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Figure 1. 3D photo stylization. Given a single content image, our method synthesizes novel views of the scene in an arbitrary style. In
doing so, our method delivers immersive viewing experience of a memorable moment within existing photos.

Abstract
Visual content creation has spurred a soaring interest

given its applications in mobile photography and AR / VR.
Style transfer and single-image 3D photography as two rep-
resentative tasks have so far evolved independently. In this
paper, we make a connection between the two, and address
the challenging task of 3D photo stylization — generating
stylized novel views from a single image given an arbitrary
style. Our key intuition is that style transfer and view syn-
thesis have to be jointly modeled. To this end, we propose a
deep model that learns geometry-aware content features for
stylization from a point cloud representation of the scene,
resulting in high-quality stylized images that are consistent
across views. Further, we introduce a novel training proto-
col to enable the learning using only 2D images. We demon-
strate the superiority of our method via extensive qualitative
and quantitative studies, and showcase key applications of
our method in light of the growing demand for 3D content
creation from 2D image assets.1

*Work partially done when Fangzhou was an intern at Snap Research
†co-corresponding authors
1Project page: http://pages.cs.wisc.edu/˜fmu/style3d

1. Introduction

Given an input content image and a reference style im-
age, neural style transfer [4, 13, 14, 16, 22, 24, 32, 35, 42, 50]
creates a novel image that “paints” the content with the
style. Despite a high quality stylized image, the result is
limited to the same viewpoint of the content image. What
if we can render stylized images from different views? See
Fig. 1 for two examples. When displayed with parallax,
this capacity will provide drastically more immersive visual
experience for 2D images, and support the application of
interactive browsing of 3D photos on mobile and AR/VR
devices. In this paper, we address this new task of gen-
erating stylized images of novel views from a single input
image and an arbitrary reference style image, as illustrated
in Fig. 1. We refer to this task as 3D photo stylization — a
marriage between style transfer and novel view synthesis.

3D photo stylization has several major technical barriers.
As observed in [21], directly combining existing methods of
style transfer and novel view synthesis yields blurry or in-
consistent stylized images, even with dense 3D geometry
obtained from structure from motion and multi-view stereo.
This challenge is further manifested with a single content
image as the input, where a method must resort to monocu-
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lar depth estimation with incomplete and noisy 3D geome-
try, leading to holes and artifacts when synthesizing stylized
images of novel views. In addition, training deep models for
this task requires a large-scale dataset of diverse scenes with
dense geometry annotation that is currently lacking.

To bridge this gap, we draw inspiration from one-shot
3D photography [28, 41, 51], and adopt a point cloud based
scene representation [21, 41, 58]. Our key innovation is
a deep model that learns 3D geometry-aware features on
the point cloud without using 2D image features from the
content image for rendering novel views with a consistent
style. Our method accounts for the input noise from depth
maps, and jointly models style transfer and view synthe-
sis. Moreover, we propose a novel training scheme that
enables learning our model using standard image datasets
(e.g., MS-COCO [33]), without the need of multi-view im-
ages or ground-truth depth maps.

Our contributions are summarized into three folds. (1)
We present the first method to address the new task of 3D
photo stylization — synthesizing stylized novel views from
a single content image with arbitrary styles. (2) Unlike pre-
vious methods, our method learns geometry-aware features
on a point cloud without using 2D content image features
and from only 2D image datasets. (3) Our method demon-
strates superior qualitative and quantitative results, and en-
ables several interesting applications.

2. Related work
Neural Style Transfer. Neural style transfer has received
considerable attention. Image style transfer [12,13] renders
the content of one image in the style of another. Video style
transfer [49] injects a style to a sequence of video frames
to produce temporally consistent stylization, often by en-
forcing smoothness constraint on optical flow [3,20,49,56]
or in the feature space [9, 35]. Our method faces the same
challenge as video style transfer; that the style must be con-
sistent across views. However, our task of 3D photo styl-
ization is more challenging, as it requires the synthesis of
novel views and a consistent style among all views.

