIP, and SimCLR, which had not been de-
veloped at the time of their study. Also, the rich annota-
tions of RIVAL10 allow for going beyond foreground or
background ablation (see the appendix for a discussion of
attribute removal). Ablation via graying can be thought of
as another kind of noise, where all pixels are smoothed to
0.5. In Figure 8, the left plot reveals that Robust ResNets
and SimCLR see the largest drops in accuracy when evalu-
ated on images with grayed backgrounds. Transformers do
well on ablated images, consistent with the observation that
transformers had high RFS at the largest noise levels. Fur-
thermore, when we attempt to fit a linear layer to classify
background-ablated images, only the features from trans-
former models are sufficiently informative to have high lin-
ear classification accuracy. Thus, while transformers make
use of backgrounds, they still retain significant foreground

Figure 9. Alignment of binarized saliency maps with object seg-
mentation masks, measured by intersection over union (IOU). Av-
eraged over models (left) and object classes (right).

information in their feature space. This result suggests
transformers are much more robust to localized distribution
shift. That is, distribution shift in one region (the back-
ground) may affect model perception of other unperturbed
regions much less in transformers than ResNets.

5.4. Saliency Alignment

To complement the noise analysis, we use GradCAM
[43] to assess the amount of saliency that models place on
foreground pixels. RIVAL10’s object segmentations allow
us to automatically quantify saliency alignment with fore-
grounds, removing the need for human inspections. Sorting
samples based on saliency alignment reveals failure modes,
where models deem background regions as highly salient.
We present several metrics to assess saliency alignment in
the appendix. We find that extracting samples with the low-
est difference in average pixel saliency in foreground and
background yield the most interesting failure modes. We
present examples selected this way in Figure 7, highlight-
ing spurious background features that contribute to the low
RFS of ships and birds observed across models in Figure 5.
Specifically, models look for water and coasts when classi-
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fying ships, and twigs and branches when classifying birds.
In Figure 9, we appeal to the standard metric

intersection-over-union (IOU). Saliency maps are binarized
using a threshold of 0.5 before being compared with ob-
ject segmentation masks. On average, saliency alignment is
similar across models, despite their being large differences
in RFS identified in the noise analysis, suggesting saliency
maps may give an incomplete picture of model sensitiv-
ity. In comparing saliency alignment across classes, we see
much larger differences, emphasizing the result that class
matters when it comes to background reliance.

6. Neural Node Attribution Analysis
The attribution of features in a neural network is a

fundamental problem in modern machine learning work.
Saliency, when computed with respect to a given feature,
is a prominent approach for doing so [11, 24, 43, 49]. Al-
though many works make claims of attribution based on
saliency, to the best of our knowledge, quantitative valida-
tion is rarely given [60]. Here we propose to quantitatively
evaluate node attribution via saliency through comparison
with the ground-truth attribute localization in RIVAL10.

We propose the following procedure. Given a pretrained
robust ResNet50 feature extractor and a class label, we iden-
tify the top 10 training images by activation with that la-
bel for each component in the feature layer (the penulti-
mate layer). We then compute saliency using GradCAM at
each neural feature on these top-10 images, and compare
them against ground truth attribute localization. Salien-
cies are binarized at max-normalized threshold of τ = 0.5.
The intersection-over-union (IOU) with the ground truth at-
tribute localization is then computed for each sample, and
finally averaged. This obtains a score, which we interpret
as measuring the quality of neural feature attribution based
on saliency alignment to the attribute segmentations of the
top-10 images. We then select the neural feature with high-
est alignment per attribute, identifying these features as the
best candidates for node attribution. Note that searching by
top IOU is only possible with ground truth attributes and
localizations, as is the case with RIVAL10.

Next, we check if these neural features generalize to
held-out data not used in the analysis, namely the test set
of RIVAL10. Here we analyze one class-attribute pair
and show additional results in the appendix. We visualize
the GradCAMs of top testing samples with respect to the
top features identified in the training set in Figure 10. We
observe visually that the saliencies align well with the
given attribute on these samples. We then compute the
IOU scores on all images in the test set with the given
class and attribute labels. We plot this histogram in Figure
10. We observe that IOU values are on average high
(> 0.5) indicating that the neural features generalize well
to held-out data for considered cases. We note that this

attribute=floppy-ears, feature=1448
 avg-iou=0.50
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Figure 10. (Top): Example GradCAMs on test images with re-
spect to the top feature identified by IOU in training set. (Bottom):
Histograms of IOUs corresponding to this feature, attribute pair.

analysis is just one approach for quantitatively evaluating
feature attribution. We stress the importance of quantitative
measurements rather than relying on just visualization, and
envision that our RIVAL10 dataset may help refine the
discourse around feature attribution.

7. Conclusion

We present RIch Visual Attributes with Localization
(RIVAL10), and quantitatively assess sensitivities of state-
of-the-art models under noise corruption. Specifically, we
find adversarially or contrastively training ResNets leads to
reduced relative foreground sensitivity. Further, we observe
that transformers adaptively raise foreground sensitivity as
noise level increases, while ResNets do not. By applying
automated alignment metrics to saliency maps, we reveal
instances of spurious background features used by models.
Lastly, we observe promising evidence that neural node at-
tributions based on top activating images generalize to in-
stances unseen during attribution. We hope RIVAL10’s rich
annotations lead future studies to gain new quantifiable in-
sights on the behavior of deep image classifiers.
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