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Abstract

Deep neural networks (DNN) have achieved great suc-
cess in image restoration. However, most DNN methods are
designed as a black box, lacking transparency and inter-
pretability. Although some methods are proposed to com-
bine traditional optimization algorithms with DNN, they
usually demand pre-defined degradation processes or hand-
crafted assumptions, making it difficult to deal with com-
plex and real-world applications. In this paper, we propose
a Deep Generalized Unfolding Network (DGUNet) for im-
age restoration. Concretely, without loss of interpretability,
we integrate a gradient estimation strategy into the gradi-
ent descent step of the Proximal Gradient Descent (PGD)
algorithm, driving it to deal with complex and real-world
image degradation. In addition, we design inter-stage in-
formation pathways across proximal mapping in different
PGD iterations to rectify the intrinsic information loss in
most deep unfolding networks (DUN) through a multi-scale
and spatial-adaptive way. By integrating the flexible gradi-
ent descent and informative proximal mapping, we unfold
the iterative PGD algorithm into a trainable DNN. Exten-
sive experiments on various image restoration tasks demon-
strate the superiority of our method in terms of state-of-the-
art performance, interpretability, and generalizability. The
source code is available at github.com/MC-E/DGUNet.

1. Introduction
Image restoration (IR) aims to recover the high-quality

image x from its degraded measurement y. The degradation
process is generally defined as:

y = Ax+ n, (1)

where A is the degradation matrix, and n represents the ad-
ditive noise. It is typically an ill-posed problem. According
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Figure 1. Real image denoising performance (y-axis) of our
DGUNet and some recent denoisers (VDNet [75], GDANet [76],
AINDNet [33], MIRNet [78], DeamNet [53], MPRNet [79]) under
different parameter capacities (x-axis) on DND [52] dataset.

to A, IR can be categorized into many subtasks, e.g., image
denoising, deblurring, deraining, compressive sensing. In
the past few decades, IR has been extensively studied, lead-
ing to three main active research topics, i.e., model-based
methods , deep learning methods , and hybrid methods.

Model-based methods (e.g., [7,12,17,25,32,56]) usually
formulate IR as a Bayesian problem, solving Eq. (1) under
a unified MAP (maximizing a posterior) framework:

x̂ = argmax
x

logP (x|y) = argmax
x

logP (y|x) + logP (x),

(2)
where logP (y|x) and logP (x) represent the data fidelity
and regularization terms, respectively. The data fidelity
term is usually defined as an ℓ2 norm, expressing Eq. (2)
as the following energy function:

x̂ = argmin
x

1

2
||y −Ax||22 + λJ(x), (3)

where λ is a hyper-parameter to weight the regulariza-
tion term J(x). The data fidelity term guarantees the so-
lution accords with degradation. The regulation term al-
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leviates the ill-posed problem by enforcing desired prop-
erty, which involves sophisticated priors, e.g., total varia-
tion [49], sparse representation [15, 18, 42], low-rank [23],
and self-similarity [7,12]. However, the representation abil-
ity of handcrafted design is limited, leading to unstable re-
sults, and they are usually time-consuming in inference.

Recently, deep-learning IR [13, 91–93] has achieved im-
pressive success, as they can learn strong priors from large-
scale datasets. Up to now, numerous function units have
been proposed. [62] proposed a memory strategy to broad-
cast useful information in different layers. [6, 24, 33, 75, 79]
utilized hourglass-shaped architectures to explore multi-
scale features. Some non-local methods [40, 45, 46] were
proposed to enlarge the receptive field. Although the
promising performance and fast inference, the black box
design makes it hard to analyze the role of different compo-
nents, and performance gains are often attributed to stacking
new modules at the price of increased model complexity.

