
It is Okay to Not Be Okay: Overcoming Emotional Bias in Affective Image
Captioning by Contrastive Data Collection

Youssef Mohamed, Faizan Farooq Khan, Kilichbek Haydarov, Mohamed Elhoseiny
King Abdullah University of Science and Technology (KAUST)

{youssef.mohamed,faizan.khan,kilichbek.haydarov,mohamed.elhoseiny}@kaust.edu.sa

      New

The painting looks like a series of 
scaffolding ladders that are really high 
up - it looks like a labyrinth of ladders 
and an easy way to fall and get injured.

Fear 

Painting

Disgust:

contentment

Nearest 
Neighbour

Artemis

Artemis 2.0

                   contentment
A beautiful vase of flowers on the 

table in the bedroom.

                        disgust
The flowers are drooping down as if 

they're dead and their colors have 
faded.

Similar

      New

      Old

Awe 
Looks like a very well constructed 

piece

Fear 
The painting looks like a series of 

scaffolding ladders that are really high 
up - it looks like a labyrinth of ladders 
and an easy way to fall and get injured.

Fear
It looks like the woman is protecting 

the child from something oncoming in 
the distance. The big red drapery 

appears ominous.

Excitement 

That looks very realistic, I love the 
detail on the two ladies, they seriously 

look real.

Contentment
I like the soothing and calming colors 
and the tranquility of the people in 

the image.

Anger
It looks like a big wave has broken the 

dock that fishers and boaters use to 
load in their boats.

Similar

Contentment

Contentment 
The deep blue and purple colours give 
this depth and makes the fruit stand 

out.

Disgust
The green mould on the rotten fruits 

on the table is disgusting

      Old       Old

      Old

      New

      New

Painting

Contentment

Contentment

Contentment

Painting

Similar

Painting

Similar

Figure 1: Examples from the contrastively collected dataset. On the left side of each example is the query painting with its
most common emotion on top of it. The right side shows a similar painting, based on the VGG feature map, which evokes the
opposite emotion. We show the old utterance of the selected image and the new utterance to highlight the increased attention
to details. Despite of paired paintings having very similar styles, the triggered emotions and utterances are very different.

Abstract

Datasets that capture the connection between vision,
language, and affection are limited, causing a lack of un-
derstanding of the emotional aspect of human intelligence.
As a step in this direction, the ArtEmis dataset was recently
introduced as a large-scale dataset of emotional reactions
to images along with language explanations of these cho-
sen emotions. We observed a significant emotional bias to-
wards instance-rich emotions, making trained neural speak-
ers less accurate in describing under-represented emotions.
We show that collecting new data, in the same way, is not
effective in mitigating this emotional bias. To remedy this
problem, we propose a contrastive data collection approach
to balance ArtEmis with a new complementary dataset such
that a pair of similar images have contrasting emotions
(one positive and one negative). We collected 260,533 in-
stances using the proposed method, we combine them with
ArtEmis, creating a second iteration of the dataset. The
new combined dataset, dubbed ArtEmis v2.0, has a bal-
anced distribution of emotions with explanations revealing

more fine details in the associated painting. Our experi-
ments show that neural speakers trained on the new dataset
improve CIDEr and METEOR evaluation metrics by 20%
and 7%, respectively, compared to the biased dataset. Fi-
nally, we also show that the performance per emotion of
neural speakers is improved across all the emotion cate-
gories, significantly on under-represented emotions. The
collected dataset and code are available at https://
artemisdataset-v2.org.

1. Introduction

Emotional experiences stimulated by sensory informa-
tion lie at the heart of human nature. They provide a win-
dow into rich yet less understood aspects of human intelli-
gence. Emotions play a central role in determining humans’
internal state, and subsequently, their behavior. Thus, study-
ing emotional experiences and their expression is essential
in understanding human behavior. Emotions are heavily in-
fluenced by external stimuli, especially vision and language.
So, it is essential to have affective datasets that capture dif-
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ferent modalities to study the relationship between sensory
information and emotions. These datasets enable machines
to comprehend emotions better and eventually increase so-
cial acceptance of AI applications, especially applications
which interact with humans.

Several affective datasets connecting emotions to sen-
sory information have been proposed. Most notably, GoE-
motions dataset [16] captured the underlying emotions be-
hind Reddit comments. Its size was large enough to train
deep learning models bringing machines a step closer to un-
derstanding emotions. However, a major drawback of GoE-
motions and similar datasets [10, 12, 13, 14] is that they
attribute emotional experiences to a single stimulus.

