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Abstract

Affine registration is indispensable in a comprehensive
medical image registration pipeline. However, only a few
studies focus on fast and robust affine registration algo-
rithms. Most of these studies utilize convolutional neural
networks (CNNs) to learn joint affine and non-parametric
registration, while the standalone performance of the affine
subnetwork is less explored. Moreover, existing CNN-based
affine registration approaches focus either on the local mis-
alignment or the global orientation and position of the in-
put to predict the affine transformation matrix, which are
sensitive to spatial initialization and exhibit limited gener-
alizability apart from the training dataset. In this paper, we
present a fast and robust learning-based algorithm, Coarse-
to-Fine Vision Transformer (C2FViT), for 3D affine medi-
cal image registration. Our method naturally leverages the
global connectivity and locality of the convolutional vision
transformer and the multi-resolution strategy to learn the
global affine registration. We evaluate our method on 3D
brain atlas registration and template-matching normaliza-
tion. Comprehensive results demonstrate that our method
is superior to the existing CNNs-based affine registration
methods in terms of registration accuracy, robustness and
generalizability while preserving the runtime advantage of
the learning-based methods. The source code is available
at https://github.com/cwmok/C2FViT.

1. Introduction
Rigid and affine registration is crucial in a variety of

medical imaging studies and has been a topic of active re-
search for decades. In a comprehensive image registration
framework, the target image pair is often pre-aligned based
on a rigid or affine transformation before using deformable
(non-rigid) registration, eliminating the possible linear and
large spatial misalignment between the target image pair.
Solid structures such as bones can be aligned well with
rigid and affine registration [29, 37]. In conventional im-
age registration approaches, inaccurate pre-alignment of the
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Figure 1. Comparisons of different architectures for affine regis-
tration. The concatenation-based (VTN-Affine [46]) and Siamese
network (ConvNet-Affine [11]) approaches are based on convolu-
tional neural networks, while our proposed C2FViT is based on vi-
sion transformers. For brevity, we illustrate 1-level C2FViT only.
Local and global operations are in green and purple, respectively.

image pair may impair the registration accuracy or impede
the convergence of the optimization algorithm, resulting in
sub-optimal solutions [47]. The success of recent learning-
based deformable image registration approaches has largely
been fueled [3,9,11,17,19,20,34–36] by accurate affine ini-
tialization using conventional image registration methods.
While the conventional approaches excel in registration per-
formance, the registration time is dependent on the degree
of misalignment between the input images and can be time-
consuming with high-resolution 3D image volumes. To fa-
cilitate real-time automated image registration, a few stud-
ies [21, 22, 40, 46] have been proposed to learn joint affine
and non-parametric registration with convolutional neural
networks (CNNs). However, the standalone performance of
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the affine subnetwork compared to the conventional affine
registration algorithm is less explored. Moreover, consider-
ing that affine transformation is global and generally targets
the possible large displacement, we argue that CNNs are not
the ideal architecture to encode the orientation and absolu-
tion position of the image scans in Cartesian space or affine
parameters due to the inductive biases embedded into the
architectural structure of CNNs.

In this paper, we analyze and expose the generic inabil-
ity and limited generlizability of CNN-based affine regis-
tration methods in cases with large initial misalignment and
unseen image pairs apart from the training dataset. Moti-
vated by the recent success of vision transformer models
[10, 12, 41, 43, 44], we depart from the existing CNN-based
approaches and propose a coarse-to-fine vision transformer
(C2FViT) dedicated to 3D medical affine registration. To
the best of our knowledge, this is the first learning-based
affine registration approach that considers the non-local de-
pendencies between input images when learning the global
affine registration for 3D medical image registration.

The main contributions of this work are as follows:

• we quantitatively investigate and analyze the registra-
tion performance, robustness and generalizability of
existing learning-based affine registration methods and
conventional affine registration methods in 3D brain
registration;

• we present a novel learning-based affine registration
algorithm, namely C2FViT, which leverages convo-
lutional vision transformers with the multi-resolution
strategy. C2FViT outperforms the recent CNN-based
affine registration approaches while demonstrating su-
perior robustness and generalizability across datasets;

• the proposed learning paradigm and objective func-
tions can be adapted to a variety of parametric regis-
tration approaches with minimum effort.

We evaluate our method on two tasks: template-
matching normalization to MNI152 space [13–15] and 3D
brain atlas registration in native space. Results demonstrate
that our method not only achieves superior registration per-
formance over existing CNN-based methods, but the trained
model also generalizes well to an unseen dataset beyond
the training dataset, reaching the registration performance
of conventional affine registration methods.

2. Related Work
2.1. Learning-based Affine Registration Methods

Conventional approaches often formulate the affine reg-
istration problem to an iterative optimization problem,
which optimizes the affine parameters directly using adap-
tive gradient descent [1, 25] or convex optimization [18].

While conventional approaches excel in registration ac-
curacy, the registration time is subject to the complex-
ity and resolution of the input image pairs. Recently,
many learning-based approaches have been proposed for
fast affine registration. These approaches significantly ac-
celerate the registration time by formulating the affine reg-
istration problem as a learning problem using CNNs and cir-
cumventing the costly iterative optimization in conventional
approaches. Existing CNN-based affine registration ap-
proaches can be divided into two categories: concatenation-
based [21, 22, 33, 46] and Siamese network approaches
[5, 11, 38] as shown in figure 1.