To combine interpretability and adaptivity, some hy-
brid methods proposed integrating deep networks into clas-
sic optimization algorithms. For instance, deep plug-and-
play (PNP) methods [44, 74, 89, 92, 94] integrated pre-
trained CNN denoiser, as the prior, into iterative optimiza-
tion frameworks for different IR tasks. Unfortunately, they
usually suffer from time-consuming inference. Recently,
deep unfolding networks (DUN) [16, 53, 83, 88] proposed
optimizing all parameters end-to-end, delivering better per-
formance and faster inference. However, due to the inter-
pretable design, most of them require known degradation
processes to derive the solution. Nevertheless, the degra-
dation processes in real-world applications are complicated
and unassured with signal-dependent and spatially variant
distribution. Thus, most DUN methods make handcrafted
degradation assumptions [16] or explicitly provide the net-
work with degradation factors [88] to deal with pre-defined
image degradation problems. In addition, since traditional
model-based methods output an image in each iteration, the
corresponding DUN has to adopt the input and output of
each stage as an image. This inherent design inevitably re-
sults in feature-to-image information distortion. Such infor-
mation loss in DUN has little notice in existing works.

To rectify the above issues and bridge the gap between
model-based methods and deep learning methods, we pro-
pose a deep generalized unfolding network (DGUNet). On
the one hand, our method has good interpretability as
model-based methods by formulating the model design via
a Proximal Gradient Descent (PGD) algorithm. On the
other hand, similar to deep learning methods, our method
is trained end-to-end with an unhindered feature pathway
and can be easily applied to complex and real-world appli-
cations. To achieve this, we first integrate a gradient es-
timation strategy to the gradient descent step of the PGD
algorithm to predict the gradient in degradation-unknown

cases. We then design inter-stage information pathways to
compensate for the intrinsic information loss in DUN. To
summarize, this work has the following contributions:

• The iterative optimization step of PGD algorithm is
used to guide the mode design, leading to an end-to-
end trainable and also interpretable model (DGUNet).

• Our DGUNet presents a general CNN-based imple-
mentation of DUN by combining a gradient estimation
strategy into the PGD algorithm, enabling PGD to be
easily applied to complex and real-world IR tasks.

• We design inter-stage information pathways in the
DUN framework to broadcast multi-scale features in a
spatial-adaptive normalization way, which rectifies the
intrinsic information loss in most DUN methods.

• Extensive experiments demonstrate that our method
can solve general IR tasks with state-of-the-art perfor-
mance (including twelve synthetic and real-world test
sets) and attractive complexity (see Fig. 1).

2. Related Works
2.1. Model-based Image Restoration Methods

As mentioned previously, model-based methods [85, 87,
98, 99] usually solve IR in a Bayesian perspective, which is
formulated into a MAP optimization problem as Eq. (3),
containing a data fidelity term and a regularization term.
HQS [27], ADMM [5] and PGD [4] are commonly used
optimization algorithms. These methods usually decoupled
the data fidelity term and regularization term of the objec-
tive function, resulting in an iterative scheme consisting
of alternately solving a data subproblem and a prior sub-
problem. For instance, [100] integrated Gaussian Mixture
prior to HQS. In [28], Heide et al. used an alternative to
ADMM and HQS to decouple the data term and prior term.
[64] plugged class-specific Gaussian mixture denoiser into
ADMM to solve image deblurring and compressive sensing.

2.2. Deep Learning Image Restoration Methods

Motivated by the great success of deep neural networks
(DNN), DNN-based methods have been widely used in low-
level image processing tasks. [13, 14] are early attempts at
applying convolutional neural networks (CNN) for IR. Sub-
sequently, Zhang et al. proposed DnCNN [91], significantly
improving the restoration performance by residual learn-
ing. [62] proposed dense-connected memory block to col-
lect useful information from preceding layers. [95, 96] pro-
posed stacking residual blocks (RB) without Batch Normal-
ization [30] to extend the network depth. In addition to esti-
mating the clean image with a fixed scale, some hourglass-
shaped networks [6,24,33,75,79] were proposed to explore
multi-scale feature maps for IR.
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Figure 2. Illustration of our proposed deep generalized unfolding network (DGUNet). We present the overall architecture in the first row,
mainly composed of several stages. Each stage corresponds to an iteration in the PGD algorithm. The second row presents the detailed
design of each stage, containing a flexible gradient descent module (FGDM) and an informative proximal mapping module (IPMM).