Multi-modal datasets such as MS-COCO captions [24],
and VQA [2] revolutionized the AI field and allowed ma-
chines to go beyond simple text/image problems towards
complex visual-language understanding tasks such as visual
question answering and image captioning . These semi-
nal datasets brought machines a significant step closer to
human-level intelligence. Achlioptas et al. [1] recognized
that affective modeling needed similar multi-modal datasets
to better understand emotions and how they are constructed.
They introduced ArtEmis dataset that connects emotions,
visual art, and language by collecting affective language ex-
planations on visual artworks from the WikiArt dataset[29].

Dataset Bias Plous [30] suggests that biases and preju-
dices are integral to humans’ evolution. He views biases as
a method to optimize brain functions without the need for
costly human attention. He claims that biases are created
and modified by the human environment and experiences.
That is why biases are extremely difficult to eliminate, but
it is only possible to minimize their impact. Naturally, hu-
mans label datasets, inevitably introducing their biases in
the collected data. These biases can sometimes be mild,
but they can also be very problematic, especially in eth-
ical judgment and applications that interact with humans
[17, 21, 31, 36]. Gino et al. [17] showed that people eth-
ically condemn certain behaviors based on a bad outcome,
even though the outcome is determined randomly.

Humans are usually capable of recognizing biases when
they cause more harm than good. However, machine learn-
ing models do not have a similar ability to detect and rea-
son about biases. Therefore, if models learn from a biased
dataset, they will make biased decisions. Consequently, re-
ducing biases from datasets is crucial in increasing accep-
tance and trust in machine learning models. It is equally
important to detect biases in datasets, especially in affective
datasets, used to train models that emulate human affect or
interact directly with them.

Goyal et al. [18] identified a bias in VQA dataset [2]
making models trained on the dataset not rely properly on
the visual modality and depend only on the language modal-

ity. This bias was introduced during the data collection pro-
cess, and later this was observed in unexpected results from
deep learning models trained on this dataset. The biased
VQA1.0 had a fundamental issue with the distribution of
answers to a given question, adversely affecting the trained
models. Detecting and explaining this anomaly was not triv-
ial because the distribution of VQA1.0 was biased. Conse-
quently, the test set was biased, and despite the evaluation,
metrics were high, giving the illusion of properly trained
models; these models are not suitable for practical scenar-
ios since the test set is not representative of the real world.

Motivated by this, we observed that ArtEmis had a dis-
crepancy in the results of trained neural speakers where a
naive nearest neighbor model performed abnormally well.
The main cause of this is an unbalanced distribution of emo-
tions and generic captions. The unbalanced distribution is
caused by a tendency of humans to feel positive about paint-
ings. ArtEmis had 62% of its captions labeled by a positive
emotion compared to 26% as negative, and the rest is some-
thing else. On the other hand, generic captions do not men-
tion specific details about the described painting leading to
less diversity among paintings with a similar style. For ex-
ample, the two paintings in Fig. 1 in the bottom right corner
have a similar style. In ArtEmis, the old caption describes
the colors giving an overall contentment feeling and thus
can match any caption from the neighborhood. On the other
hand, the new caption recognizes the green patches as mold
and thus elicits feelings of disgust. This detailed caption is
very specific to this painting and can not be used for any
neighboring painting. This diversity and attention to detail
is something that ArtEmis lacks, and we attempt to solve
this issue by collecting a complementary dataset using the
interface we developed in Fig 2. We collect the complemen-
tary data in a contrastive fashion carefully designed to alle-
viate the bias in ArtEmis. Combining our complementary
dataset with ArtEmis, we get a more balanced distribution
of emotional labels where positive and negative emotions
account for 47% and 45% of the dataset. We also show
through experiments with neural speakers the superiority of
this contrastive data collection method compared to expand-
ing the size of ArtEmis using regular collection.

Contributions.

• We show that the data collection process of the
ArtEmis dataset results in an unbalanced distribution
of emotions and generic captions, adversely affecting
the quality of trained neural speakers. We also col-
lect a complementary dataset using a Contrastive Data
Collection method, which alleviates the problems in
ArtEmis

• We show that the captions in the combined dataset are
more representative of Semantic Space Theory fine-
grained emotions as studied in GoEMotions [16].
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(a) Most similar paintings selection (24, only 4 shown )

(b) Positive emotion explanation interface.