Zhao et al. [46] propose a concatenation-based affine
subnetwork that concatenates the fixed and moving images
as input, and exploits single-stream CNNs to extract the fea-
tures based on the local misalignment of the input. Consid-
ering affine registration is global, their method is not ca-
pable of input with large initial misalignment as the affine
subnetwork lacks global connectivity and only focuses on
the overlapping region between two image spaces. In con-
trast to the concatenation-based method, de Vos et al. [11]
propose an unsupervised affine registration method using
the Siamese CNN architecture for fixed and moving im-
ages. A global average pooling [27] is applied to the end
of each pipeline in order to extract one feature per feature
map, forcing the networks to encode orientations and affine
transformations globally. Although their network focuses
on the global high-level geometrical features of separated
input, their method completely ignores the local features
of the initial misalignment between the input image pair.
Moreover, a recent study [28] demonstrates that a pure CNN
encoder fails spectacularly in a seemingly trivial coordinate
transform problem, implying that a pure CNN encoder may
not be an ideal architecture to encode the orientations and
absolution positions of the image scans in Cartesian space
or to affine parameters. Shen et al. [40] also report that
CNN-based affine registration methods do not perform well
in practice, even for deep CNNs with large receptive fields.

It is worth noting that most of the existing CNN-based
affine registration methods [5,11,21,22,38,46] jointly eval-
uate the affine and deformable registration performance or
completely ignore the standalone performance of the affine
subnetwork compared to the conventional affine registration
algorithms. As inaccurate affine pre-alignment of the image
pair may impair the registration accuracy or impede the con-
vergence of the deformable registration algorithm [40, 47],
a comprehensive evaluation of the CNN-based affine regis-
tration methods should by no means be ignored.

2.2. Vision Transformer

CNNs architecture generally has limitations in mod-
elling explicit long-range dependencies due to the intrinsic
inductive biases, i.e., weight sharing and locality, embedded
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into the architectural structure of CNNs. Recently, Dosovit-
skiy et al. [12] proposed a pioneering work, Vision Trans-
former (ViT), for image classification and proved that a pure
transformer [41] architecture can attain a state-of-the-art
performance. Compared to CNN-based approaches, ViT
offers less image-specific inductive bias and has tremen-
dous potential when training in large scale datasets. Wang
et al. [43] develop a pyramid architectural design for a
pure transformer model to imitate the multi-scale strategy
in CNNs, achieving promising results in various computer
vision tasks. Subsequent studies [6–8,10,16,26,42,44] fur-
ther extend ViT to pyramid architectural design and intro-
duce convolutions to ViT. These studies demonstrate that
introducing moderate convolutional inductive bias to ViT
improves the overall performance, especially for training
with small datasets. Apart from pure ViT methods, Zhang et
al. [45] and Chen et al. [4] combine CNN encoder-decoder
with transformer for deformable registration.

While CNNs have achieved remarkable success in de-
formable medical image registration, we argue that CNNs
are not an ideal architecture for modelling and learning
affine registration. In contrast to deformable image reg-
istration, affine registration is often used to mitigate and
remove large linear misalignment, which is considered to
be a global operation and contradicts the inductive bias
embedded in the architectural structure of CNNs. Build-
ing on the insights of ViT and its variants [10, 12, 43, 44],
we depart from the CNNs architecture and propose a pure
transformer-based method dedicated to 3D medical affine
registration.

3. Method
Let F , M be fixed and moving volumes defined over a

n-D mutual spatial domain Ω ⊆ Rn. In this paper, we fo-
cus on 3D affine medical image registration, i.e., n = 3
and Ω ⊆ R3. For simplicity, we further assume that F
and M are single-channel, grayscale images. Our goal is to
learn the optimal affine matrix that align F and M . Specif-
ically, we parametrized the affine registration problem as a
function fθ(F,M) = A using a coarse-to-fine vision trans-
former (C2FViT), where θ is a set of learning parameters
and A represents the predicted affine transformation matrix.

3.1. Coarse-to-fine Vision Transformer (C2FViT)

The overall pipeline of our method is depicted in figure
2. Our method has been divided into L stages that solves
the affine registration in a coarse-to-fine manner with an
image pyramid. All stages share an identical architecture
consisting of a convolutional patch embedding layer and Ni

transformer encoder blocks, where Ni denotes the number
of transformer blocks in stage i. Each transformer encoder
block consists of an alternating multi-head self-attention
module and a convolutional feed-forward layer, as depicted

in figure 1. We use L = 3 and Ni = 4 for each stage i
throughout this paper. Specifically, we first create the in-
put pyramid by downsampling the input F and M with tri-
linear interpolation to obtain Fi ∈ {F1, F2, . . . , FL} (and
Mi ∈ {M1,M2, . . . ,ML}), where Fi represents the down-
sampled F with a scale factor of 0.5L−i and FL = F .
We then concatenate Fi and Mi, and the concatenated in-
put is subjected to the convolutional patch embedding layer.
Different from the prior Transformer-based architectures
[10, 12, 43, 44], we prune all the layer normalization opera-
tions as we did not observe noticeable effects on the image
registration performance in our experiments. Next, a stack
of Ni transformer encoder blocks take as input the image
patch embedding map and output the feature embedding of
the input. C2FViT solves the affine registration problem in
a coarse-to-fine manner, and the intermediate input moving
image Mi is transformed via progressive spatial transfor-
mation. Additionally, for stage i > 1, a residual connection
from the output embeddings (tokens) of the previous stage
i− 1 is added to the patch embeddings of the current stage
i. Finally, the estimated affine matrix AL of the final stage
is adopted as the output of our model fθ.

3.1.1 Locality of C2FViT

While the ViT model [12] excels in modelling long-range
dependencies within a sequence of non-overlapping im-
age patches due to the self-attention mechanism, the vi-
sion transformer model lacks locality mechanisms to model
the relationship between the input patch and its neighbours.
Therefore, we follow [26, 42, 44] to add locality to our
transformers in C2FViT. Specifically, we mainly improve
the transformer in two aspects: patch embedding and feed-
forward layer.