Technically, early methods formulate style transfer as
a slow iterative optimization process [12, 13]. Fast feed-
forward models later perform stylization in a single for-
ward pass, but can only accommodate one [24, 55] or a
few styles [4, 10]. Most relevant to our work are methods
that allow for the transfer of arbitrary styles while retain-
ing the efficiency of a feed-forward model [6, 22, 32]. Our
style transfer module builds on Liu et al. [35], extending an
attention-based method to support arbitrary 3D stylization.
Novel View Synthesis from a Single Image, also known as
one-shot 3D photography, has seen recent progress thanks
to deep learning. Existing approach can be broadly classi-
fied as end-to-end models [7, 18, 30, 47, 53, 54, 58, 61] and
modular systems [23,28,41,51]. End-to-end methods often

fail to recover accurate scene geometry and have difficulty
generalizing beyond the scene categories present in train-
ing. Hence, our method builds on modular systems.

Modular systems for one-shot 3D photography combine
depth estimation [45,46,60] and inpainting models [34], and
have demonstrated strong results for in-the-wild images.
Niklaus et al. [41] maintains and rasterizes a point cloud
representation of the scene to synthesize 3D Ken Burns ef-
fect. Later methods [28, 51] improve on synthesis quality
via local content and depth inpainting on a layered depth
image (LDI) of the scene. Jampani et al. [23] further intro-
duces soft scene layering to better preserve appearance de-
tails. Our work is closely related to Shih et al. [51]. We ex-
tend their LDI inpainting method for point cloud, and lever-
age their system to generate “pseudo” views during training.
Our method also uses the differentiable rasterizer from [41].
3D Stylization. There has been a growing interest in the
stylization of 3D content for creative shape editing [2, 59],
visual effect simulation [17], stereoscopic image editing [5,
15] and novel view synthesis [8, 21]. Our method falls in
this category and is most relevant to stylized novel view
synthesis [8,21]. The key difference is that our method gen-
erates stylized novel views from a single image, while pre-
vious methods need hundreds of calibrated views as input.
Another difference is that our model learns 3D geometry
aware features on a point cloud. In contrast, StyleScene [21]
back-projects 2D image features to 3D space without ac-
counting for scene geometry. While their point aggregation
module enables post hoc processing of image-derived fea-
tures, the point features remain 2D, leading to visual arti-
facts and inadequate stylization in renderings. Our work is
also related to point cloud stylization e.g., PSNet [2] and
3DStyleNet [59]. Both our method and [2, 59] use point
cloud as the representation. The difference is that point
cloud is an enabling device for stylization and view syn-
thesis in our method, and not the end product as in [2, 59].
Deep Models for Point Cloud Processing. Many deep
models have been developed for point cloud processing.
Among the popular architectures are models of set based
[36, 37, 43, 44], graph convolution based [29, 57] and point
convolution based [19, 52]. Our model extends a graph
based model [57] to handle dense point clouds (one million
points) for high quality stylization.

3. 3D Photo Stylization
Given a single input content image and an arbitrary style

image, the goal of 3D photo stylization is to generate styl-
ized novel views of the content image. The key of our
method is the learning of 3D geometry aware content fea-
tures directly from a point cloud representation of the scene
for high-quality stylization that is consistent across views.
In this section, we describe our workflow at inference time.
Method Overview. Fig. 2 presents an overview of our
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Figure 2. Method overview. Central to our method is a point cloud based scene representation that enables geometry-aware feature
learning, attention-based feature stylization and consistent stylized renderings across views. Specifically, we first construct an RGB point
cloud from the content image and its estimated depth map. Content features are then extracted directly from the point cloud and stylized
given an image of the reference style. Finally, the stylized point features are rendered to novel views and decoded into stylized images.

method. Our method starts by back-projecting the input
content image into an RGB point cloud using its estimated
depth map. The point cloud is further “inpainted” to cover
dissoccluded parts of the scene and then “normalized” (Sec-
tion 3.1). An efficient graph convolutional network is de-
signed to process the point cloud and extract 3D geom-
etry aware features on the point cloud, leading to point-
wise features tailored for 3D stylization (Section 3.2). A
style transfer module is subsequently adapted to modulate
those point-wise features using the input style image (Sec-
tion 3.3). Finally, a differentiable rasterizer projects the fea-
turized points to novel views for the synthesis of stylized
images that are consistent across views (Section 3.4).