(c) Negative emotion explanation interface.

Figure 2. The contrastive data collection interface. The left interface shows a painting and 24 of similar paintings from which the user
selects the closest painting that elicits opposite emotions to the original one. A No Image Available option can also be chosen. Depending
on the sentiment of the original painting the user will either see the positive or negative emotion captioning interface (right interface).

• We trained multiple neural speakers to reflect the ad-
vantages of using contrastive data collection to com-
plement ArtEmis. We show that speakers trained on
our combined dataset significantly outperform speak-
ers trained on ArtEmis in several aspects.

2. Related Work

Several attempts to collect affective datasets led to
datasets that help understand the connection between sen-
sory information and emotions. Cowen et al. [10, 12, 13,
14] collected emotional experiences induced as a result of
different sensory information. However, these datasets are
small in size, which limits their benefits in training deep
learning models. GoEmotions dataset [16] managed to cap-
ture the relation between emotional experiences and Red-
dit comments. Its size is also large enough to train text
to emotion deep learning models and achieve good results.
Nonetheless, all these datasets attribute emotional experi-
ences to a single stimulus. On the other hand, ArtEmis [1]
was collected, the first multi-modal dataset that captures the
interplay of emotions, visual art, and language.

ArtEmis [1] dataset uniquely captures the complex re-
lationship between visual stimuli, emotions as well as lan-
guage. Captioning datasets, such as [22, 23, 24, 27, 32, 33,
39], contain only factual explanations for a given image. In
contrast, ArtEmis welcomes subjectivity, producing diverse
utterances enriched with abstract concepts and emotional
states. For example, the volcano in the leftmost painting in
Fig.3 can evoke awe emotion due to its majesty or fear emo-

tion when a viewer think of lava and destruction caused by
an eruption. Whilst a factual caption would describe it as
just a volcano. These imaginative and symbolic aspects of
ArtEmis Dataset are crucial in producing more human-like
AI. We mainly consider ArtEmis dataset in this work be-
cause it is the only dataset that captures the interplay among
vision, language, and emotions to our best knowledge.

The proliferation of large-scale captioning datasets al-
lowed for the development of many deep neural network
based captioning methods [26, 27, 28, 37, 40, 41]. We are
interested in applying captioning models in this paper, so
we chose state-of-the-art standard models, in particular, Xu
et al. [38] where they used an LSTM model with attention
and Cornia et al. [9] where they adopted a transformer for
the captioning task. We show that training neural speakers
with our complementary dataset implicitly leads to better
performance and higher caption specificity.

Connection to Emotion Theories. We view ArtEmis as
a unique dataset that can act as a bridge between different
emotion theories, in particular the well established Theory
of Constructed Emotions [3, 4, 5, 6] and the recently pro-
posed Semantic Space Theory of Emotions [11]. The lan-
guage explanation of the emotional experience evoked from
looking at an artwork is better viewed in the context of the
theory of constructed emotions. This theory considers lan-
guage the main way to communicate affective experiences
while emotion categories such as anger are subjective and
differ from one person to another, making them less effec-
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tive. On the other hand, semantic space theory argues that
emotion categories/labels are a better method to communi-
cate emotional experiences. They identified a wide range
of emotional categories ranging from 18 to 25 depending
on the stimulus. Moreover, they show that these categories
have smooth boundaries between them contrary to the be-
lief that emotional categories are discrete [7, 8, 15, 20, 35].
ArtEmis blends the two theories by providing both language
and emotional categories. It provides an opportunity to de-
velop a unified emotion theory that uses language and emo-
tional categories to explain affective experiences. However,
the bias we detected in ArtEmis, greatly limits its ability
since its emotional distribution is unbalanced, and the cap-
tions have low specificity to their paintings.

3. Motivation
[1] reported the results of training multiple neural

speaker architectures on the ArtEmis dataset. Among these
models, they used a naive Nearest Neighbor (NN) Retrieval
model, which identifies the closest neighbors to a test paint-
ing from the training paintings and randomly selects an ut-
terance from this neighborhood. They also trained Meshed
Memory Transformers [9] as well as “Show, Attend and
Tell” model [38]. Nearest neighbor model achieved scores
of 0.102 and 0.210 in METEOR and ROUGE metrics, re-
spectively, compared to 0.140 and 0.280 for meshed mem-
ory transformer and 0.142 and 0.297 for show, attend and
tell. The NN results are unexpectedly good compared to
the other models. This high performance can be attributed
to a lack of diversity in the neighborhood of each painting.
This greatly helps the nearest-neighbor model since the ut-
terances in the local context of each sample are similar. On
the downside, neural speakers trained using ArtEmis exhibit
a lack of specificity to the target image and tend to produce
generic captions.