2.3. Deep Unfolding Networks

The main idea of deep unfolding networks (DUN) is that
conventional iterative optimization algorithms can be im-
plemented equivalently by a stack of recurrent DNN blocks.
Such correspondence was originally applied in deep plug-
and-play (PNP) methods [44, 57, 74, 92, 94], which uti-
lize trained denoiser to implicitly express the regularization
term J(x) as a denoising problem. Inspired by PNP, DUN
methods are trained in an end-to-end manner by jointly op-
timizing trainable denoisers in specific tasks. For instance,
[16] jointly optimized an UNet as the proximal mapping in
the ADMM [5] algorithm. Nevertheless, its network struc-
ture is closely related to the handcrafted degradation as-
sumptions to deal with pre-defined image degradation. [88]
used a ResUNet to replace the proximal mapping in the
HQS [27] algorithm. However, the degradation process is
also manually designed, and its network requires scale fac-
tor, blur kernel, and noise level as additional inputs, caus-
ing the performance to depend largely on the accuracy of
provided degradation factors. [60, 73, 83] solved compres-
sive sensing by PGD algorithm [4] with known degradation
process. Moreover, most DUN methods are beset by infor-
mation loss due to the feature-to-image transformation at
the end of each stage. Though the skip connections in [48]
benefit the information transfer, its implementation remains
primitive, e.g., feature fusion is performed by concatenation
on a single decoder layer of the proximal mapping module.

3. Methodology

In this section, we first briefly review the traditional
Proximal Gradient Descent (PGD) algorithm and then elab-

orate on our proposed DGUNet.

3.1. Traditional Proximal Gradient Descent

Technically, the PGD algorithm approximatively ex-
presses Eq. (3) as an iterative convergence problem through
the following iterative function:

x̂k = argmin
x

1

2
||x−(x̂k−1 − ρ∇g(x̂k−1))||22 + λJ(x),

(4)
where x̂k refers to the output of the k-th iteration, and g(·)
represents the data fidelity term in Eq. (3). ∇ is the differen-
tial operator, weighted by the step size ρ. Mathematically,
the red part of the above function is a gradient descent op-
eration, and the blue part can be solved by the proximal op-
erator proxλ,J . Thus, it leads to two subproblems, i.e., gra-
dient descent (Eq. (5a)) and proximal mapping (Eq. (5b)):

vk = x̂k−1 − ρA⊤(Ax̂k−1 − y), (5a)

x̂k = proxλ,J(v
k). (5b)

The PGD algorithm iteratively updates vk and x̂k until con-
vergence. ISTA [4] is a typical PGD-based algorithm in
which the regulation term is defined as an ℓ1 norm, i.e.,
J(x) = ||x||1. Thus, the proximal mapping in ISTA is
derived as a soft thresholding function: proxλ,J(v

k) =

sign(vk)max(0, |vk| − λ). However, the handcrafted ℓ1
regulation has limited representation abilities, and its appli-
cation is restricted to a few degradation-known tasks (e.g.,
compressive sensing). Focusing on improving the tradi-
tional PGD algorithm, in this paper, we unfold it by deep
neural networks with robust and generalized design.
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3.2. Proposed Deep Generalized Unfolding Network

The whole network architecture of our proposed
DGUNet is presented in Fig. 2, which is an unfolding
framework of the Proximal Gradient Descent (PGD) algo-
rithm based on deep neural networks (DNN). Our DGUNet
is composed of several repeated stages. Each stage con-
tains a flexible gradient descent module (FGDM) and an in-
formative proximal mapping module (IPMM), correspond-
ing to the gradient descent (Eq. (5a)) and proximal mapping
(Eq. (5b)) in an iteration step of the PGD algorithm, respec-
tively. The number of stages is set as seven by default, and
they share the same parameters except for the first and last
stages. To further improve the model performance, we also
present a plus version, dubbed as DGUNet+, in which all
stages are parameter-independent.

Flexible Gradient Descent Module. As illustrated in
Eq. (5a), the gradient descent step is trivial when the degra-
dation matrix A is known. However, A is unknown in some
degradation problems, making the gradient calculation (i.e.,
A⊤(Ax̂k−1 − y)) intractable. In this context, we propose
a flexible gradient descent module (FGDM), shown in the
second row of Fig. 2. It has two model settings to deal with
the degradation known and unknown cases reasonably.

