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Abstract

This work presents SkinningNet, an end-to-end Two-
Stream Graph Neural Network architecture that computes
skinning weights from an input mesh and its associated
skeleton, without making any assumptions on shape class
and structure of the provided mesh. Whereas previous meth-
ods pre-compute handcrafted features that relate the mesh
and the skeleton or assume a fixed topology of the skeleton,
the proposed method extracts this information in an end-
to-end learnable fashion by jointly learning the best rela-
tionship between mesh vertices and skeleton joints. The
proposed method exploits the benefits of the novel Multi-
Aggregator Graph Convolution that combines the results
of different aggregators during the summarizing step of the
Message-Passing scheme, helping the operation to general-
ize for unseen topologies. Experimental results demonstrate
the effectiveness of the contributions of our novel architec-
ture, with SkinningNet outperforming current state-of-the-
art alternatives.

1. Introduction

Animating a 3D character is a complex and time-
consuming process that animators spend years learning to
do efficiently. In a typical animation pipeline, an artist first
creates a mesh model and specifies the skeleton topology,
skinning weights are then painted manually. During this
process, the animators follow two main steps. First, they
do the skin binding, which consists of defining which parts
of the mesh will be affected by the movement of a specific
joint. Finally, they decide the skinning weights that describe
which amount of movement is transferred to the skin.

SkinningNet is a Two-Stream Graph Convolutional Net-
work that, given an input mesh and its corresponding skele-
ton, performs the skin binding and then computes the skin-
ning weights for each mesh vertex as it can be seen in Fig. 1.
Previous methods rely on pre-computed handcrafted fea-

Figure 1. Overview of the proposed pipeline. Given an input
mesh and its associated skeleton, SkinningNet predicts the skin-
ning weights used by the Linear Blend Skinning [26] algorithm to
create a set of animations.

tures to create the mesh and skeleton relationship. The
proposed method automatically extracts the best features
to relate the mesh and the skeleton to predict the associ-
ated skinning weights. The main contributions of this paper
are: a) A Two-Stream Graph Neural architecture that learns
to extract features from meshes and skeletons with differ-
ent topologies, b) A Multi-aggregator Graph Convolution
(MAGC) layer that extends the Message-Passing scheme
to use a multiple aggregation approach that better gener-
alizes for unseen graph topologies, c) A novel skin bind-
ing method that uses a skeleton joint representation instead
of a bone representation and d) A Mesh-Skeleton Graph
Convolution Network that exploits this skeleton joint rep-
resentation to find the optimal relationship between the in-
put mesh and the skeleton. All these contributions allow the
proposed method to outperform current state-of-the-art with
over 20% improvement on mesh deformation error. Further-
more, experimental results show the ability of the proposed
method to generalize for complex mesh and skeleton struc-
tures of different domains.

2. Related Work

This section reviews techniques related to Graph Neural
Network solutions that are used for Geometric Learning and
then transitions to more specific techniques used for skin-
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ning weight prediction.

2.1. Graph Neural Networks

Graph Neural Networks can be divided into two sub-
sets: the ones that generalize the convolution operation us-
ing a spectral approach [3, 6] and the ones that use a spa-
tial approach [9, 17, 27]. The vast majority of the new pro-
posed graph convolutions can be seen as an adaptation of
the Message-Passing scheme [11]. The Graph Convolution
Network (GCN) [17] is one of the popular message-passing
implementations that proposes to transform the nodes of a
neighbourhood using a weight matrix that is normalized by
the degree of the neighbourhood. The transformed node
features are aggregated using the addition operator.

Another widely adopted graph convolution is Graph At-
tention Network (GAT) [34] that proposes learning an atten-
tion coefficient using edge attributes, which are defined as
the difference between the central node and its neighbours.
Edge Convolution Network [35] is one of the implementa-
tions widely adopted on 3D Geometric tasks, which consists
of defining the edge attributes of a graph using an asymmet-
ric function. Edge attributes of each neighbourhood are fed
into a shared Multi-Layer Perceptron (MLP) and aggregated
using maximum or addition aggregators. Residual connec-
tions [5,21,28] have also been shown to help achieve better
performance on deep Graph Neural Networks. Recently,
Multi-Neighbourhood Graph Convolutions [29] introduced
the combination of multiple neighbourhoods to create an
enriched node descriptor.