As shown in figure 2, we depart from the linear patch
embedding approach [12] and adopt convolutional patch
embedding [42, 44] instead. The goal of the convolutional
patch embedding layer is to convert the input images into
a sequence of overlapping patch embeddings. Formally,
given a concatenated input I ∈ RH×W×D×C , where H , W
and D denote the spatial dimension of I , and C is the num-
ber of channels, the convolutional patch embedding layer
utilizes a 3D convolution layer to compute the patch em-
bedding map Z ∈ RHi×Wi×Di×d of I . Specifically, the
kernel size, stride, number of zero-paddings and number of
feature maps of the 3D convolution layer are denoted as k3,
s, p and d, respectively. Next, the patch embedding map Z
is then flattened into a sequence of patch embeddings (to-
kens) {Ẑi ∈ Rd|i = 1, . . . , N}, where N = HiWiDi and
d is the embedding dimension. The patch embeddings can
be aggregated into a matrix Ẑ ∈ RN×d. We restrict the
number of patches N to 4096 and the embedding dimen-
sion d to 256 for all convolutional patch embedding layers
in C2FViT by varying the stride s of the convolution layer,
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Figure 2. Overview of the proposed Coarse-to-Fine Vision Transformer (C2FViT). The entire model is divided into three stages, solving
the affine registration in a coarse-to-fine manner.

i.e., s = (H16 ,
W
16 ,

D
16 ). Moreover, we enforce the window

overlapping to the sliding window of the convolution oper-
ation by setting k to 2s − 1, and pad the feature with zeros
(p = ⌊k

2 ⌋). In contrast to the linear patch embedding in ViT,
the convolutional patch embedding in C2FViT helps model
local spatial context and features across the fixed and mov-
ing images. It also provides flexibility to adjust the number
and feature dimensions of patch embeddings. On the other
hand, the feed-forward layer in ViT consists of a MLP block
with two hidden layers. In the transformer encoder, the
feed-forward layer is the only local and translation equiv-
ariance. Since the feed-forward layer in ViT is applied to
the patch embeddings map in a patch-wise manner, it lacks
a local mechanism to model the relationship between adja-
cent patch embeddings. As such, we add a 3× 3× 3 depth-
wise convolution layer in between two hidden layers of a
MLP block in the feed-forward layer of C2FViT [26, 42].
The depth-wise convolution further introduces locality into
the transformer encoder of C2FViT.
3.1.2 Global Connectivity of C2FViT

Transformers excel in modelling long-range dependen-
cies within a sequence of embedding owing to their self-
attention mechanism. In contrast to existing CNN-based
affine registration approaches, the misalignment and the
global relationship between the fixed and moving images
can be captured and modelled by the similarity between
the projected query-key pairs in transformer encoders of
C2FViT, yielding the attention score for each patch embed-
ding. Specifically, the query Q, key K, and value V are
a linearly projection of the patch embeddings (tokens), i.e.,
Q = ẐWQ, K = ẐWK and V = ẐWV . We further ex-
tend the self-attention module to a multi-head self-attention
(MHA) module [41]. Given the number of attention heads
is h, the linear projection matrices WQ

j , WK
j and WV

j for
each attention head j are the same size, i.e., WQ

j , WK
j ,

WV
j ∈ Rd×dh and dh = d

h . Following the self-attention

mechanism [12, 41] in the original transformer, our atten-
tion operation for attention head j is computed as:

Attention(Qj ,Kj ,Vj) = Softmax(
QjK

T
j√

dh
)Vj (1)

where dh is the embedding dimension for the attention
head. At the end, the attended embeddings of all atten-
tion heads are concatenated and linear projected by a ma-
trix WO ∈ Rd×d. In this study, we employ h = 2 attention
heads and d = 256 embedding dimension for all the trans-
former encoders.

3.1.3 Progressive Spatial Transformation

We adopt the multiresolution strategy into our architectural
design. Specifically, a classification head, which is imple-
mented by two successive multilayer perceptrons (MLP)
layers with the hyperbolic tangent (Tanh) activation func-
tion, is appended at the end of each stage in C2FViT. The
classification head takes as input the averaged patch-wise
patch embedding and outputs a set of affine transforma-
tion parameters. In the intermediate stage i, the derived
affine matrix is used to progressively transform the moving
image Mi+1 with a spatial transformer [23]. The warped
moving image Mi+1 is then concatenated with fixed im-
age Fi+1 and taken as input for stage i + 1. With the
proposed progressive spatial transformation, the linear mis-
alignment of the input images can easily be eliminated with
low-resolution input, and the transformers from the higher
level can focus on the complex misalignment between the
input image pair, reducing the complexity of the problem at
the higher stages.

3.2. Decoupled Affine Transformation

While directly estimating the affine matrix is feasible
[21, 38, 46], this transformation model cannot generalize

20838



to other parametric registration methods as the affine ma-
trix cannot decompose into a set of linear geometric trans-
formation matrices, i.e., translation, rotation, scaling and
shearing. In the transformation model of C2FViT, we take
a step further and utilize C2FViT to predict a set of geomet-
ric transformation parameters instead of directly estimating
the affine matrix. Formally, the affine registration problem
is reduced to fθ(F,M) = [t, r, s,h], where t, r, s,h ∈ R3

represent the translation, rotation, scaling and shearing pa-
rameters. Given T , R, S and H, the resulting affine matrix
A can be derived by a set of geometric transformation ma-
trices via matrix multiplication as A = T ·R · S ·H, where
T , R, S and H denote the translation, rotation, scaling
and shearing transformation matrices derived by the corre-
sponding geometric transformation parameters (t, r, s and
h), respectively. Our proposed transformation model can
easily be transferred to other parametric registration settings
by pruning or modifying undesired geometric transforma-
tion matrices. For instance, our C2FViT can be applied
to rigid registration by removing the scaling and shearing
matrices. Furthermore, our transformation model is capa-
ble of geometrical constraints, reducing the searching space
of the model during optimization. In this work, the out-
put geometric transformation parameters are constrained as
follows: rotation and shearing parameters are constrained
between −π and +π, the translation parameters are con-
strained between -50% and +50% of the maximum spatial
resolution, and the scaling parameters are constrained be-
tween 0.5 and 1.5. In this paper, we use the center of mass
of the input instead of the geometric center for rotation and
shearing. The center of mass cI of the image I is defined as
cI =