3.1. Point Cloud Construction

Our method starts by lifting the content image into an
RGB point cloud, and further normalizes the point cloud to
account for scale ambiguity and uneven point density.
Depth Estimation and Synthesis of Hidden Geometry.
Our method first estimates a dense depth map using an
off-the-shelf deep model for monocular depth estimation
(LeReS [60]). A key challenge for single-image novel view
synthesis is the occlusion in the scene. A dense depth map
might expose many “holes” when projected to a different
view. Inpainting the occluded geometry is thus critical for
view synthesis. To this end, we further employs the method
of Shih et al. [51] for the synthesis of occluded geometry
on a layered depth image (LDI). Thanks to the duality be-
tween point cloud and LDI, we map the LDI pixels to an
RGB point cloud via perspective back-projection.
Point Cloud Normalization. In light of scale ambiguity
and uneven point density characteristic of image-derived
point clouds, we transform them into Normalized Device
Coordinate (NDC) [39] before further processing. The re-
sulting points fall within the [−1, 1] cube with density ad-
justed accordingly to account for perspectivity. As shown
in Fig. 3, this simple procedure is crucial for our method to
generalize across scene categories, and allows us to switch
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Figure 3. Effect of point cloud normalization. Model without
normalization (-) performs poorly due to scale ambiguity in depth
estimation and non-uniformity in point distribution. In contrast,
model with normalization (+) captures fine appearance detail and
produces strong stylization irrespective of depth estimator in use.

to different depth estimators without re-training our model.

3.2. Encoding Features on Point Cloud

Our next step is to learn features amenable to styliza-
tion. While virtually all existing style transfer algorithms
make use of ImageNet pre-trained VGG features, we found
that associating 3D points with back-projected VGG fea-
tures (such as in StyleScene [21]) is sub-optimal for styl-
ized novel view synthesis, leading to geometric distortion
and structural artifacts as shown in our ablation. We argue
that features from a network pre-trained on 2D images are
incompetent to describe the intricacy of 3D geometry. This
leads us to design an efficient graph convolutional network
(GCN) that learns geometry aware features directly from an
RGB point cloud, as opposed to using 2D image features.
Efficient GCN. One common drawback for GCN architec-
tures lies in their scalability. Existing GCNs are designed
for points clouds with a few thousand points [29], whereas
an image at 1K resolution results in one million points af-
ter inpainting. To bridge this gap, we propose a highly
efficient GCN encoder by drawing strength from multiple
point-based network architectures.

Our GCN encoder adopts the max-relative convolu-
tion [29] for its computational and memory efficiency. To
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Figure 4. Components of our deep model. Our model includes three modules — a point cloud encoder, a stylizer and a neural renderer.
The encoder applies MRConvs [29] along with farthest point sampling to embed and sub-sample the input RGB point cloud. The stylizer
computes attention between the embedded content and style features, and uses attention-weighted affine transformation to modulate the
content features for stylization. The neural render consists of a rasterizer that anti-aliases the modulated point features and projects them
to novel views, and a U-Net [48] that refines the resulting 2D feature maps and decodes them into stylized images.

further improve the efficiency, we replace the expensive dy-
namic k-NN graphs with radius-based ball queries [44] for
point aggregation. Moreover, we follow the hierarchical de-
sign of VGG network by repeatedly sub-sampling the point
cloud via farthest point sampling, as opposed to maintain-
ing the full set of points throughout the model [29]. We
illustrate our encoder design in Fig. 4. The output of our
encoder is a sub-sampled, featurized point cloud.