Most of the previously described works use mean, max-
imum and addition aggregators, which fail to distinguish
between neighbourhoods with identical features but differ-
ent cardinalities, as proved by Xu et al. [38]. To solve that,
Dehmamy et al. [7] proposed to use multiple aggregators.
We propose an extension of the multi-aggregator scheme
using complementary aggregators and learning how to com-
bine them instead of just concatenating or adding the results
of each of them. The motivation for the use of multiple
scalers is to improve the generalization of the convolution
for unseen topologies while avoiding the value of each ag-
gregation exploding when the degree of the neighbourhood
increases. In SkinningNet, this extension allows the net-
work to generalize for more complex and unseen mesh and
skeleton topologies.

2.2. Skinning Weight Prediction

The techniques used to compute the skin deformation of
synthetic characters are usually needed by real-time appli-
cations, such as video-games. Approaches such as Linear
Blend Skinning (LBS) [26] or Dual Quaternion Skinning
(DQS) [14] are widely used due to their simplicity and com-
putational efficiency. These techniques compute the defor-
mation of the mesh based on a set of skinning weights that

are assigned to each of the mesh vertices. The skinning
weights are either painted manually by an animator or auto-
matically generated. Automatic skinning weight prediction
techniques can be grouped into two different categories: ge-
ometric based methods [1,8,12,14,15,18,19,30,33,36] and
data-driven solutions [13, 16, 20, 25, 31].
Geometric based methods rely on geometric characteris-
tics between meshes and skeletons. The earliest methods
to automatically generate skinning weights proposed to ex-
ploit Heat Diffusion [2] and Illumination [37] models. Al-
ternatively, other methods used energy functions for the
estimation, such as Elastic Energy [15] or Laplacian En-
ergy [12]. Later, Dionne et al. [8] proposed Geodesic Voxel
Binding to handle non-watertight meshes. All these meth-
ods rely on functions that assign the skinning weights de-
pending on the distance between joints and vertices. How-
ever, this assumption does not work in practice for AAA
game characters that commonly have complex topologies
where multiple independent components can intersect.
Data-driven methods typically require multiple poses of a
mesh or different meshes as input to learn how to compute
the skinning weights. New methods such as [4, 22, 32] esti-
mate skinning weights from Motion Capture data. They fo-
cus on finding skinning weights of humanoids and assume a
fixed skeleton topology, making the network unable to gen-
eralize for characters with different skeletons.

NeuroSkinning [24] is one of the earliest proposed meth-
ods to automatically compute the skinning weights for syn-
thetic characters using neural networks. This method makes
use of graph convolutions to compute the skinning weights
of a new mesh. NeuroSkinning uses a bone representation,
meaning that the network predicts the skinning weights per
bone instead of per joint. It also relies on creating a super-
skeleton that consists of the fusion of all the skeletons that
can be found in the training set. This super-skeleton is
needed to cope with the fixed output of the network. As
a result, this assumption makes the network unsuitable for
working with skeletons that can not fit in the super-skeleton
structure.

RigNet [39] tries to overcome this limitation using a k-
NN approach. The network predicts the skinning weights
only for the k-nearest bones to the mesh vertex. This feature
allows the network to work with unseen skeleton topologies,
however, the bone representation is still used. By defini-
tion, the movement of a skeleton driven mesh comes from
the rotation of a joint. In an ideal scenario where each of
the joints has one associated bone, both representations are
equivalent. However, this assumption does not work for
complex meshes, where a joint has more than one asso-
ciated bone. The bone representation used in RigNet has
problems to manage these scenarios, common in stylized
characters. To overcome this problem, our proposal directly
uses a skeleton joint representation that can manage com-
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Figure 2. SkinningNet architecture is composed of four main stages. Stage 1 is in charge of building the needed graphs from the input
mesh and its associated skeleton. Stage 2 is responsible for extracting features independently for the mesh and skeleton. Stage 3 combines
the previous mesh and skeleton features to extract a descriptor that relates both structures. Stage 4 predicts the skinning weights.

plex skeleton topologies where each of the joints can have
more than one bone. Furthermore, both RigNet and Neu-
roskinning rely on handcrafted features to learn the relation
between a mesh and its associated skeleton. Our proposal
consists of a Two-Stream Graph Neural Network that learns
the relation between mesh and skeleton on training time, se-
lecting the best set of features automatically without having
to rely on selected handcrafted features.