∑
p∈Ω pI(p)∑
p∈Ω I(p) . If the background intensity of the image

scan is non-zero, the origin of the rotation can be set to the
geometric center of the image.

3.3. Unsupervised and Semi-supervised Learning

In contrast to the conventional affine registration meth-
ods, we parametrize the affine registration problem as a
learning problem. Specifically, we formulate the function
fθ(F,M) = Af , where fθ and Af represent the C2FViT
model and the output affine transformation matrix, respec-
tively. Mathematically, our goal is to minimize the follow-
ing equation:

θ∗ = argmin
θ

[
E(F,M)∈D L

(
F,M(ϕ(Af )

)]
, (2)

where the θ is the learning parameters in C2FViT, fixed
and moving images are randomly sampled from the training
dataset D and the loss function L measures the dissimilarity
between the fixed image and the affine transformed moving
image M(ϕ(Af )). In our unsupervised learning setting, we
use the negative NCC similarity measure with the similarity

Figure 3. Example coronal MR slices from the atlases (fixed
images), moving images, resulting warped images for ConvNet-
Affine, VTN-Affie and our method without center of mass initial-
ization.

pyramid [35] Lsim to quantify the distance between F and
M(ϕ(Af )) such that L = Lsim and Lsim is defined as:

Lsim(F,M(ϕ)) =
∑

i∈[1..L]

− 1

2(L−i)
NCCw(Fi,Mi(ϕ)),

(3)

where L denotes the number of image pyramid levels,
NCCw represents the local normalized cross-correlation
with windows size w3, and (Fi,Mi) denotes the images in
the image pyramid, i.e., F1 is the image with the lowest res-
olution. In addition, our method is also capable of semi-
supervised learning if the anatomical segmentation maps
of the fixed and moving images are available in the train-
ing dataset. Given anatomical segmentation maps of fixed
image SF and warped moving image SM (ϕ), the semi-
supervised C2FViT can be formulated by changing the sim-
ilarity measure L in eq. 2 to Lsim + λLseg , where Lseg is
defined as follows:

Lseg(SF , SM (ϕ)) =
1

K

∑
i∈[1..K]

(
1− 2(Si

F ∩ Si
M (ϕ))

|Si
F |+ |Si

M (ϕ)|

)
(4)

where K denotes the number of anatomical structures.
For the semi-supervised C2FViT, we utilize all available
anatomical segmentations in our experiments. In this paper,
we employ L = 3 image pyramid levels and λ = 0.5.

4. Experiments
4.1. Data and Pre-processing

We evaluated our method on brain template-matching
normalization and atlas-based registration using 414 T1-
weighted brain MRI scans from the OASIS dataset [30] and
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40 brain MRI scans from the LPBA dataset [39]. For the
OASIS dataset, we resampled and padded all MRI scans to
256× 256×256 with the same resolution (1mm×1mm×
1mm) followed by standard preprocessing steps, including
motion correction, skull stripping and subcortical structure
segmentation, for each MRI scan using FreeSurfer [14]. For
the LPBA dataset, the MRI scans are skull-stripped, and
the manual delineation of the subcortical structures are pro-
vided. All brain MRI scans in our experiments are in na-
tive space, except the MNI152 brain template. We split the
OASIS dataset into 255, 10 and 149 volumes for training,
validation, and test sets, respectively. For the LPBA dataset,
we included all 40 scans as the test set.

We evaluated our method on two applications of brain
registration: brain template-matching normalization to
MNI152 space and atlas-based registration in native space.
Brain template-matching normalization is a standard appli-
cation in analyzing inter-subject images and a necessary
pre-processing step in most deformable image registration
methods. For the task of brain template-matching nor-
malization, we affinely register all test scans in the OA-
SIS dataset to an MNI152 (6th generation) brain template
[13–15], which is derived from 152 structural images and
averaged together after non-linear registration into the com-
mon MNI152 co-ordinate system. We train the learning-
based methods with the training dataset of OASIS and the
MNI152 template, which employ the MNI152 template as
the fixed image and MRI scans from the training dataset as
moving images. For the atlas-based registration task, we
randomly select 3 and 2 scans from the test set of OASIS
and LPBA datasets respectively as atlases. Then, we align
the remaining MRI scans in the test set to the selected at-
lases within the same dataset. Note that in the atlas-based
registration task, we train the learning-based methods with
pairwise brain registration, which randomly samples two
image scans as fixed and moving images, using only the
training set of the OASIS dataset, i.e., the selected atlases
and the MRI scans from the LPBA dataset were not in-
volved in the training.

Conventionally, affine registration methods often initial-
ize the input images with center of mass (CoM) initializa-
tion by default [32], which initializes the translation pa-
rameters using the CoM of the input images. Equivalently,
the CoM initialization for learning-based methods can be
achieved by translating the CoM of the moving image to
the CoM of the fixed image. We evaluated our method with
and without the CoM initialization, and the results are listed
in table 1 and table 2, respectively.

