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Figure 1. Illustration of the proposed method. The feature correspondences (left: lines) exhibit different position error distributions (left:
ellipses). In contrast to the normal epipolar constraint (NEC) [34], our probabilistic normal epipolar constraint (PNEC) correctly accounts
for the uncertainty and the geometry of the problem (middle) through a weighted (NEC) vs. unweighted (PNEC) averaging scheme (right).
The NEC weighs all residuals equally (right: dash-dotted blue line), so that valuable information is lost. In contrast, our PNEC takes into
account a proper weighting of individual residuals (right: dashed green line). Relative pose estimation with the PNEC instead of the NEC
reduces the rotational-only versions of the RPE1 and the RPEn error by up to 42% and 55% on the KITTI dataset [20], respectively.

Abstract

The estimation of the relative pose of two camera views
is a fundamental problem in computer vision. Kneip et al.
proposed to solve this problem by introducing the normal
epipolar constraint (NEC). However, their approach does
not take into account uncertainties, so that the accuracy
of the estimated relative pose is highly dependent on ac-
curate feature positions in the target frame. In this work,
we introduce the probabilistic normal epipolar constraint
(PNEC) that overcomes this limitation by accounting for
anisotropic and inhomogeneous uncertainties in the feature
positions. To this end, we propose a novel objective func-
tion, along with an efficient optimization scheme that effec-
tively minimizes our objective while maintaining real-time
performance. In experiments on synthetic data, we demon-
strate that the novel PNEC yields more accurate rotation
estimates than the original NEC and several popular rela-
tive rotation estimation algorithms. Furthermore, we inte-
grate the proposed method into a state-of-the-art monocu-
lar rotation-only odometry system and achieve consistently
improved results for the real-world KITTI dataset.

* equal contribution. Project page: https://go.vision.in.tum.de/pnec

1. Introduction
Extracting the 3D geometry of a scene from images is a

long-standing problem in computer vision and has numer-
ous applications, including augmented and virtual reality,
autonomous driving, or robots that can help with everyday
life. One key component of many such approaches is the
estimation of the relative pose between two viewpoints of a
scene. For example, relative pose estimation is the founda-
tion of geometric vision algorithms like structure from mo-
tion (SfM) or visual odometry (VO). Global SfM pipelines
rely on accurate pairwise relative poses for use as fixed mea-
surements in global motion averaging [23, 48]. In VO, rel-
ative pose estimation is used to construct a trajectory from
a stream of images. Like for all odometry systems, small
errors in the relative pose estimation lead to a drift in VO.

The most widely used concept for relative pose estima-
tion is the essential matrix [43] in the calibrated case, or
the fundamental matrix [25] in the general case. Respec-
tive approaches rely on correspondences between feature
points, and are generally known to provide fast and accu-
rate results [24]. However, approaches based on the essen-
tial matrix suffer from fundamental problems, with the most
prominent being solution multiplicity [17, 25] and planar
degeneracy [33]. To address such issues, often it is nec-
essary to consider more involved solution strategies, which
also lead to even more accurate relative poses as shown by
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Kneip et al. [33] and in this work.
To this end, Kneip et al. [34] proposed a constraint that

avoids these problems. Their epipolar plane normal copla-
narity constraint (in later works just normal epipolar con-
straint, NEC) allows the estimation of the rotation inde-
pendent of the translation. A later work by Kneip and Ly-
nen [33] provides a fast and reliable eigenvalue-based solver
for the NEC, which allows for real-time relative pose esti-
mation. This approach has been incorporated into rotation-
only VO systems that estimate the rotation independent of
the translation and has led to promising results [9, 39].

Yet, like many VO systems, neither of them considers
the quality of the correspondences. After removing outliers
from the feature matches, every match contributes equally
to the final result. However, two-dimensional feature corre-
spondences exhibit different error distributions depending
on the content of the image and the specific method used
to extract the correspondences, which can be seen in Fig. 2.
A correspondence lying on an edge is accurately localized
perpendicular to the edge and possesses higher position un-
certainty parallel to it. This fine-grained information about
the quality of the matches is completely ignored. It has been
shown that considering the uncertainty is beneficial for fun-
damental matrix estimation [5]. While Kanazawa et al. [30]
argue that the uncertainty needs to be sufficiently inhomo-
geneous to see the aforementioned benefit, our experiments
show that the PNEC improves over the NEC even for ho-
mogeneous uncertainty due to the geometry of the problem.