3.3. Stylizing the Point Cloud

Going further, our model injects style into the content
features. The technical barrier here is the misalignment of
content and style features, as the former are defined on a
3D point cloud while the latter (from a pre-trained VGG
network) lie in a 2D plane. To address this discrepancy, we
make use of learned feature mappings and Adaptive Atten-
tion Normalization (AdaAttN) [35] to match and combine
the content and style features. Let Fc be the point-wise con-
tent features and Fs the style features on a 2D grid. Our
style transfer operation is given by

Fcs = ψ(AdaAttN(ϕ(Fc), Fs)), (1)

where ϕ and ψ, implemented as point-wise multi-layer per-
ceptrons (MLPs), are learned mappings between the con-
tent and style feature spaces, and AdaAttN is the attention-
weighted adaptive instance normalization from [35].
AdaAttN computes attention between every content feature
(a point) and each style feature (a pixel), and uses the at-
tention map to modulate the affine parameters within the
instance normalization applied on content features. As a re-
sult, Fcs incorporates both content and style, and will be
further used to render stylized images.

3.4. Stylized Neural Rendering

Our final step is to render stylized point features Fcs into
stylized images with specified viewpoints. As illustrated in
Fig. 4, this is accomplished by (1) projecting point features
to an image plane given camera pose and intrinsics; and (2)
decoding the projected features into a stylized image using
a 2D convolutional network.

Feature Rasterization. Our rasterizer follows Niklaus et
al. [41], and projects the point cloud features Fcs into a
single-view 2D feature mapF2d. There is one important dif-
ference: we up-sample Fcs using inverse distance weighted
interpolation [44] before rasterization. This is reminiscent
of super-sampling — a classical anti-aliasing technique in
graphics. We find that such a design is beneficial for decod-
ing high fidelity sytlized images.
Image Decoding. Our decoder further maps the 2D fea-
ture map F2d to a stylized RGB image at input resolution.
The decoder is realized using a 2D convolutional network,
following the architecture of U-Net [48], with transposed
convolutions at the entry of each stage for up-sampling.

4. Learning from 2D Images
We now present our training scheme. Our model is

trained using 2D images following a two-stage approach.
Generating Multi-view Images for Training. Training
our model requires images from multiple views of the
same scene. Unfortunately, a large-scale multi-view im-
age dataset with a diverse set of scenes is lacking. To
bridge this gap, we propose to learn from the results of ex-
isting one-shot 3D photography methods. Concretely, we
use 3DPhoto [51] to convert images from a standard dataset
(MS-COCO) into high-quality 3D meshes, from which we
synthesize arbitrary pseudo target views to train our model.
In doing so, our model learns from a diverse collection of
scenes present in MS-COCO. Learning from synthesized
images leads to an inevitable bias residing in 3DPhoto re-
sults in trade of dataset diversity. Through our experiments,
we show that our model generalizes well across a large set
of in-the-wild images at inference time.

4.1. Two-Stage Training

The training of our model is divided into a view synthesis
stage where the model learns 3D geometry aware features
for novel view synthesis, and a stylization stage where the
model is further trained for novel view stylization.
Enforcing Multi-view Consistency. A key technical con-
tribution of our work is a multi-view consistency loss. A
point cloud representation of the input content image allows

16276



Content + style AdaIN LST AdaAttN

DPT LeReS DPT DPT DPTLeReS

D
ep

th

LeReS LeReS

In
pu

t v
ie

w

Figure 5. Depth estimation fails on stylized images. Strong depth estimators such as DPT [45] and LeReS [60] fail on image style
transfer outputs from AdaIN [20], LST [31], and AdaAttN [35], because stylized images do not follow natural image statistics.
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Figure 6. 3D photo of a stylized content image manifests ubiquitous visual artifacts. Most notably, the style effect bleeds through
depth discontinuities following inpainting, which brings disturbing visual artifacts in the rendered novel views (red arrows).

us to impose additional constraint on pixel values of the ren-
dered images.2 The key idea is that a scene point p in the
point cloud P should produce same pixel colors in the views
to which it is visible (with the Lambertian assumption). To
this end, we define our consistency loss as