In the case of A is known, we directly use the accurate
A to calculate the gradient. To improve the robustness, we
set the step size ρ as a trainable parameter in each stage,
leading to the following gradient descent operation:

vk = x̂k−1 − ρkA⊤(Ax̂k−1 − y). (6)

If A is unknown, instead of making task-specific assump-
tions for different degradation problems, we adopt a data-
driven strategy to predict the gradient. Technically, we uti-
lize two independent residual blocks, dubbed as Fk

A and
Fk

A⊤ , to simulate A and its transpose A⊤ in the k-th stage.
The gradient is calculated as Fk

A⊤(Fk
A(x̂k−1) − y). Thus

without loss of interpretability, the gradient descent in our
proposed DGUNet can be defined as the following function
in the degradation-unknown cases.

vk = x̂k−1 − ρkFk
A⊤(Fk

A(x̂k−1)− y). (7)

Informative Proximal Mapping Module. For the solu-
tion of Eq. (5b), it is known that, from a Bayesian perspec-
tive, it actually corresponds to a denoising problem [9,74].
In this context, we design an informative proximal map-
ping module (IPMM), shown in the second row of Fig. 2.
Our IPMM is an hourglass-shaped architecture, consisting
of an encoder and a decoder to utilize the multi-scale fea-
ture maps. Specifically, our IPMM begins with a chan-
nel attention block (CAB) to extract shallow features. We
employ the residual block (RB) without Batch Normaliza-
tion [30] to extract features at three scales. Here, we utilize
Fk

enc = {Fk
enc⊛n}3n=1 and Fk

dec = {Fk
dec⊛n}3n=1 to rep-

resent the encoder and decoder features extracted from the

Co
nv

Co
nv

Convα Convβ

Element-wise 
multiplication

Element-wise 
addition

Figure 3. Illustration of our inter-stage feature fusion module
(ISFF) at the n-th scale in the k-th stage. The encoder and de-
coder features from the previous stage are fused to the current
stage in a spatial-adaptive normalization manner.

k-th stage at the n-th scale. In order to switch scales in our
IPMM, we use 2 × 2 max-pooling with stride 2 for down-
sampling, and we use bilinear upsampling followed by a
convolutional layer for upsampling. Similar to many com-
petitive denoisers, we add a global pathway from the input
to the output, which encourages the network to bypass low-
frequency information. At the end of IPMM, we utilize the
supervised attention module (SAM) in [79] to extract clean
features and then inject them into the next stage through
subspace projection [11].

Considering the intrinsic information loss in most DUN
methods, we design inter-stage information pathways at
each scale to broadcast useful information from encoder
and decoder in different stages. For the illustration pur-
pose, we use different colored lines to distinguish encoder
and decoder information with different scales in Fig. 2. To
fuse the inter-stage information, we design an inter-stage
feature fusion submodule (ISFF) at each scale in the en-
coder. Note that the inter-stage information can also be nat-
urally propagated to the decoder due to the skip-connections
between encoder and decoder. The detailed architecture
of our ISFF is presented in Fig. 3, which is inspired by
[51, 66]. Concretely, at each scale, we transmit encoder
and decoder features from the previous stage to the current
stage. They are first embedded by two independent 1 × 1
convolutional layers and merged by the element-wise addi-
tion. In the k-th stage, the fusion result at the n-th scale
is represented as Hk

n. It is used to compute two affine pa-
rameters {αk

n,β
k
n} ∈ RC×H×W to transfer the interme-

diate output F̂k
enc⊛n ∈ RC×H×W to an informative one

Fk
enc⊛n ∈ RC×H×W , where C, H , and W refer to the size

of channel, height, and width, respectively. Mathematically,
our proposed inter-stage feature fusion is defined as the fol-
lowing feature representation:

Hk−1
n = Conv(Fk−1

enc⊛n) + Conv(Fk−1
dec⊛n)

αk
n,β

k
n = Convα(H

k−1
n ), Convβ(H

k−1
n )

Fk
enc⊛n = F̂k

enc⊛n

⊙
αk

n + βk
n.

(8)
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Table 1. Quantitative results (PSNR and SSIM) of image deraining. The best and second-best scores are highlighted and underlined.