4.2. Measurement

To quantify the registration performance of an affine
registration algorithm, we register each subject to an at-
las or MNI152 template, propagate the subcortical struc-

ture segmentation map using the resulting affine transfor-
mation matrix, and measure the volume overlap using the
Dice similarity coefficient (DSC) and 30% lowest DSC of
all cases (DSC30). We also measure the 95% percentile
of the Hausdorff distance (HD95) of the segmentation map
to represent the reliability of the registration algorithm. In
the brain template-matching normalization task, 4 subcorti-
cal structures, i.e., caudate, cerebellum, putamen and thala-
mus, are included in the evaluation. In the atlas-based reg-
istration with the OASIS dataset, 23 subcortical structures
are included, as shown in the boxplot in figure 4. For the
atlas-based registration with the LPBA dataset, we utilize
all manual segmentation of the brain scan, including cere-
brospinal fluid (CSF), gray matter (GM) and white matter
(WM), for evaluation.

4.3. Baseline Methods

We compare our method with two state-of-the-art con-
ventional affine registration methods (ANTs [1] and Elastix
[25]) and two learning-based affine registration approaches
(ConvNet-Affine [11] and VTN-Affine [46]). Specifically,
we use the ANTs affine registration implementation in the
publicly available ANTs software package [2], and we use
the Elastix affine registration algorithm in the SimpleElastix
toolbox [31]. Both methods use a 3-level multi-resolution
optimization strategy with adaptive gradient descent opti-
mization and the mutual information as the similarity mea-
sure. For ConvNet-Affine and VTN-Affine, we follow their
papers to implement their affine subnetworks. The initial
number of feature channels for both methods is set to 16,
and we follow the rules in their papers to define the growth
of network depth and the hidden dimension of each con-
volution layer. By default, all learning-based methods are
trained in an unsupervised manner with the similarity pyra-
mid as described in eq. 3. We also extend the unsupervised
learning-based methods to semi-supervised variants using
the same semi-supervised object function as our method,
denoted as C2FViT-semi, ConvNet-Affine-semi and VTN-
Affine-semi.

4.4. Implementation

The learning-based methods, i.e., C2FViT, ConvNet-
Affine and VTN-Affine, are developed and trained using
Pytorch. All the methods are trained or executed on a stan-
dalone workstation equipped with an Nvidia TITAN RTX
GPU and an Intel Core i7-7700 CPU. The learning-based
approaches are trained with half-resolution image scans by
downsampling the image scans with trilinear interpolation.
Then, we apply the resulting affine transformation to the
full-resolution image scans for evaluation. We adopt the
Adam optimizer [24] with a fixed learning rate of 1e−4 and
batch size sets to 1 for all learning-based approaches.
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Method #Param Template-Matching Normalization (MNI152) Atlas-Based Registration (OASIS) Atlas-Based Registration (OASIStrain ⇒ LPBAtest)

DSC4 ↑ DSC304 ↑ HD954 ↓ Ttest ↓ DSC23 ↑ DSC3023 ↑ HD9523 ↓ Ttest ↓ DSC3 ↑ DSC303 ↑ HD953 ↓ Ttest ↓

Initial - 0.14 ± 0.12 0.02 ± 0.02 29.26 ± 11.33 - 0.18 ± 0.14 0.06 ± 0.02 15.53 ± 6.77 - 0.33 ± 0.06 0.26 ± 0.03 12.43 ± 4.65 -

ConvNet-Affine [11] 14.7 M 0.65 ± 0.08 0.56 ± 0.06 6.14 ± 1.33 0.12 ± 0.09 s 0.57 ± 0.07 0.48 ± 0.05 4.10 ± 1.01 0.09 ± 0.06 s 0.36 ± 0.07 0.28 ± 0.03 11.58 ± 4.99 0.11 ± 0.08 s
VTN-Affine [46] 14.0 M 0.67 ± 0.06 0.60 ± 0.05 5.80 ± 1.01 2e-3 ± 4e-4 s 0.57 ± 0.08 0.48 ± 0.06 4.18 ± 1.08 3e-3 ± 8e-4 s 0.31 ± 0.06 0.24 ± 0.03 14.99 ± 5.34 2e-3 ± 6e-4 s
C2FViT (ours) 15.2 M 0.71 ± 0.06 0.64 ± 0.04 5.17 ± 0.81 0.09 ± 0.03 s 0.64 ± 0.06 0.57 ± 0.05 3.33 ± 0.77 0.08 ± 0.01 s 0.47 ± 0.04 0.42 ± 0.02 6.55 ± 1.60 0.14 ± 0.06 s

Table 1. Quantitative results of template-matching normalization and atlas-based registration without center of mass initialization. The
subscript of each metric indicates the number of anatomical structures involved. ↑: higher is better, and ↓: lower is better. Initial: initial
results in native space without registration.

Method #Param Template-Matching Normalization (MNI152) Atlas-Based Registration (OASIS) Atlas-Based Registration (OASIStrain ⇒ LPBAtest)

DSC4 ↑ DSC304 ↑ HD954 ↓ Ttest ↓ DSC23 ↑ DSC3023 ↑ HD9523 ↓ Ttest ↓ DSC3 ↑ DSC303 ↑ HD953 ↓ Ttest ↓

Initial (CoM) - 0.49 ± 0.11 0.35 ± 0.06 11.03 ± 3.48 - 0.45 ± 0.12 0.29 ± 0.06 6.97 ± 2.89 - 0.45 ± 0.04 0.41 ± 0.01 6.87 ± 1.69 -