Annotations in ArtEmis are highly subjective, and some
paintings elicit opposite emotions depending on the annota-
tor. However, for most of the dataset, paintings do not elicit
opposite sentiment emotions, and the neighboring paintings
have a similar emotional sentiment. We follow [1] and
define positive sentiment emotion as one of Contentment,
Awe, Excitement or Amusement; while a negative senti-
ment emotion as one of Anger, Disgust, Fear, or Sadness.
We identified 33987 paintings with single sentiment emo-
tions i.e. they do not evoke opposite emotions. For each
single sentiment paintings, the ratio of paintings in its K
neighbor, which has a similar sentiment, is 40% over K
values ranging from 2 - 10. This number is very high con-
sidering the subjective nature of ArtEmis, and it is the main
reason for the Nearest Neighbor model’s high performance.

Further inspection also revealed many instances where
the utterance for the selected emotion is very generic such
as those shown in the bottom row in Fig. 3. These utter-

ances do not mention any details in the paintings despite
the paintings expressing real objects and providing a good
context that the utterance can better utilize. This lack of fine
details and the lack of contrastive emotional neighborhood
around many paintings negatively affect the performance of
neural speakers since the captions are generic and similar to
each other for similar emotions.

We propose to collect a complementary dataset to allevi-
ate the problems above. Our goal is to introduce more diver-
sity in the neighborhood of single sentiment paintings. We
also aim to enhance the dataset’s quality of utterances, mak-
ing them more grounded/specific to the paintings. By doing
so, trained neural speakers on the new augmented dataset
will learn to attend more to the fine details of every painting
in order to have a quality utterance that explains the elicited
emotion properly.

4. Contrastive Dataset

4.1. Data Collection Interface

In order to introduce more emotional diversity, we col-
lected the new complementary dataset in a contrastive man-
ner. We defined an emotional score for each painting as
scorei =

posi−negi
Ni

where posi and negi are the number of
positive and negative emotions respectively, while Ni is the
total number of emotions associated with the i-th painting.
We identified emotionally biased paintings with an absolute
emotional score greater than 0.3. Then for each of those
painting, we retrieved the nearest 100 neighbors. The near-
est neighbors were identified based on high-level semantic
features extracted from layer fc7 of VGG16 Network [34].
Out of these 100, we chose 24 paintings. The first 12 were
the 12 nearest neighbors, while the last 12 had the high-
est emotional score among the remaining paintings with the
same sentiment as the query one. Hence, the 24 paintings
contains visually similar paintings and evoke similar emo-
tions to the query painting. By design, this encourages the
participants to pay more attention to contrastive details that
construct opposite emotional experiences; see Fig. 1.

After obtaining the complete list of neighbors for the
identified paintings, we launched collection experiments on
Amazon Mechanical Turk (AMT). We have two tasks: in
the first one, we used the interface shown in Fig. 2a. Given
a random query painting with its list of emotions, we ask
AMT workers to select the most similar painting from its
24 visual nearest neighbors, which evokes an opposite emo-
tion. If turkers do not find a proper painting, we allow them
to choose a No Image Available option, to avoid imposing
an emotional bias on them. In the second task, once the
painting is selected, we ask annotators to specify the pri-
mary emotion they felt by observing the selected painting
using a similar interface used by [1]. The interfaces, shown
in Fig. 2b and 2c, ask the turker to select an emotion and
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Figure 3. First Row: new utterances collected using contrastive approach. Notice the difference in the image details referenced in each
set. Second Row: original utterances collected from ArtEmis dataset.

mention the reason why. We report statistics about the data
collection task in Section 4.2. We thoroughly reviewed all
the collected data to ensure its high quality.