3. SkinningNet
This section details the proposed SkinningNet architec-

ture. Sec. 3.1 gives a general overview of the four stages
of the proposed architecture. Sec. 3.2 explains how neigh-
bourhoods are selected in the graph’s creation step from the
input meshes and their associated skeletons. Sec. 3.3 for-
mulates a novel graph convolution layer, Multi-Aggregator
Graph Convolution (MAGC), where multiple aggregators
are used to allow the network to distinguish between neigh-
bourhoods with similar features but different cardinality. Fi-
nally, Sec. 3.4 explains how the different Graph Convolu-
tional Blocks in SkinningNet are constructed based on the
proposed MAGC.

3.1. Architecture Overview

SkinningNet is a Two-Stream Graph Convolutional Neu-
ral Network, that takes as input a mesh and its correspond-
ing skeleton and predicts a set of skinning weights, one for
each mesh vertex. It is composed of four different stages as
depicted in Fig. 2.
Stage 1: Graph Construction and the Skin Binding (ex-
plained in detail in Sec. 3.2). The Graph Construction step
converts the mesh and the skeleton inputs into two indepen-
dent graphs. The Skin Binding step decides which joints
will influence each vertex and creates a graph representing
this relationship. The Graph Construction output is fed into
Stage 2 and the output of Skin Binding is used in Stage 3.

Stage 2: Mesh and Skeleton Networks. These networks
transform the node attributes to feature vectors through an
input transform implemented using an MLP. Each network
is responsible for extracting features independently for the
mesh and skeleton. The Mesh Network is composed of three
Residual MAGC layers, whereas the Skeleton Network is
composed of three MAGC layers, further details are given
in Sec. 3.3 and 3.4. This difference is mainly because the
skeleton is usually much simpler than the mesh and does
not require a deep network to learn the characteristics of its
geometry. The output of both networks will be combined in
the Stage 3.
Stage 3: Mesh-Skeleton Network, based on a single Mesh-
Skeleton MAGC layer. This block relates the mesh and the
skeleton using the output of the Skin Binding step. The out-
put of this block is a single graph where each node can rep-
resent the vertices of the mesh or the joints of the skele-
ton. However, only the nodes representing the vertices of
the mesh are used on the following stages. Furthermore, to
help with the final skinning weight prediction in Stage 4, a
global shape descriptor that encodes the global information
of the mesh and skeleton graphs is extracted and concate-
nated to the mesh nodes.
Stage 4: Skinning Prediction Network. The final vertex
skinning weight is predicted for each vertex of the mesh.
It is composed of three Multi-Neighbourhood Graph Con-
volution (MUNEGC) layers followed by an MLP. Here, the
MAGC is exploited in a multi-neighbourhood fashion, com-
bining the mesh topology and the local shape information to
extract an enriched descriptor used to predict the skinning
weights. Further details are given in Sec. 3.4.

3.2. Neighbourhood Construction

Identifying the neighbours of a node is an important
step of Graph Convolutional Networks, as connections be-
tween nodes (edges) act as the receptive field on conven-
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tional CNNs. SkinningNet uses different strategies to create
neighbourhoods, specific to each type of graph: i.e. mesh,
skeleton and mesh-skeleton graphs. In the mesh graph, faces
are converted into undirected edges. Additionally, a radius-
based neighbourhood is created over the mesh structure,
where the k-random nodes inside of a radius r are connected
to the central point of the neighbourhood. The radius-based
neighbourhood is used by the MUNEGC operation. In the
skeleton graph, the bones are converted to undirected edges.
Finally, the relation created by the Skin Binding step is used
to decide the connections in the mesh-skeleton graph.

The Skin Binding step is in charge of assigning which
of the joints are going to influence each of the vertices. As
stated in the related work section, previous works [24, 39]
have based the skin binding process on a bone representa-
tion, where each vertex has a set of bones assigned. This
assignation is done using a k-NN approach that associates
the k nearest bones to each of the vertices. In this work,
the proposed Skin Binding is based on a joint representation
that is more natural than the bone representation. It uses the
closest bones to select which are going to be the joints that
influence each of the vertices. In particular, for each vertex
of the mesh, the closest bones of the skeleton are found and
the associated root joint for each bone is selected. Finally,
that selection is refined leaving only the k unique joints.
The entire algorithm is described in Algorithm 1.