Elastix [25] - 0.73 ± 0.07 0.64 ± 0.06 5.01 ± 1.44 6.6 ± 0.2 s 0.63 ± 0.09 0.52 ± 0.08 3.89 ± 1.72 6.3 ± 0.2 s 0.55 ± 0.02 0.53 ± 0.02 4.11 ± 1.01 6.4 ± 0.2 s
ANTs [1] - 0.74 ± 0.06 0.67 ± 0.05 4.65 ± 0.57 38.2 ± 3.2 s 0.67 ± 0.08 0.58 ± 0.08 3.27 ± 1.56 37.7 ± 2.5 s 0.54 ± 0.03 0.50 ± 0.02 4.53 ± 1.38 46.6 ± 15.3 s

ConvNet-Affine [11] 14.7 M 0.70 ± 0.06 0.63 ± 0.05 5.28 ± 0.68 0.12 ± 0.08 s 0.62 ± 0.06 0.55 ± 0.05 3.43 ± 0.91 0.10 ± 0.07 s 0.45 ± 0.04 0.41 ± 0.01 7.46 ± 1.87 0.11 ± 0.08 s
VTN-Affine [46] 14.0 M 0.71 ± 0.06 0.64 ± 0.05 5.11 ± 0.74 3e-3 ± 9e-4 s 0.66 ± 0.06 0.59 ± 0.06 3.02 ± 0.81 2e-3 ± 7e-4 s 0.43 ± 0.04 0.39 ± 0.02 8.02 ± 2.23 2e-3 ± 6e-4 s
C2FViT (ours) 15.2 M 0.72 ± 0.06 0.65 ± 0.05 4.99 ± 0.75 0.12 ± 0.04 s 0.66 ± 0.05 0.61 ± 0.04 2.96 ± 0.54 0.09 ± 0.02 s 0.54 ± 0.03 0.51 ± 0.04 4.06 ± 1.12 0.12 ± 0.04 s

ConvNet-Affine-semi [11] 14.7 M 0.73 ± 0.06 0.66 ± 0.04 4.94 ± 0.76 0.12 ± 0.09 s 0.63 ± 0.06 0.56 ± 0.06 3.46 ± 0.96 0.10 ± 0.07s 0.43 ± 0.03 0.40 ± 0.02 6.90 ± 1.52 0.12 ± 0.08 s
VTN-Affine-semi [46] 14.0 M 0.75 ± 0.05 0.70 ± 0.04 4.65 ± 0.66 2e-3 ± 6e-4 s 0.68 ± 0.05 0.62 ± 0.04 2.94 ± 0.64 2e-3 ± 8e-4 s 0.44 ± 0.04 0.40 ± 0.02 7.27 ± 1.96 2e-3 ± 1e-3 s

C2FViT-semi (ours) 15.2 M 0.76 ± 0.05 0.70 ± 0.04 4.60 ± 0.69 0.13 ± 0.05 s 0.69 ± 0.04 0.64 ± 0.04 2.81 ± 0.55 0.08 ± 0.02 s 0.51 ± 0.03 0.47 ± 0.04 4.58 ± 1.71 0.13 ± 0.05 s

Table 2. Quantitative results on template-matching normalization, OASIS and LPBA dataset with center of mass initialization. The
subscript of each metric indicates the number of anatomical structures involved. ↑: higher is better, and ↓: lower is better. Initial (CoM):
initial results with the center of mass initialization. To our knowledge, ANTs and Elastix do not have a GPU implementation.

4.5. Results

4.5.1 Registration accuracy and Robustness

Table 1 shows the results of template-matching normaliza-
tion and atlas-based registration of the learning-based meth-
ods without spatial initialization. Figure 3 illustrates the
qualitative results of all tasks without spatial initialization.
The low initial Dice scores over all subjects, suggesting that
there is a large misalignment within each test case. Our pro-
posed method is significantly better than ConvNet-Affine
and VTN-Affine in terms of DSC, DSC30 and HD95 over
all three tasks, suggesting our method is robust and accurate
in affine registration with large initial misalignment. We vi-
sualize the distribution of Dice scores for each subcortical
structure as in the boxplot in figure 4. Compared to VTN-
Affine, the C2FViT model achieves consistently better per-
formance across all structures.

Table 2 shows the results of tasks with CoM initial-
ization. This simple but effective initialization boosts
the initial Dice scores from 0.14, 0.18 and 0.33 to 0.49,
0.45 and 0.45, respectively, implying that the initializa-
tion eliminates most of the misalignment due to translation.
All three learning-based methods improve significantly on
affine alignment with CoM initialization. For an unsuper-
vised manner, our method achieves comparable Dice mea-
sures to the conventional methods (ANTs and Elastix), and
slightly better than ConvNet-Affine and VTN-Affine. It is
worth noting that VTN-Affine gains significant improve-
ment in registration performance of template-matching and
atlas-based registration (OASIS) under CoM initialization.
Nevertheless, the validity of the initial registration should

be questioned when the two images are acquired in differ-
ent imaging modalities and hence, the registration perfor-
mance without spatial initialization should be considered
when evaluating the learning-based affine registration al-
gorithm. With our proposed semi-supervised settings, our
method C2FViT-semi achieves the best overall registration
performance in the template-matching normalization and
the atlas-based registration task on the OASIS dataset.