4.2. Collected Data Statistics

In total, we identified 52933 emotionally biased paint-
ings. We collected a total of 260,533 instances, allowing
at least five submissions per painting. Out of the collected
data, only 7752 had the No Image Available option selected,
accounting for 3% of our dataset. This small number re-
veals that turkers, upon closer inspection, can extract details
from most paintings that may elicit contradicting emotions.
To measure the diversity of the dataset, we calculated the
entropy of emotions in the K visual neighbors for every
painting. For K = 20, ArtEmis has an entropy of 0.805
while combining the complementary dataset with ArtEmis
resulted in entropy of 0.855, a total of 6% increase, reflect-
ing an increase in the local diversity of every painting. We
name our complementary data as Contrastive and com-
bine it with a random subset from ArtEmis resulting in a
dataset of the same size. We name this dataset Combined
and mainly compare it to ArtEmis highlighting the advan-
tages of using contrastive data collection. To guarantee fair-
ness, we make sure all the datasets have similar sizes.

4.3. Qualitative analysis

Samples from Contrastive are shown in Fig. 1. The
query image is shown on the left, and the selected near-
est painting which evokes opposite emotions on the right,
along with an old utterance and a newly collected one. The
original explanations of the selected painting reflect their
shallowness and the lack of attention to fine details. The
constraint placed on the turkers to choose a painting evok-
ing opposite emotion made them focus on the details of each
image and perform more emotional associations. For exam-

ple, in the bottom right example, the query painting evoked
contentment emotion, and the nearest painting originally
evoked contentment as well. However, by observing the
painting, an annotator feels disgusted because of the green
tone, which resembles mold.

We highlight the increase in attention to fine details in
Fig. 3, where we showcase three paintings with different
art styles. The bottom and top rows show old and new utter-
ances, respectively, contrasting the improved depth of de-
tails. For example, the new utterance of the painting on the
left describes the volcano and how the annotator is afraid
that it might erupt; in contrast, the caption from ArtEmis
is very generic and can suit any painting. In the middle
painting, despite the old utterance mentioning the woman,
it pales in comparison to the details mentioned in the new
utterance. Finally, we see the same comparison in the right
painting, where the new utterance mentions unique similes.

4.4. Quantitative analysis

Emotion Distribution Our setup for the data collection
inherently balances the emotions in ArtEmis. This is evi-
dent from the emotion distribution shown in Fig. 4a. Orig-
inally, ArtEmis dataset had 62% positive emotions com-
pared to only 26% negative emotions (the rest is some-
thing else), making most query paintings have a positive
sentiment. Consequently, the turkers are limited to nega-
tive emotions or “No Image” option for most tasks which
ultimately balances the emotions distribution. As a result,
Combined dataset has a more balanced distribution, with
47% of the samples being positive and 45% being negative.
Note that here we contrast the sentiment of the utterances,
not the exact emotions. This is why the balance is evident
in the level of sentiment distribution.

We further analyze the emotional distribution of the
combined dataset by extending the fine-grained emotion set
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(a) There is an increase in the count of the negative emotions but some
emotions are still under-annotated.

(b) The semantic distribution of emotions is much more balanced when
combining the datasets.

Figure 4. Combining the complementary dataset with ArtEmis
results in a more balanced distribution of emotions. Note how
the complementary dataset naturally gets more annotations for
under-annotated emotions in ArtEmis.

according to the semantic space theory [11]. We fine tune a
RoBERTa [25] language model on the GoEmotions dataset.
In in Fig. 5, we then use this model to predict the extended
emotion set of both Combined and ArtEmis. We plot the
histogram of the emotion responses and the Pearson corre-
lation between all pairs of emotion types. The figure shows
that the combined dataset is more representative of the Se-
mantic Space theory emotions compared to ArtEmis evident
from the off-diagonal correlations being darker in the com-
bined dataset compared to ArtEmis. For instance, the fear
and disappointment emotions have lower correlation in the
combined heat-map revealing that the captions in the com-
bined dataset distinctively express these emotions.

Parts-Of-Speech Analysis We compare the linguistic
structure of the captions in Contrastive, Combined, and
ArtEmis in Table 1. The linguistic structure of the three
datasets is similar, with minor differences. This similarity
shows that the Combined dataset does not have an unfair
linguistic advantage, such as fewer words per caption. One
observation worth noting is the increase in the verbs per
caption, which may reflect a rise in the number of associ-
ations. Associations are used primarily to relate different
parts of a painting; this can be interpreted as more atten-
tion to the painting’s details. These results suggest that the

Figure 5. Semantic Space Theory Fine-grained Emotion Anal-
ysis. Top: we plot the histogram over the extended emotion set
from GoEmotion. Note how the distribution is more balanced in
Combined. Bottom: we show the correlation of the emotions in
Combined and ArtEmis. The darker off-diagonal patches mean
Combined has less correlation between different emotions, more
distinctively representing them.