Method Test100 [79] Rain100H [71] Rain100L [71] Test2800 [79] Test1200 [79] Average
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

DerainNet [19] 22.77 0.810 14.92 0.592 27.03 0.884 24.31 0.861 23.38 0.835 22.48 0.796
SEMI [68] 22.35 0.788 16.56 0.486 25.03 0.842 24.43 0.782 26.05 0.822 22.88 0.744
DIDMDN [81] 22.56 0.818 17.35 0.524 25.23 0.741 28.13 0.867 29.65 0.901 24.58 0.770
UMRL [72] 24.41 0.829 26.01 0.832 29.18 0.923 29.97 0.905 30.55 0.910 28.02 0.880
RESCAN [38] 25.00 0.835 26.36 0.786 29.80 0.881 31.29 0.904 30.51 0.882 28.59 0.857
PreNet [54] 24.81 0.851 26.77 0.858 32.44 0.950 31.75 0.916 31.36 0.911 29.42 0.897
MSPFN [31] 27.50 0.876 28.66 0.860 32.40 0.933 32.82 0.930 32.39 0.916 30.75 0.903
MPRNet [79] 30.27 0.897 30.41 0.890 36.40 0.965 33.64 0.938 32.91 0.916 32.73 0.921
DGUNet (Ours) 30.32 0.899 30.66 0.891 37.42 0.969 33.68 0.938 33.23 0.920 33.06 0.923
DGUNet+ (Ours) 30.86 0.907 31.06 0.897 38.25 0.974 34.01 0.942 33.08 0.916 33.46 0.927

The above feature fusion process is a standard spatial-
adaptive normalization [51]. Unlike conditional normaliza-
tion methods [30,65], αk

n and βk
n are not vectors but tensors

with spatial dimensions. In this way, while the encoder and
decoder obtain multi-scale features, feature maps at each
scale can also have the refined memory of previous stages
with the well-preserved spatial information, leading to an
informative proximal mapping. For the illustration purpose,
we utilize Fk to represent the set of multi-scale encoder and
decoder features, i.e., Fk = {Fk

enc, Fk
dec}. Finally, our

IPMM expresses Eq. (5b) as:

x̂k,Fk = proxθk(vk,Fk−1), (9)

where θk denotes the parameters of IPMM in the k-the
stage. In the light of the above discussion, we finally define
the convergence process of our DGUNet in Algorithm 1.

Algorithm 1: Proposed DGUNet
Initialization:
(1) Initialize the iteration depth k=0 and ceiling K;
(2) Initialize the input x̂0 = y;
(3) Initialize the inter-stage feature F0 = None;

while k < K do
if A is unknown then

Update vk+1 by Eq. (6);
else

Update vk+1 by Eq. (7);
end
Update x̂k+1 and Fk+1 by Eq. (9);
k = k + 1;

end
Output: [x̂1, x̂2, · · · , x̂K ]

3.3. Loss Function Design

Without bells and whistles, we optimize our DGUNet
and DGUNet+ with the commonly used ℓ2 loss function,
involving the output from all stages. Specifically, given the
degraded measurement y and the ground-truth image x, the

goal of the training is defined as:

L(Ω) =

K∑
k=1

∥∥x− x̂k
∥∥2
2
, (10)

where K refers to the total number of stages, and x̂k rep-
resents the restoration result from the k-th stage. Ω =
{ρk,Fk

A(·),Fk
AT (·),θk}Kk=1 is the set of trainable param-

eters of our proposed DGUNet.

4. Experiments

We apply our DGUNet to image deraining, deblurring,
denoising, and compressive sensing. For each application,
we train and evaluate our DGUNet with standard bench-
marks and commonly used settings. The comparison is con-
ducted with several recent methods.

4.1. Training Details

Our DGUNet is trained in an end-to-end manner. For
image denoising, image deraining, and image deblurring
tasks, we apply the same training strategy as MPRNet [79].
Specifically, we use Adam optimizer [34], with the initial
learning rate being 2× 10−4. Considering the model depth,
we utilize the warming up strategy [26] to gradually im-
prove the learning rate. The network is trained on 256×256
image patches, randomly cropped from training images.
The batch size is set as 16 for 4 × 105 iterations. In im-
age compressive sensing, the network is trained on 32× 32
image patches, with the learning rate being 1 × 10−4. The
batch size is set as 128 for 200 epochs.

The model training is performed on 2 Nvidia Tesla V100
GPUs and can be completed within three days. For evalua-
tion, we report standard metrics (PSNR and SSIM [67]).