4.5.2 Generalizability Analysis

As shown in the results of the LPBA dataset in tables 1 and
2, ConvNet-Affine and VTN-Affine, using models trained
on the OASIS dataset, fail spectacularly in the test set of
LPBA, which obtain -5% and -2% loss in DSC with VTN-
Affine, and +3% and +0% gain in DSC with ConvNet-
Affine compared to initial results without registration and
with spatial initialization, respectively. The results imply
that their models cannot generalize well to an unseen dataset
in practice regardless of spatial initialization. By contrast,
our C2FViT model achieves a comparable registration per-
formance to the conventional affine registration approaches
ANTs and Elastix in the task with the LPBA dataset, reach-
ing an average Dice score of 0.54 and HD95 of 4.06 in the
task with the LPBA dataset, as shown in table 2. While the
semi-supervised settings improve the dataset-specific per-
formance of learning-based models in template-matching
normalization and atlas-based registration with the OASIS
dataset, the semi-supervised models are inferior to their un-
supervised models in the LPBA dataset, indicating anatom-
ical knowledge injected to the model with semi-supervision
may not generalize well to unseen data beyond the training
dataset.
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Figure 4. Boxplots illustrating Dice scores of each anatomical structure for C2FViT, VTN and ANTs in the atlas-based registration with
the OASIS dataset. The left and right hemispheres of the brain are combined into one structure for visualization. The brain stem (BS),
thalamus (Th), cerebellum cortex (CblmC), lateral ventricle (LV), cerebellum white matter (WM), putamen (Pu), caudate (Ca), pallidum
(Pa), hippocampus (Hi), 3rd ventricle (3V), 4th ventricle (4V), amygdala (Am), and cerebral cortex (CeblC) are included. Methods with
(CoM) postfix are trained and tested on MRI scans with the center of mass initialization.

Methods DSC23 HD9523 Ttest #Param
Vanilla C2FViT-s1 0.61 3.53 0.05 ± 0.04 s 5.0 M
Vanilla C2FViT-s2 0.62 3.57 0.06 ± 0.05 s 10.0 M
Vanilla C2FViT-s3 0.62 3.46 0.07 ± 0.02 s 15.2 M

+Progressive Spatial Transformation 0.64 (+0.02) 3.33 (-0.13) 0.08 ± 0.02 s 15.2 M
+Center of Mass Initialization 0.66 (+0.02) 2.96 (-0.37) 0.09 ± 0.02 s 15.2 M
+Semi-supervision 0.69 (+0.03) 2.81 (-0.15) 0.08 ± 0.02 s 15.2 M

Table 3. Influence of the number of stages, progressive spa-
tial transformation, center of mass initialization and the semi-
supervised learning to the C2FViT model. The C2FViT with post-
fix -s{n} represents the C2FViT model with an n-stage.

4.5.3 Runtime Analysis

The average runtimes (denoted as Ttest) of all methods in
the inference phase are reported in tables 1 and 2. We re-
port the average registration time for each task. C2FViT,
ConvNet-Affine and VTN-Affine are faster than the ANTs
and Elastix by order of magnitude, thanks to the GPU ac-
celeration and the effective learning formulation. Moreover,
ANTs runtimes vary widely, as its convergence depends on
the degree of initial misalignment of the task. On the other
hand, Elastix runtimes are stable at around 6.6 seconds per
alignment task because of the early stopping strategy used
during the affine alignment.

DSC23 ↑ DSC3023 ↑ HD9523 ↓ Ttest ↓
C2FViT-direct 0.63 ± 0.06 0.55 ± 0.04 3.43 ± 0.73 0.02 ± 4e-3 s
C2FViT-decouple 0.64 ± 0.06 0.57 ± 0.05 3.33 ± 0.77 0.08 ± 0.01 s

Table 4. Influence of the proposed decoupled affine transmation
model compared to the direct affine matrix estimation model.

4.5.4 Ablation study

Table 3 shows the ablation study results of C2FViT in the
OASIS atlas-based registration task. The results suggest

that the proposed progressive spatial transformation, CoM
initialization and semi-supervised learning consistently im-
prove the registration performance of C2FViT without
adding extra learning parameters or significant computa-
tional burden to the model. Table 4 presents the results of
C2FViT using two different transformation models in the
OASIS atlas-based registration task. The proposed decou-
pled affine transformation model is slightly better than di-
rectly learning the affine matrix, in terms of registration per-
formance, at the cost of registration runtime. Moreover,
the decoupled affine transformation model can be easily
adapted to other parametric registration methods by prun-
ing or modifying the geometrical transformation matrices.

5. Conclusion
We have proposed a Coarse-to-Fine Vision Transformer

dedicated to 3D affine medical image registration. Unlike
prior works using CNN-based affine registration methods,
our method leverages the global connectivity of the self-
attention operator and moderates the locality of the con-
volutional feed-forward layer to encode the global orien-
tations, spatial positions and long-term dependencies of the
image pair to a set of geometric transformation parameters.
Comprehensive experiments demonstrate that our method
not only achieves superior registration performance over
the existing CNN-based methods under data with large ini-
tial misalignment and is robust to an unseen dataset, but
also our method with semi-supervision outperforms con-
ventional methods in terms of dataset-specific and preserves
the runtime advantage of learning-based methods. Never-
theless, there is still a gap between unsupervised learning-
based approaches and conventional approaches. We believe
that expanding the training dataset and introducing task-
specific data augmentation techniques would likely lead to
performance improvement.
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mann, Stefan Heldmann, and Bram van Ginneken. Cnn-
based lung ct registration with multiple anatomical con-
straints. Medical Image Analysis, page 102139, 2021. 1

[20] Andrew Hoopes, Malte Hoffmann, Bruce Fischl, John Gut-
tag, and Adrian V Dalca. Hypermorph: Amortized hyper-
parameter learning for image registration. In International
Conference on Information Processing in Medical Imaging,
2021. 1

[21] Yipeng Hu, Marc Modat, Eli Gibson, Nooshin Ghavami, Es-
ter Bonmati, Caroline M Moore, Mark Emberton, J Alison
Noble, Dean C Barratt, and Tom Vercauteren. Label-driven
weakly-supervised learning for multimodal deformable im-
age registration. In 2018 IEEE 15th International Sympo-
sium on Biomedical Imaging (ISBI 2018), pages 1070–1074.
IEEE, 2018. 1, 2, 4