Dataset Words Nouns Pronouns Adjectives Adpositions Verbs

Contrastive 15.8 3.8 0.9 1.5 1.8 3.3
ArtEmis [1] 15.9 4.0 0.9 1.6 1.9 3.0
Combined 15.9 3.9 0.9 1.6 1.9 3.2

Table 1. The richness of captions reported as the average lin-
guistic units per individual captions. Contrastive is our con-
trastively collected dataset, Combined is the union of ArtEmis and
Contrastive.

performance gain we achieve in Section 5 can be mostly
attributed to the balanced emotion distribution as well as
attention to fine details.

5. Experiments

Neural Speakers We follow [1] in training and evaluat-
ing different Neural Speakers (Affective Image Captioning
Models). The first is a naive model based on K-nearest
neighbors. We identify the nearest neighbors based on high-
level semantic features extracted from layer fc7 of VGG16
net. For inference, we retrieve the nearest 3 neighbors from
the training set, randomly selecting one caption. We also
train “Show, Attend and Tell” (SAT) [38] which is based on
LSTM [19] and Meshed-Memory Transformers (M2) [9],
the state-of-the-art captioning model on MS-COCO dataset.
In addition, we developed a modified version of M2 trans-
former, which is better adapted for artworks. M2 trans-
former uses object features as image representation which
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Metric NN M2 modified M2 SAT

BLEU-1 0.145 0.558 0.565 0.628
BLEU-2 0.040 0.338 0.339 0.385
BLEU-3 0.013 0.202 0.201 0.226
BLEU-4 0.005 0.123 0.123 0.137
METEOR 0.057 0.147 0.146 0.165
ROUGE-L 0.124 0.307 0.309 0.339
CIDEr 0.048 0.091 0.096 0.103

Table 2. Results of neural speakers trained on the Combined
dataset. We evaluate different neural speakers on the combined
test set. SAT outperforms the other models, while the nearest
neighbor (NN) model performance drops significantly compared
to the model in [1].

might not be suitable for paintings in ArtEmis since some
artworks do not depict real objects (e.g., abstract paintings).
Therefore, we propose to extract patch features from paint-
ings by dividing the painting into P × P patches. We then
extract high-level features from the last convolutional block
of VGG16. We concatenate the patch features with object
features to get a diverse set of representations. In our ex-
periments, we set P = 4. For fair comparisons between
the different models, we downscaled the hidden sizes of the
different models such that they have roughly similar time
complexity. Each model except for the NN baseline takes
4-5 hours of training time on a single Nvidia V100 GPU.
Training Sets. We define three datasets: Contrastive
contains 260,533 samples we collected, ArtEmis contains
all samples from the original ArtEmis dataset [1], finally,
Combined is the union of Contrastive and 260,533 ran-
dom samples from ArtEmis. For fair comparisons, we ran-
domly removed 65K captions from Combined, such that it
has the same size as ArtEmis i.e. 455K.
Test sets. For evaluation, we test on two sets. The first
is a subset of size 10% from Combined, while the sec-
ond is a subset provided by [1] called ArtEmisC40 which
is not included in ArtEmis but was collected in the same
fashion. ArtEmisC40 contains 703 paintings, each having
at least 40 emotions and corresponding explanations. We
chose ArtEmisC40 since it has more samples per painting,
allowing for more subjectivity and diversity, and hence help
more accurately measure the quality of the generated cap-
tions of a given emotion.

We highlight the advantages of collecting data con-
trastively by reporting the results of three experiments.
The first is a benchmark of the aforementioned neural
speakers. Secondly, we compare the evaluation scores of
Three SAT models trained on: Combined, ArtEmis, and
Contrastive. Finally, we break down the results per emo-
tion, showing significant gains in performance across all
emotions, especially for underrepresented emotions.