4.2. Image Deraining Results

For image deraining, the training data is the same as
MSPFN [31] and MPRNet [79]. Specifically, we use 11,200
clean-rain image pairs in Rain14000 [20], 1,800 image pairs
in Rain1800 [71], 700 image pairs in Rain800 [82] and 12
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Figure 4. Visual comparison of image deraining. Our DGUNet and DGUNet+ generate more natural details while removing raindrops.

image pairs in Rain12 [39] to train our model. For evalua-
tion, five datasets, including Test2800 [20], Test1200 [81],
Test100 [82], Rain100H [71] and Rain100L [71] are uti-
lized as the test sets. We compare our proposed DGUNet
with eight competitive methods [19,31,38,54,68,72,79,81].
The quantitative comparison results are presented in Tab. 1.
One can see that our DGUNet and DGUNet+ can outper-
form other methods on all test sets. Concretely, there are
1.85 dB, 0.65 dB, and 0.73 dB gains compared with the
recent MPRNet on Rain100L, Rain100H, and average of
these five test sets, respectively. The visual comparison is
presented in Fig. 4, showing the better restoration result of
our DGUNet and DGUNet+. Especially compared with
MSPFN and MPRNet, our method can remove inconspic-
uous rain lines better and produce more visually satisfying
results with vivid details.

4.3. Image Deblurring Results

For image deblurring, similar to [36, 55, 63, 79, 80], we
train our model with 2, 103 image pairs from GoPro [47]
dataset and evaluate each method on the test sets from Go-
Pro and HIDE [58], which contain 1, 111 and 2, 025 sam-
ples, respectively. Unlike pre-defined blur kernels, these
two datasets are generated in real scenes, involving real-
world degradation factors such as camera response function
and human-aware motion blur. We compare our method
with several competitive works [50, 61, 80, 90] and the re-
cent best algorithm MPRNet [79]. The quantitative evalua-
tion is summarized in Tab. 2, presenting that our DGUNet
and DGUNet+ outperform other methods on these two test
sets. Specifically, our DGUNet+ outperforms MPRNet
with 0.51 dB and 0.44 dB on GoPro and HIDE test sets.

Table 2. Image deblurring results on GoPro [47] and HIDE [58].
The best and second-best scores are highlighted and underlined.

Method GoPro [47] HIDE [58]
PSNR↑ SSIM↑ PSNR↑ SSIM↑

Xu et al. [70] 21.00 0.741 - -
Hyun et al. [29] 23.64 0.824 - -
Whyte et al. [69] 24.60 0.846 - -
Gong et al. [22] 26.40 0.863 - -
DeblurGAN [36] 28.70 0.858 24.51 0.871
Nah et al. [47] 29.08 0.914 25.73 0.874
Zhang et al. [84] 29.19 0.931 - -
DeblurGAN-v2 [37] 29.55 0.934 26.61 0.875
SRN [63] 30.26 0.934 28.36 0.915
Shen et al. [58] - - 28.89 0.930
Gao et al. [21] 30.90 0.935 29.11 0.913
DBGAN [90] 31.10 0.942 28.94 0.915
MT-RNN [50] 31.15 0.945 29.15 0.918
DMPHN [80] 31.20 0.940 29.09 0.924
Suin et al. [61] 31.85 0.948 29.98 0.930
MPRNet [79] 32.66 0.959 30.96 0.939
DGUNet (Ours) 32.71 0.960 30.96 0.940
DGUNet+ (Ours) 33.17 0.963 31.40 0.944

The visual comparison is shown in Fig. 5. Clearly, the
results of our DGUNet and DGUNet+ have higher visual
quality, especially in recovering complex textures.

4.4. Image Denoising Results

For this application, we train our DGUNet on the com-
monly used SIDD dataset [2], which contains 320 degraded-
clean image pairs corrupted by realistic noise with unknown
distribution and noise levels. We evaluate each method on
SIDD and DND [52] test sets. We compare our DGUNet
with several recent methods [10, 53, 76, 77, 79] and report
the evaluation results (PSNR and SSIM) in Tab. 3. One
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Figure 5. Visual comparison of image deblurring. Our method produces sharper results that are visually closer to the ground truth.