[22] Weijian Huang, Hao Yang, Xinfeng Liu, Cheng Li, Ian
Zhang, Rongpin Wang, Hairong Zheng, and Shanshan Wang.
A coarse-to-fine deformable transformation framework for
unsupervised multi-contrast mr image registration with dual
consistency constraint. IEEE Transactions on Medical Imag-
ing, 2021. 1, 2

[23] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and
Others. Spatial transformer networks. In Advances in neural
information processing systems, pages 2017–2025, 2015. 4

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[25] Stefan Klein, Marius Staring, Keelin Murphy, Max A
Viergever, and Josien PW Pluim. Elastix: a toolbox for
intensity-based medical image registration. IEEE transac-
tions on medical imaging, 29(1):196–205, 2009. 2, 6, 7

[26] Yawei Li, Kai Zhang, Jiezhang Cao, Radu Timofte, and Luc
Van Gool. Localvit: Bringing locality to vision transformers.
arXiv preprint arXiv:2104.05707, 2021. 3, 4

[27] Min Lin, Qiang Chen, and Shuicheng Yan. Network in net-
work. arXiv preprint arXiv:1312.4400, 2013. 2

20843



[28] Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski
Such, Eric Frank, Alex Sergeev, and Jason Yosinski. An
intriguing failing of convolutional neural networks and the
coordconv solution. arXiv preprint arXiv:1807.03247, 2018.
2

[29] JB Antoine Maintz and Max A Viergever. A survey of med-
ical image registration. Medical image analysis, 2(1):1–36,
1998. 1

[30] Daniel S Marcus, Tracy H Wang, Jamie Parker, John G Cser-
nansky, John C Morris, and Randy L Buckner. Open Access
Series of Imaging Studies (OASIS): cross-sectional MRI
data in young, middle aged, nondemented, and demented
older adults. Journal of cognitive neuroscience, 19(9):1498–
1507, 2007. 5

[31] Kasper Marstal, Floris Berendsen, Marius Staring, and Ste-
fan Klein. Simpleelastix: A user-friendly, multi-lingual li-
brary for medical image registration. In Proceedings of the
IEEE conference on computer vision and pattern recognition
workshops, pages 134–142, 2016. 6

[32] Matthew Michael McCormick, Xiaoxiao Liu, Luis Ibanez,
Julien Jomier, and Charles Marion. ITK: enabling repro-
ducible research and open science. Frontiers in neuroinfor-
matics, 8:13, 2014. 6

[33] Shun Miao, Z Jane Wang, and Rui Liao. A cnn regression
approach for real-time 2d/3d registration. IEEE transactions
on medical imaging, 35(5):1352–1363, 2016. 2

[34] Tony C W Mok and Albert Chung. Fast Symmetric Dif-
feomorphic Image Registration with Convolutional Neural
Networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4644–
4653, 2020. 1

[35] Tony C W Mok and Albert C S Chung. Large Deformation
Diffeomorphic Image Registration with Laplacian Pyramid
Networks. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 211–
221. Springer, 2020. 1, 5

[36] Tony C W Mok and Albert C S Chung. Conditional De-
formable Image Registration with Convolutional Neural Net-
work. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, 2021. 1

[37] Josien PW Pluim, JB Antoine Maintz, and Max A Viergever.
Mutual-information-based registration of medical images: a
survey. IEEE transactions on medical imaging, 22(8):986–
1004, 2003. 1

[38] Wei Shao, Indrani Bhattacharya, Simon JC Soerensen,
Christian A Kunder, Jeffrey B Wang, Richard E Fan, Pejman
Ghanouni, James D Brooks, Geoffrey A Sonn, and Mirabela
Rusu. Weakly supervised registration of prostate mri and
histopathology images. In International Conference on Med-
ical Image Computing and Computer-Assisted Intervention,
pages 98–107. Springer, 2021. 2, 4

[39] David W Shattuck, Mubeena Mirza, Vitria Adisetiyo, Cor-
nelius Hojatkashani, Georges Salamon, Katherine L Narr,
Russell A Poldrack, Robert M Bilder, and Arthur W Toga.
Construction of a 3D probabilistic atlas of human cortical
structures. Neuroimage, 39(3):1064–1080, 2008. 6

[40] Zhengyang Shen, Xu Han, Zhenlin Xu, and Marc Nietham-
mer. Networks for joint affine and non-parametric image

registration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4224–
4233, 2019. 1, 2

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 2,
3, 4

[42] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.
Pvtv2: Improved baselines with pyramid vision transformer.
arXiv preprint arXiv:2106.13797, 2021. 3, 4

[43] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyra-
mid vision transformer: A versatile backbone for dense pre-
diction without convolutions. In IEEE ICCV, 2021. 2, 3

[44] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu,
Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt: Introduc-
ing convolutions to vision transformers. arXiv preprint
arXiv:2103.15808, 2021. 2, 3

[45] Yungeng Zhang, Yuru Pei, and Hongbin Zha. Learning dual
transformer network for diffeomorphic registration. In In-
ternational Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 129–138. Springer,
2021. 3

[46] Shengyu Zhao, Tingfung Lau, Ji Luo, I Eric, Chao Chang,
and Yan Xu. Unsupervised 3d end-to-end medical image
registration with volume tweening network. IEEE journal of
biomedical and health informatics, 24(5):1394–1404, 2019.
1, 2, 4, 6, 7

[47] Wu Zhou, Lijuan Zhang, Yaoqin Xie, and Changhong Liang.
A novel technique for prealignment in multimodality medi-
cal image registration. BioMed research international, 2014,
2014. 1, 2

20844