Results. We use Combined dataset and perform a simi-
lar benchmark to the one done in [1]. we report the met-

Metric Combined ArtEmis Contrastive

BLEU-1 0.855 / 0.540 0.837 / 0.511 0.820 / 0.521
BLEU-2 0.665 / 0.301 0.642 / 0.282 0.613 / 0.283
BLEU-3 0.480 / 0.168 0.456 / 0.154 0.425 / 0.151
BLEU-4 0.338 / 0.096 0.313 / 0.088 0.287 / 0.084
METEOR 0.218 / 0.144 0.212 / 0.135 0.204 / 0.135
ROUGE-L 0.449 / 0.295 0.447 / 0.284 0.433 / 0.284
CIDEr 0.086 / 0.111 0.076 / 0.091 0.080 / 0.093

Table 3. SAT performance trained on different training sets.
The four different SAT models are evaluated on ArtEmisC40 test
set. We report the results in this table averaged per caption (before
/) and per emotion (after /). Note that SAT model trained using
Combined outperforms all the other models.

rics measured on the Combined test set. We compare NN,
SAT, and M2 (vanilla and modified versions). The results
reported in Table 2 show how the naive NN model suf-
fers on this combined dataset. For example, for METEOR
and ROUGE-L scores, the relative improvement between
SAT over NN for ArtEmis [1] was 28% and 29%, respec-
tively. On the other hand, for Combined dataset, the im-
provement becomes 65% and 63%. This drastic decrease
in NN performance reflects the diversity introduced in the
Combined dataset, making it harder for the NN model to
perform well. SAT is the best performing model on most
evaluation metrics except for CIDEr. The modified M2 out-
performs M2 slightly, supporting our claim that using only
bounding boxes features is not suitable for paintings. Due
to its superiority, we use SAT in the next experiments to
explore the advantages of the Combined dataset.

Datasets Comparison. We evaluate four emotionally
grounded SAT models trained on Combined, ArtEmis,
and Contrastive. To guarantee fair comparison, we use
ArtEmisC40 since it was collected by [1] and there are
no newly collected samples included in it. The results are
reported in Table 3. The model trained on Combined per-
forms the best. This suggests that using a balanced train-
ing set via adding contrastive data, significantly improves
neural speakers. This can be attributed to the improved rep-
resentation discriminativeness, due to training on visually
similar images with opposite emotions. Notably, in spite
of having half the size, the model trained on Contrastive
come close to the model trained on ArtEmis, indicating
that captions collected contrastively have more specific de-
scriptions of the paintings.

Per Emotion Analysis. We deeply analyze the scores by
averaging the results per emotion. We group the samples in
ArtEmisC40 by the emotions, then calculate the evaluation
metrics per caption for each emotion separately; finally, we
report the average scores per emotion. Fig. 7 demonstrates
the superiority of the model trained on Combined on every
emotion, especially for underrepresented emotions which
were less frequent in ArtEmis, such as amusement, excite-
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Figure 6. First Row: generations from SAT model. Second Row: generations from emotionally grounded SAT model. Both models are
trained on Combined dataset. Note the attention to specific details in each painting.

ment, and all the negative emotions. We report the aver-
age score per emotion in Table 3, the performance gap in-
creases drastically where CIDEr and METEOR improve by
20% and 7%, respectively. We preview a sample of genera-
tions in Fig. 6. The top row shows generation from a non-
emotionally grounded SAT model, while the second model
generates captions based on input emotion. The generations

Figure 7. Scores per grounding emotions. SAT improves signif-
icantly when trained on Combined versus ArtEMis on all emo-
tions. CIDEr and METEOR improves by 20% and 7%, also note
how the difference in performance is more significant for less fre-
quent emotions.

are high quality and reflect details specific to the paintings.

Human Experiment. We also performed human evalua-
tion on 100 randomly sampled paintings (5 responses each)
with generations from SAT trained on Combined versus
ArtEmis; 73% favoured Combined generations.

6. Conclusion

This paper identifies bias problems in the task of Affec-
tive Image captioning, particularly unbalanced emotion dis-
tribution and generic captions, negatively affecting the qual-
ity of trained models. We introduced ArtEmis v2, a sec-
ond iteration of ArtEmis to mitigate the emotional bias. We
collected our data in a contrastive manner that by design
balances ArtEmis and encourages annotators to pay extra
attention to fine details. We analyzed the new combined
dataset revealing its advantages, and conducted several ex-
periments to show how neural speakers perform better when
trained on the combined dataset. Please note that Affective
datasets might have other biases that are yet to be addressed,
including bias towards ethnic groups and minorities. We
have focused only on the emotional bias in this work, and
we hope our contrastive data collection approach introduces
a step towards mitigating other forms of biases in Affective
Vision and Language datasets.
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