Noisy RIDNet [3] DANet [76] CycleISP [77] DeamNet [53] MPRNet [79] DGUNet DGUNet+

Figure 6. Visual comparison of real image denoising. Our method can remove unknown noise better while retaining satisfying details.

Table 3. Image denoising results on SIDD [2] and DND [52]. The
best and second-best scores are highlighted and underlined.

Method SIDD [2] DND [52]
PSNR↑ SSIM↑ PSNR↑ SSIM↑

DnCNN [91] 23.66 0.583 32.43 0.790
MLP [8] 24.71 0.641 34.23 0.833
BM3D [12] 25.65 0.685 34.51 0.851
CBDNet [24] 30.78 0.801 38.06 0.942
RIDNet [3] 38.71 0.951 39.26 0.953
AINDNet [33] 38.95 0.952 39.37 0.951
VDN [75] 39.28 0.956 39.38 0.952
SADNet [10] 39.46 0.957 39.59 0.952
DANet+ [76] 39.47 0.957 39.58 0.955
MIRNet [78] 39.72 0.959 39.88 0.956
CycleISP [77] 39.52 0.957 39.56 0.956
DeamNet [53] 39.43 0.956 39.70 0.953
MPRNet [79] 39.71 0.958 39.80 0.954
DGUNet (Ours) 39.88 0.959 40.04 0.956
DGUNet+ (Ours) 39.91 0.960 40.12 0.957

can see that our method achieves the best performance on
both SIDD and DND test sets. Specifically, our DGUNet+

outperforms MPRNet with 0.32 dB and 0.20 dB on DND
and SIDD test sets, respectively. The visual comparison is
presented in Fig. 6, including two samples from DND (the
first row) and SIDD (the second row) test sets. Clearly, our
method has good robustness to both high-intensity and low-

intensity noise to recover the actual texture and structures,
e.g., the pattern of wood and the edge of letters.

4.5. Compressive Sensing Results

For this application, we choose the widely used BSD400
dataset [43] as the training data and evaluate each method
on Set11 [35] and BSD68 [43] test sets. Same as [41,86,97],
for a given set of CS ratios {1%, 4%, 10%, 25%, 50%}, we
jointly optimize the sampling matrix with the whole net-
work. Note that in the task of compressive sensing, the
degradation matrix A is exactly known, i.e., the sampling
matrix Φ. Thus, we directly use Φ to calculate the gradient.
The quantitative comparison is presented in Tab. 4. One can
see that our DGUNet and DGUNet+ have obvious advan-
tages over either classic methods [59, 83] and recent top-
performing methods [41, 86, 97], and the margin becomes
more obvious at low CS ratios. For instance, there are 2 dB
gains compared with OPINENet+ [86] on the Set11 test set,
with the CS ratio being 1%. An interesting finding is that
DGUNet performs better than DGUNet+ in some cases.
This is mainly because the training set is small and the large
model can not be fully optimized. The visual comparison is
presented in Fig. 7, showing that our method can recover
more details and sharper edges than other methods.
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Table 4. Quantitative results of image compressive sensing. The best and second-best scores are highlighted and underlined.

Dataset Ratio ISTANet+ [83] CSNet [59] AdapRecon [41] OPINENet+ [86] AMPNet [97] DGUNet DGUNet+

Set11

1% 17.42/0.4029 19.87/0.4977 19.63/0.4848 20.15/0.5340 20.04/0.5132 22.09/0.6096 22.15/0.6114
4% 21.32/0.6037 23.93/0.7338 23.87/0.7279 25.69/0.7920 24.64/0.7527 26.84/0.8249 26.83/0.8230
10% 26.64/0.8087 27.59/0.8575 27.39/0.8521 29.81/0.8884 28.84/0.8765 31.07/0.9123 30.93/0.9088
25% 32.59/0.9254 31.70/0.9274 31.75/0.9257 34.86/0.9509 34.42/0.9513 36.11/0.9611 36.18/0.9616
50% 38.11/0.9707 37.19/0.9700 35.87/0.9625 40.17/0.9797 40.12/0.9818 41.22/0.9836 41.24/0.9837