Algorithm 1: k-unique joints of the closest bones
Input: Vertex positions, joints position and bones
Output: The selected joints for each vertex
foreach vertex do

Compute distance d(vertex, bones)
Sort distances d
Replace bones with their associated root joint
Select the k unique joints

end foreach

3.3. Multi-Aggregator Graph Convolution (MAGC)

The Multi-Aggregator Graph Convolution (MAGC) is an
extension of the Message-Passing scheme [11], where mul-
tiple aggregators are used to let the graph convolution layer
distinguish between neighbourhoods with identical features
but with different cardinalities. The workflow of the MAGC
is depicted in Fig. 3. The first step is to compute the mes-
sages that each of the neighbours are sending to the central
node of the neighbourhood. These messages are a func-
tion based on the attributes of each edge Eji = F(Xj , Xi)
where Xj and Xi denote the features of nodes j and i re-
spectively. The messages are combined using different ag-
gregators. The aggregators proposed in this work are for-
mally defined in Eq. 1 where N(i) represents the neigh-

bourhood of the node i.

A =



Amax = max
j∈N(i)

(Eji)

Amin = min
j∈N(i)

(Eji)

Amean = mean
j∈N(i)

(Eji)

Astd = std
j∈N(i)

(Eji)

(1)

The results of each aggregator are scaled using a set
of logarithmic degree scalers. The proposed scalers are:
i) identity, the value of the aggregator is not changed; ii)
amplification, the value of the aggregator is amplified, and
iii) attenuation, the value of each aggregator is attenuated.
Eq. 2 formalizes the proposed scalers where dtrain refers
to the mean degree of the whole training split. The motiva-
tion for the use of different logarithmic scalers is to improve
the generalization of the convolution for unseen topologies,
avoiding that the value of each aggregation explodes when
the degree of the neighbourhood increases.

S =


Samp =

log(d)

log(dtrain)

Satt =
log(dtrain)

log(d)

Siden = 1

(2)

Finally, the resulting operation of applying each scaler
to each aggregator is fed into an MLP that learns how to
fuse the information. Eq. 3 defines the combination of ag-
gregations and scalers, with A being the set of aggregation
operations and S the set of scaler operations. The combina-
tion of two sets of operations is described as ⊗ so M is the
combination of all the scalers with all the aggregators.

A = {Amax, Amin, Amean, Astd}
S = {Siden, Samp, Satt}

M = S ⊗A

 (3)

The resulting MAGC layer is described in Eq. 4, where
all combinations M are fused using an MLP network to
produce the output feature of node i and layer l in a feed-
forward neural network.

X l
i = MLP

(
M

j∈N(i)
(Eji)

)
(4)

3.4. Graph Convolutional Blocks

The proposed architecture extends the previously de-
fined MAGC, producing three types of Graph Convolu-
tional Blocks: Residual MAGC, Mesh-Skeleton MAGC and
Multi-Neighbourhood Graph Convolution (MUNEGC).
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Figure 3. Multi-Aggregator Graph Convolution workflow.
Where Eji is the message sent from node j to node i.

The Residual MAGC is based on the ideas proposed
in [5, 21, 28]. Each Residual MAGC is composed of two
MAGCs stacked together with a short connection. In the
case that the input and the output have different dimen-
sionalities, the short connection contains a function P that
projects the input feature space to the output ones. The
Residual MAGC is formalized in Eq. 5 where {MAGCs}
represents s stacked MAGC layers inside the correspondent
block.

X l
i = {MAGCs}+ P

(
X l−1

i

)
(5)

The Mesh-Skeleton Graph Convolution employs a
modification of MAGC to deal with graphs where the neigh-
bourhood is composed of an heterogeneous combination of
nodes. To combine the mesh and the skeleton nodes, a
one-hot vector is concatenated to the node feature. In this
way, features corresponding to the mesh node can be distin-
guished from features corresponding to skeleton nodes by
the graph operation. Eq. 6 shows the one-hot concatenation
proposed for the combination:

X l
i =

{
concat

{
[0], X l

i

}
if i ∈ mesh

concat
{
[1], X l

i

}
if i ∈ skeleton (6)

The Multi-Neighbourhood Graph Convolution is an
extension of MAGC based on [29] where two kinds of
neighbourhoods are used to get the new node feature. Eq. 7
defines the extension of MAGC to a multi-neighbourhood
approach. Where K is the set of neighbourhood types:

X l
i = MLP

(
concat
k∈K

{
MLP

(
M

(j)∈Nk(i)

(
Ek

ji

))})
(7)