The main objective of our work is to improve the ac-
curacy of rotation estimation techniques. We achieve this
based on the following technical contributions:
• We introduce the novel probabilistic normal epipolar con-

straint (PNEC), see Fig. 1, which for the first time makes
it possible to incorporate uncertainty information into the
normal epipolar constraint (NEC).

• We propose an efficient two-stage optimization strategy
for the PNEC that achieves real-time performance.

• We analyse singularities in the PNEC energy function and
address them with a simple regularization scheme.

• Experimentally, we compare our PNEC to several popu-
lar relative pose estimation algorithms, namely 8pt [24],
7pt [25], Stewenius 5pt [56], Nistér 5pt [51], and
NEC [33], and demonstrate that our PNEC delivers more
accurate rotation estimates. Moreover, we integrate our
PNEC into a visual odometry system and achieve state-
of-the-art results on real-world data.

• We publish the code for all experiments to facilitate future
research.

2. Related Work
The focus of this paper is the integration of feature po-

sition uncertainties into frame-to-frame rotation estimation
and the application to visual odometry. Hence, we restrict

our discussion of related work to relative pose estimation,
uncertainty for feature correspondences, and visual odom-
etry. For a broader overview we refer the reader to the ex-
cellent books by Szeliski [57] and by Hartley and Zisser-
man [25] and to more topic-specific overview papers [6,59].

Relative Pose Estimation. Estimating the relative pose
between two viewpoints is a long-standing problem in com-
puter vision with the first known solution proposed in 1913
by Kruppa [35]. Most methods either rely on previously
computed feature correspondences (feature-based) or di-
rectly consider the intensity differences between the two
images (direct). While direct methods have recently shown
promising results [14, 15], they are currently limited to
images that exhibit photo consistency and hence cannot
be used for general problems, e.g. structure from mo-
tion. Feature-based methods are considerably more robust
to viewpoint and appearance changes. Therefore, we use
feature correspondences within this paper.

Given feature correspondences, many methods [36, 41,
43, 51, 55] estimate the essential matrix in the case of a cal-
ibrated camera, or the fundamental matrix in the general
case. Nistér [51] proposes a minimal solution using poly-
nomials and root bracketing, while the solver proposed by
Longuet-Higgins [43] is linear and requires careful normal-
ization for good performance [24]. Alternatively, the rela-
tive pose can be estimated directly using quaternions [16].

The essential matrix constraint deteriorates in zero-
translation situations without noise, due to it being a zero
matrix. Most essential-matrix-based algorithms estimate
the correct motion only implicitly [33]. To address this
problem, recent works have proposed algorithms that can
estimate the rotation independent of the translation [34,42].
Our work is based on the normal epipolar constraint (NEC)
proposed by Kneip et al. [34] and the direct optimization
scheme proposed in a follow-up paper [33]. Briales et
al. [4] show how to obtain the global minimum for the NEC,
however, their Shor relaxation is not applicable to our non-
polynomial energy function.

Uncertainty for Feature Correspondences. Kanade-
Lucas-Tomasi (KLT) tracks [45, 58] are widely used, and
the position uncertainty has been extensively investigated
[19, 53, 54, 65]. Based on the unscented transform [60],
the position uncertainty has also been integrated directly
into the KLT tracking [13]. Zeisl et al. [64] have shown
a method to obtain anisotropic and inhomogeneous covari-
ances for SIFT [44] and SURF [1] features.

The integration of the position uncertainty into the align-
ment problem has been studied from a statistical perspec-
tive [28, 29], in the photogrammetry community [47], as
well as in the computer vision community [5, 30]. Brooks
et al. [5] show that covariance information can be used ben-
eficially if the estimated covariance is sufficiently accurate.
Kanazawa et al. [30] question the practical use of covari-

1820



Figure 2. Covariance ellipses for position uncertainties in KITTI
seq. 07. The tracks are generated with KLT tracking. Our PNEC
correctly considers such anisotropic inhomogeneous error distri-
butions. For visualization purposes only a sub-image with sub-
sampled and enlarged covariance ellipses is shown.

ance information if the covariance matrices are too similar
and nearly isotropic, however, Fig. 2 shows clearly that the
covariance matrices for real-world data are highly inhomo-
geneous and anisotropic.