Lcns =
∑
p∈P

∑
i,j∈V

V(p; i, j) · ∥Ii(πi(p))− Ij(πj(p))∥1, (2)

where V is the set of sampled views, Ii the rendered image
from view i, πi(·) the projection to view i, and V(p; ·, ·) a
visibility function which evaluates to 1 if p is visible to both
views and 0 otherwise. Computing the loss incurs minimal
overhead since the evaluation of π and V is part of rasteriza-
tion. As evidenced by our ablation study, our proposed loss
significantly improves consistency of stylized renderings.
View Synthesis Stage. We first train our model for view
synthesis, a surrogate task that drives the learning of geom-
etry aware content features. Given an input image, we ran-
domly sample novel views of the scene and train the model
to reconstruct them by minimizing a sum of L1 loss Lrgb

defined on pixel values, VGG perceptual loss Lfeat defined
on VGG features, and our multi-view consistency loss Lcns

Lview = Lrgb + Lfeat + Lcns. (3)

Stylization Stage. Our model learns to stylize novel views
in the second stage. We freeze the encoder for content fea-
ture extraction, train the stylizer, and fine-tune the neural

2While the sharing of a featurized point cloud entails multi-view con-
sistency of rasterized feature maps, the features are subject to a learnable
decoding process, through which inconsistency will be introduced.

renderer. This is done by randomly sampling novel views
of the scene and style images from WikiArt [40], and train-
ing our model by minimizing

Lstyle = Ladaattn + Lcns, (4)

where Ladaattn is the same AdaAttN loss from [35] and
Lcns is again our multi-view consistency loss.
Training Details. For view synthesis, we train for 20K iter-
ations (2 epochs) on MS-COCO with a batch size of 8 using
Adam [25] and set the learning rate to 1e-4. We apply the
same training schedule for stylization.

5. Experiments

We now present the main results of our paper and leave
additional results to the supplementary material.

5.1. Qualitative results

We consider two alternative baselines that combine ex-
isting methods for style transfer and 3D photography.

The first workflow, Stylize-then-3D, stylizes the input
image before converting it into a 3D photo [51] for novel
view synthesis. Stylize-then-3D naturally enforces multi-
view consistency of stylization as the renderings are largely
re-sampling of the input pixels. We employ AdaIN [22],
LST [31] and AdaAttN [35] for the stylization of input im-
ages and further experiment with depth estimation using ei-
ther stylized or raw input images. Depth estimation fails
catastrophically on stylized images as they do not follow
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Figure 7. Image/video style transfer on rendered video snippets from a 3D photo exhibits inconsistency in stylization. One may
naı̈vely build a 3D photo from the raw content image, then stylize the rendered video snippets either one frame at a time (e.g., using LST [31]
or AdaAttN [35]) or collectively using dedicated video stylization methods (e.g., ReReVST [56] or the video variant of AdaAttN). The
results exhibit inconsistency in stylization (yellow arrows). Additional comparison can be found in the supplementary material.

natural image statistics (Fig. 5). Despite better 3D recon-
struction given depth from raw input images, inpainting re-
mains error-prone due to color bleed-through and shift in
color distribution caused by stylization (Fig. 6).

The second workflow, 3D-then-Stylize, creates a 3D
photo of the input image followed by image or video styl-
ization on rendered video snippets. We employ MCC [56],
ReReVST [9] and the video variant of AdaAttN [35] for
video style transfer. As shown in Fig. 7, 3D-then-stylize
produces inconsistent stylization across views. This is be-
cause style transfer is either independent across views for
image stylization methods or agnostic to the underlying
scene geometry for video stylization methods.

In contrast, our method manages to generate high-quality
stylized renderings free of visual artifacts and inconsistency.
The second baseline produces gentle inconsistency under
small viewpoint change typical to 3D photo browsing. This
is more benign than the visual artifacts produced by the first
baseline. We further compare our method with the second
baseline via quantitative experiments and a user study.