BSD68

1% 19.14/0.4158 21.91/0.4958 21.50/0.4825 22.11/0.5140 21.97/0.5086 22.65/0.5396 22.70/0.5406
4% 22.17/0.5486 24.63/0.6564 24.30/0.6491 25.00/0.6825 25.40/0.6985 25.55/0.7008 25.45/0.6987
10% 25.32/0.7022 27.02/0.7864 26.72/0.7821 27.82/0.8045 27.41/0.8036 28.26/0.8193 28.14/0.8165
25% 29.36/0.8525 30.22/0.8918 30.10/0.8901 31.51/0.9061 31.56/0.9121 31.90/0.9155 31.98/0.9158
50% 34.04/0.9424 34.82/0.9590 33.60/0.9479 36.35/0.9660 36.64/0.9707 37.01/0.9714 37.04/0.9718

PSNR
Ground Truth

23.51 dB
ISTANet+ [83]

23.06 dB
AdapRecon [41]

24.41 dB
CSNet [59]

24.73 dB
OPINENet+ [86]

24.56 dB
AMPNet [97]

26.13 dB
DGUNet

26.41 dB
DGUNet+

Figure 7. Visual comparison of compressive sensing with the CS ratio being 10%. Our method can produce results with higher quality.

Table 5. Ablation study of the number of stages and number of
feature fusion scales in our method on Rain100H test set.

Stages 9 7 5 3
Scales 3 3 2 1 3 3
PSNR 31.27 31.06 30.87 30.68 30.43 29.67

Table 6. Ablation study of different components in our method.

Mode DGUNet+ w/o FGDM w/o SP w/o ISFF
PSNR 31.06 30.51 30.92 30.09

4.6. Ablation Study

We present the ablation study in Tab. 5 and Tab. 6 to
investigate the number of stages, number of feature fu-
sion scales, and different components of our method. Ex-
periments are conducted on image deraining and evaluated
on Rain100H [71]. In order to highlight the performance
changes, all modifications are made on our DGUNet+.

Number of stages. In this part, we explore the gains
brought by the number of stages, including 9, 7, 5, and 3
stages. From Tab. 5, we can find that the performance in-
creases with the number of stages, demonstrating the effec-
tiveness of the iterative network design. By making a trade-
off between performance and computational complexity, we
employ seven stages in our DGUNet and DGUNet+.

Inter-stage feature fusion. As mentioned previously, to
rectify the weakness of transforming a multi-channel fea-
ture map back to an image at the end of each stage, we
introduce an inter-stage feature fusion module (ISFF). To
demonstrate the effectiveness of ISFF, we remove it from
our DGUNet+, represented as “w/o ISFF” in Tab. 6, and
we study the performance gains of multi-scale feature fu-

sion in Tab. 5. We can find that our ISFF has obvious gains,
and the performance increases with the number of feature
fusion scales. Additionally, we study the effectiveness of
spatial-adaptive fusion by replacing it with the direct addi-
tion, represented as “w/o SP” in Tab. 6. The performance
degradation demonstrates the positive effect of this design.

Gradient descent module. Although our proposed
DGUNet has good interpretability, the effect of such de-
sign also needs to be discussed carefully. In the experiment,
we remove the Flexible Gradient Descent Module (FGDM)
from our DGUNet+, leading to an UNet-cascading struc-
ture. This variant is represented as “w/o FGDM” in Tab. 6.
Compared with DGUNet+, there are 0.55 dB degradations
on the Rain100H. Thus, the result demonstrates that our in-
terpretable design also has performance gains.

5. Conclusion and Discussion

In this paper, we propose a deep generalized unfolding
network (DGUNet) for IR. We develop principles that aim
to combine the merits of model-based methods and deep
learning methods. To this end, we unfold the PGD op-
timization algorithm into a deep network and integrate a
gradient estimation strategy into the gradient descent step,
enabling it to be easily applied to complex and real-world
applications. To compensate for the intrinsic information
loss in DUN, we design inter-stage feature pathways that
work with multiple scales and spatial-adaptive normaliza-
tion. Extensive experiments on numerous IR tasks (includ-
ing twelve synthetic and real-world test sets) demonstrate
the superiority of our method in terms of state-of-the-art
performance, interpretability, and generalizability. Our fu-
ture work will support DGUNet on MindSpore [1] platform.
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