4. Results
4.1. Dataset

The proposed method has been trained and evaluated
on the RigNetv1 [39] dataset which is publicly accessible
for non-commercial use. This dataset is composed of 2703
rigged characters of different categories. The original split
of the dataset is followed where 2163 assets are used for
training, 270 for validation and 270 for testing. All training
assets contain between 1k and 5k vertices, and all of them

are scaled between [−1, 1] and oriented to face the same di-
rection. The number of skeleton joints is in a range from 3
to 48 with a mean of 25. In addition, two more assets from
the Paragon Collection [10] have been used for the gen-
eralization study in Sec. 4.8. These two assets have been
simplified so the resulting meshes contain about 6k vertices
and 50 joints and normalized as done in RigNetv1. The
Paragon Collection dataset is allowed to be used in non-
interactive linear media products under a non-exclusive and
non-transferable license.

4.2. Implementation Details

The detailed architecture with the number of filters used
in each layer is shown in Table 1. Several attributes are
selected as initial features for nodes in the mesh and skele-
ton structures to help the network to learn the relation be-
tween both structures. The node attributes used to describe
the mesh are the normalized 3D coordinates of the vertices,
the Geodesic distance to the k = 5 unique joints from the
nearest bones, the start and end positions of the bone of
those joints and a boolean value indicating if the joint is
an end joint or not. In the case of the skeleton, only the
normalized 3D position of the joints is included. Sec. 4.6
discusses the advantages and disadvantages of using the
Geodesic distance with respect to the Euclidean. To com-
pute the Geodesic distance between joints and vertices, the
volumetric version proposed in [39] is employed, where the
shortest path from vertex to joint passing through the inte-
rior mesh volume is computed.

The radius for the second neighbourhood used in the
Skinning Prediction Network is r = 0.06. From all nodes
inside the radius r, a maximum of 10 nodes are randomly
sampled to create the neighbourhood. The final output of
SkinningNet is the skinning weights for the k = 5 unique
joints of the closest bones of each vertex. A dropout layer
is added before each Fully Connected layer of the Skinning
Prediction Network with a probability of p = 0.5. The net-
work is trained in an end-to-end fashion for 200 epochs.
The Rectified Adam (RAdam) [23] optimizer is used with a
learning rate of 1× 10−4, a weight decay of 1× 10−4, and
a batch size of 4. The Kullback-Leibler divergence loss is
used to minimize the distance between the predicted skin-
ning weight distribution and the ground truth distribution.

4.3. Comparison With The State-of-the-art

SkinningNet is compared to the two most recent data-
driven approaches: NeuroSkinning [24] and RigNet [39].
Both networks have been trained from scratch following the
procedure described in their respective papers. In the case
of NeuroSkinning, the original Euclidean distance has been
replaced with the Geodesic one, as it will be demonstrated
in Sec. 4.6 to be a better choice for watertight meshes. Fur-
thermore, to guarantee a fair comparison, the same input at-
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Mesh Network
Layer N.Filters

Input Transform MLP(64, 128)
Residual MAGC 128
Residual MAGC 256
Residual MAGC 512

Skeleton Network
Input Transform MLP(64)

MAGC 128
MAGC 256
MAGC 512
Mesh - Skeleton Network

Mesh Global Shape MLP(256)
Skeleton Global Shape MLP(256)

Mesh-Skel MAGC 512
Concat 512 + 256 + 256

Skinning Network
MAGC 256
MAGC 128
MAGC 64
MLP (64, 32, k)

Table 1. SkinningNet architecture details with the number of fil-
ters used in each layer. k is the number of joints that can influence
each of the vertices.

tributes used in SkinningNet and described in Sec. 4.2 have
been used in the two architectures. Both methods proposed
a deep learning architecture based on graph convolutional
layers. In the case of NeuroSkinning the Graph Attention
layer [34] is used, whereas RigNet uses the Edge Convo-
lution layer [35]. Four different metrics have been used to
evaluate the skinning weight prediction:
1. Precision and Recall finds the set of joints that influence
each vertex significantly, where influence corresponds to a
prediction larger than 1× 10−4, as described in [24, 39].
2. L1-norm of the difference between the predicted skin-
ning weight and the ground truth vectors of each vertex of
the mesh. The average of this metric is computed across the
whole test split.
3. Deformation error computes the Euclidean distance be-
tween the position of the vertices deformed after applying
the predicted skinning weights and the ground truth ones.
To compute this metric, 10 different random poses are com-
puted where all the joints in the skeleton are randomly ro-
tated within a range of ±10 degrees.