5.2. Quantitative results

Given that the evaluation of style quality is highly sub-
jective, we defer it to the user study and focus on the evalu-
ation of consistency in our quantitative experiments.
Evaluation Protocol and Metrics. We run our method and
the baseline on ten diverse content images from the web and
40 styles sampled from the compilation of Gao et al. [11].
The baseline, as discussed before, runs 3DPhoto to synthe-
size plain novel-view images, then stylizes them using one
of the six style transfer algorithms. Ultimately, this results
in 400 stylized 3D photos from each of the seven candidate
methods. To quantify inconsistency between a pair of styl-
ized views, we warp one view to the other according to the
point cloud based scene geometry, and compute RMSE and
the masked LPIPS metric as defined in StyleScene [21]. We
average the result over 400 pairs of views for each stylized
3D photo and report the mean over all available photos.
Results. Our results are summarized in Table 1. Our
method outperforms all six instantiations of the baseline
by a significant margin in terms of both RMSE and LPIPS.
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Method RMSE LPIPS

3DPhoto [51] →

AdaIN [22] 0.222 0.304
LST [31] 0.195 0.287
AdaAttN (image) [35] 0.187 0.329
ReReVST [56] 0.115 0.213
MCC [9] 0.092 0.200
AdaAttN (video) [35] 0.135 0.209

Ours 0.086 0.133

Table 1. Results on consistency. We compare our model against
baselines that sequentially combine 3DPhoto and image/video
style transfer on consistency using RMSE (↓) and LPIPS (↓).
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Figure 8. User study. We conduct a user study to compare
our method against baselines that sequentially combine 3DPhoto
and image/video style transfer. Methods are evaluated on (a) style
quality, (b) multi-view consistency, and (c) overall synthesis qual-
ity. Results show percentages of users voting for an algorithm.

Not surprisingly, video style transfer methods produce more
consistent results than image style transfer methods ow-
ing to their extra smoothness constraint. The fact that
our method performs even better without such a constraint
shows the effectiveness of maintaining a central featurized
point cloud for 3D photo stylization.

5.3. User study

Moving forward, we conduct a user study to better un-
derstand the perceptual quality of stylized images produced
by our method and the baselines. Our study includes three
sections for the assessment of style quality, multi-view con-
sistency and overall synthesis quality. Our analysis is based
on 5,400 votes from 30 participants. We elaborate on our
study design in the supplementary material.
Results. We visualize the results in Fig. 8. For style quality,
our method is consistently rated better than the alternatives,
with the only exception being LST, which our method is on
par with. Not coincidentally, our method excels at multi-
view consistency, harvesting an overwhelming 95 percent

Content + style GCN VGG

Figure 9. Effect of geometry-aware feature learning. 3D photo
stylization with back-projected 2D VGG features suffers from ge-
ometric distortion (yellow arrows) and visual artifacts (red boxes).
In contrast, our geometry-aware learning scheme better maintains
content structure and produces more pleasant texture.

Training stage RMSE LPIPS
ViewSyn Stylize

− − 0.113 0.199
+ − 0.109 0.190
− + 0.081 0.132
+ + 0.086 0.128

Table 2. Effect of consistency loss. We compare models trained
with (+) or without (-) the loss using RMSE (↓) and LPIPS (↓).

of the votes in four of the six tests. Finally, our method re-
mains the most preferred for overall synthesis quality, beat-
ing all alternatives by a large gap. Putting things together,
our results provide solid validation on the strength of our
approach in producing high-quality stylization that is con-
sistent across views.

5.4. Ablation studies

Effect of Geometry-aware Feature Learning. We study
the strength of geometry-aware feature learning. Specifi-
cally, we construct a variant of our model with the only dif-
ference that content features are not learned on the point
cloud, but rather come from a pre-trained VGG network
as in 2D style transfer methods. In particular, we sidestep
our proposed GCN encoding scheme by projecting an RGB
point cloud to eight extreme views defined by a bound-
ing volume, running the VGG encoder for feature extrac-
tion, and back-projecting the 2D features to a point cloud
from which stylization and rendering proceed as before. As
shown in Fig. 9, this VGG-based variant produces geomet-
ric distortion and visual artifacts in stylized images, as op-
posed to our model using geometry-aware feature learning.
Effect of Consistency Loss. We evaluate the contribu-
tion of our consistency loss in Table 2. Despite a shared
point cloud, model trained without the consistency loss pro-
duces less consistent renderings measured in RMSE and
LPIPS. We attribute this to the learnable feature decoding
step, which is too flexible to preserve consistency in output
images in the absence of a constraint. In this respect, our
consistency loss, especially when applied in the stylization
stage of training, acts as a strong regularizer on the decoder.
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Figure 10. Extension to multi-view input. Compared with StyleScene [21], our method more closely resembles the reference style,
better preserves the content geometry (red boxes), and is more robust to change in viewpoint distribution (second row).

Method
Short-range consistency Long-range consistency

Truck Playground Train M60 Truck Playground Train M60
RMSE LPIPS RMSE LPIPS RMSE LPIPS RMSE LPIPS RMSE LPIPS RMSE LPIPS RMSE LPIPS RMSE LPIPS

StyleScene (global) 0.124 0.143 0.108 0.142 0.121 0.157 0.120 0.143 0.163 0.188 0.146 0.189 0.159 0.213 0.160 0.192
StyleScene (local) 0.119 0.168 0.127 0.169 0.161 0.169 N/A N/A 0.152 0.203 0.166 0.205 0.204 0.220 N/A N/A
Ours (local) 0.099 0.107 0.093 0.111 0.104 0.112 0.117 0.112 0.113 0.128 0.110 0.127 0.120 0.145 0.136 0.136

Table 3. Consistency in the multi-view scenario. On the Tanks and Temples dataset [27], we compare our method with StyleScene on
short- and long-range consistency as defined in [21] using RMSE (↓) and LPIPS (↓).

5.5. Extension to Multi-view Inputs

Our method can be easily extended for stylized novel
view synthesis given multi-view inputs. We compare our
extension with StyleScene [21], which similarly operates
on point cloud but requires multiple input views. We per-
form experiments on the Tanks and Temples dataset [27]
under two protocols. The global protocol uses all available
views (up to 300) as in [21] for point cloud reconstruction,
whereas the more challenging local protocol uses a sparse
set of 6-8 views on the camera trajectory for novel view syn-
thesis. In Fig. 10 and Table 3, we show that our method is
better in terms of style quality, short- and long-range con-
sistency, and robustness to the distribution of input views.

5.6. Applications

Layered Stylization for AR applications. Human cen-
tered photography is of central interest in mobile AR appli-
cations. As a proof-of-concept experiment to demonstrate
our method’s potential in AR, we apply PointRend [26] to
segment foreground human subjects in images from Un-
splash [1], and stylize the background scene using our
method while leaving the foreground human untouched
(Fig. 11a). The final stylized 3D photo upon rendering initi-
ates a virtual tour into a 3D environment in an artistic style.

3D Exploration of Stylized Historical Photos. Historical
photos represent a large fraction of existing image assets
and remain under-explored in computer vision and graphics.
As we demonstrate on the Keystone dataset [38] (Fig. 11b),
our method can be readily applied for the 3D browsing of
historical photos in an artistic style, bringing past moments
back alive in an unexpected way.
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Figure 11. Demonstration of Applications. Layered styl-
ization for AR (top) and 3D browsing of a stylized historical
photo3(bottom)—“A small arch welcomes the President to Met-
lakatla, Alaska, created by D. L. Hollandy 1923.”

6. Discussion

In this paper, we connected neural style transfer and one-
shot 3D photography for the first time, and introduced the
novel task of 3D photo stylization — generating stylized
novel views from a single image given an arbitrary style.
We showed that a naı̈ve combination of solutions from the
two worlds does not work well, and proposed a deep model
that jointly considers style transfer and view synthesis for
high-quality 3D photo stylization. We demonstrated the
strength of our approach using extensive qualitative and
quantitative studies, and presented interesting applications
of our method for 3D content creation. We hope our method
will shed light on neural style transfer, and open exciting
avenues of 3D content creation from 2D photos.
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