SkinningNet outperforms the best method of the state-of-
the-art with over 5% of improvement on Precision with the
same Recall and 15% improvement on average L1-norm.
Table 2 summarizes the comparison with the state-of-the-
art. Fig. 4 shows the skinning weight prediction examples
on three assets. A random color is assigned to each skeleton
joint and colors are blended between vertices in the mesh
using the skinning weights. It can be seen, for instance in
the bat asset in the middle row, how the proposed algorithm
better predicts skinning weights with associated colors that

are closer to those of the ground truth in the first column.

Method Prec(%) Rec.(%) avg L1
NeuroSkinning [24] 82.3 79.7 0.41

Rignet [39] 82.3 80.8 0.39
SkinningNet 87.0 80.8 0.33

Table 2. Prediction results comparison with the current state-of-
the-art techniques.

(a) GT (b) NeuroSkinning (c) RigNet (d) SkinningNet

Figure 4. Skinning weights prediction results of each of the state-
of-the-art methods. A random color is assigned to each joint and
colors are blended between vertices in the mesh using the skinning
weights.

Even though results are significantly better than state-
of-the-art, the Precision, Recall and L1-norm metrics are
not good enough to evaluate skinning weight predictions.
The reason is that, in the case of Precision and Recall, the
magnitude of the skinning weight is not taken into account.
Furthermore, in the case of the L1-norm, it does not com-
pletely capture the importance of an error on the skinning
weights. Two similar L1 errors can result on different de-
formation errors depending on whether the L1 error comes
from small differences on each of the associated joints or it
is concentrated on a single joint. For these reasons, the de-
formation error will be used for the rest of the experiments.
Table 3 shows the average and the maximum deformation
error. Again, SkinningNet outperforms with a 20% of im-
provement in the average error and with a 17% of improve-
ment in the maximum error. The qualitative results of this
metric can be observed in Fig. 5, where SkinningNet is able
to generate reasonable results where previous state-of-the-
art methods fail.

4.4. Architecture Design Study

In this section the influence of each of the components of
the network is studied. Table 4 shows the results of remov-
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Method Avg. Def Max. Def
NeuroSkinning [24] 0.002843 0.2151

Rignet [39] 0.002921 0.2246
SkinningNet 0.002288 0.1789

Table 3. Deformation error comparison with the current state-of-
the-art techniques. The errors are inside a range of [0, 0.2] and are
calculated over the normalized version of each mesh.

(a) NeuroSkinning (b) RigNet (c) SkinningNet

Figure 5. Deformation error of three different characters with a
randomly generated pose.

ing the global shape feature, the residual connections and
the MUNEGC from the original SkinningNet.

Method Avg. Def Max. Def
Baseline 0.002288 0.1789

No Global Feature 0.002452 0.1905
No Residual 0.002394 0.1862

No MUNEGC 0.002427 0.2009

Table 4. Architecture Study that shows the influence of each of
the proposed stages in the output.

Removing the MUNEGC layers from the network leads
to a loss of performance of about 5%. These results show
that MUNEGC is helping to have an enriched local descrip-
tor for each of the vertices. This descriptor enables the net-
work to be aware of the local structure around the vertices.
Similar performance losses are obtained when removing the
Global Shape Feature as it helps the network to be aware of
the global shape of the skeleton and the mesh when doing
the prediction. Finally, adding the residual connections to
the Mesh Network leads to an improvement of 4%, demon-
strating that the residual connections are helping the pro-
posed approach.

4.5. Joint vs. Bone Representation Study

In this section, the difference between a joint vs. a bone
representation is analyzed. The Skin Binding step is mod-
ified to use bones instead of joints when creating the rela-
tions between the mesh and the skeleton. Table 5 shows
the results of both approaches. As can be seen, the skeleton
joint representation gives an improvement of 5% in both av-
erage and maximum deformation. This improvement is due
to the fact that the joint representation follows a natural ap-
proach where each of the joints represents an articulation
which is in charge of defining the movement of each bone.

Method Avg. Def Max. Def
Joint 0.002288 0.1789
Bone 0.002407 0.1893

Table 5. Joint vs. Bone representation study, where the influence
of each representation is analyzed.

4.6. Euclidean vs. Geodesic Distance Study

Finding the vertex to joint distance is a critical step for
skinning prediction methods. NeuroSkinning [24] proposed
the use of the Euclidean distance while RigNet [39] pro-
posed to use the Geodesic distance. Both distances have
their advantages and disadvantages. The Geodesic distance
is defined for connected components, with the distance be-
tween two non-connected components being infinity. This
means that the Geodesic distance is better suited for water-
tight meshes, whereas the Euclidean distance can be used
for both watertight and non-watertight meshes. In terms of
performance, using Geodesic distance helps the network to
predict better results than using Euclidean distance as ob-
served in Table 6.

Method Avg. Def Max. Def
Euclidean 0.002663 0.4473
Geodesic 0.002288 0.1789

Table 6. Geodesic vs. Euclidean performance comparison.

An example of the effects of a higher maximum error
when using the Euclidean distance can be observed in Fig. 6
where the tail of the squirrel is deformed with respect to the
Geodesic result.

4.7. Graph Convolution Study

In this work, the use of the Multi-Aggregator Graph Con-
volution (MAGC) is proposed. To study the influence of
this operator on the output of the prediction, the MAGC has
been replaced by three different state-of-the-art graph con-
volutions. Table 7 details the results of this study, showing
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(a) Euclidean (b) Geodesic

Figure 6. Euclidean vs. Geodesic qualitative results. It can be
observed that the euclidean distance introduces big deformation
errors in the tail.

that Edge Convolution [35] achieves the closest results to
the proposed MAGC. The improvement in respect to the
Edge Convolution is about 4% on the average deformation
and about 6% on the max deformation, demonstrating that
the MAGC helps to predict better skinning weights.

Method Avg. Def Max. Def
MAGC 0.002288 0.1789

EdgeConv [35] 0.002381 0.1921
GAT [34] 0.002551 0.2098
GCN [17] 0.002765 0.2533

Table 7. Graph Convolution study where MAGC has been com-
pared with three different state-of-the-art operators.

4.8. Generalization Study

A generalization study was performed to evaluate if the
proposed method has good generalization and is suitable for
working with AAA game characters. The trained networks
using RigNetv1 [39] have been applied to two high quality
assets from the Paragon Collection [10].

Method Avg. Def Max. Def
NeuroSkinning 0.003724 0.1213

Rignet 0.003398 0.1051
SkinningNet 0.002666 0.0664

Table 8. Generalization Study of the state-of-the-art methods.
The deformation error is computed using a normalized version of
the Paragon Assets [10].

Results in Table 8 show that SkinningNet outperforms
previous works with over 28% improvement in average de-
formation and 36% in maximum deformation error, proving
that the proposed method generalizes better than previous
methods for unseen complex characters. In Fig. 7, it can
be observed that the proposed method is generating good

quality animations without strong errors, whereas the other
methods have high errors in both characters.

(a) NeuroSkinning (b) RigNet (c) SkinningNet

Figure 7. Generalization study with Aurora and Rampage assets
from Paragon collection [10].

5. Conclusions and Limitations

This work presents SkinningNet, a Two-Stream Graph
Convolutional Neural Network that automatically gener-
ates skinning weights for an input mesh and its associ-
ated skeleton. The SkinningNet architecture is based on
the novel Multi-Aggregator Graph Convolution layer that
allows the network to better generalize for unseen topolo-
gies. Moreover, the proposed joint-based skin binding and
Mesh-Skeleton network learns to find the best relationships
between the mesh and skeleton helping to improve the fi-
nal skinning weight predictions. The proposed architecture
outperforms current approaches with over a 20% improve-
ment on mesh deformation error and is also able to better
generalize for complex characters of unseen domains.

Even though results are promising there are some lim-
itations that could be addressed. The first one is that as-
signing the joints that will influence each of the vertices is
based on a k-NN approach. The network can learn which of
these joints will affect each vertex, however, if the joint that
should influence the vertex is not inside the initial k pro-
posal, the network will not be able to find it. To overcome
this issue, we propose to explore link prediction strategies to
let the network learn the binding strategy. The second one
is that the current configuration uses the standard Geodesic
distance that, by definition, is infinity on non-connected re-
gions, meaning that the network could experience a drop on
its performance in non-watertight meshes. To overcome this
limitation, new approximations to the Geodesic distance us-
ing voxelization could be explored. Finally, the use of the
deformation error as a loss could be explored to improve the
performance of the current approach.
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