Visual Odometry Systems. Most VO approaches uti-
lize 3D-to-2D correspondences together with a sliding win-
dow formulation. Still, relative pose estimation is com-
monly used during initialization [49] and has been shown
to provide excellent results on its own [11, 12]. Based on
different solutions to the correspondence problem many vi-
sual odometry systems have been proposed. They include
PTAM [31] and ORB-SLAM [49,50] with indirect features,
approaches with KLT-tracks [61], as well as direct methods
like LSD-SLAM [15] and DSO [14]. Common among these
approaches is a deteriorating performance for pure rotation
without inertial data.

Multiple rotation-only approaches that are robust against
pure rotation have been proposed recently [9,10,39]. Chon-
cha et al. [10] use the NEC to initialize a scale-consistent
map even for purely rotational motion. Chng et al. [9] and
Lee and Civera [39] use rotation averaging and rotation-
only bundle adjustment on the basis of the NEC to further
improve their results, respectively. While these approaches
show promising results on existing datasets, neither of them
utilizes uncertainty information of feature correspondences
in their system. We base our VO evaluation on MRO [9].

3. Probabilistic Normal Epipolar Constraint
The normal epipolar constraint (NEC) [34] enforces the

coplanarity of epipolar plane normal vectors constructed
from feature correspondences. However, feature correspon-
dences exhibit different error distributions that are not ac-
counted for in the NEC. For example, an edge-like fea-
ture is well-localized perpendicular to the edge but not par-
allel to it, which is also known as the aperture problem.
Fig. 2 clearly shows the anisotropicity and inhomogeneity
of the position distributions. Moreover, it is well-known
that correspondences in all areas of the image are required
to sufficiently constrain the 3D geometry [14, 49] and thus
we cannot simply discard feature points. To address this

Figure 3. Geometry of the normal epipolar constraint (NEC) [34].
Feature correspondences are given by pairs of unit bearing vectors
f i and f ′i in the host frame (O) and target frame (O′), respec-
tively. Each pair of bearing vectors spans an epipolar plane (yel-
low, orange, red), and has an associated normal vector ni given
in Eq. 1. All epipolar planes intersect in the line defined by the
translation t (dashed line). The normal vectors span the epipolar
normal plane (gray) that is orthogonal to t. For visual clarity we
show only three feature correspondences.

problem, we propose the probabilistic normal epipolar con-
straint (PNEC), which is able to take into account the un-
certainty of feature positions by associating an anisotropic
covariance matrix to each feature point.

Notation. Vectors are denoted by bold lowercase let-
ters (e.g. f ) and matrices by bold uppercase letters (e.g. Σ).
The hat operator applied to a vector u ∈ R3 gives a skew-
symmetric matrix û ∈ R3×3 that computes the cross prod-
uct between two vectors, i.e. u×v = ûv. The superscript >

denotes the transpose. A rigid-body transformation is rep-
resented by a rotation matrix R ∈ SO(3) and a unit length
translation t ∈ R3 (‖t‖ = 1 is imposed since the two-view
problem is scale-invariant).

3.1. Background – NEC

In the following we summarize the main idea of the NEC
proposed in [34]. Given are a host frame and a target frame
that observe at least five feature correspondences that are
defined by pairs of unit bearing vectors f i and f ′i in the
host and target frame, respectively (see Fig. 3). A 3D point
x′ in the target frame is transformed into the host frame
by applying the relative rotation R and translation t s.t.
x = Rx′ + t. In the ideal, error-free case, a single feature
correspondence, together with the two viewpoints, creates
an epipolar plane, represented by its normal vector

ni = f i ×Rf ′i. (1)

All normal vectors are orthogonal to the translation and they
span the epipolar normal plane.

The rotation is estimated by enforcing the coplanarity of
the normal vectors. The residual of the model is given by
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the normalized epipolar error

ei = |t>ni| , (2)

i.e. the Euclidean distance of a normal vector to the epipolar
normal plane. An energy function

E(R, t) =
∑
i

e2
i =

∑
i

|t>(f i ×Rf ′i)|2 (3)

is constructed from the residuals. For a more detailed
derivation, we kindly refer the reader to the original pa-
per [34] or the recent paper by Lee and Civera [38], which
offers numerous geometric interpretations of the NEC.

3.2. Deriving the PNEC

The probabilistic normal epipolar constraint (PNEC) ex-
tends the NEC by incorporating uncertainty. To be more
specific, the PNEC allows the use of the anisotropic and
inhomogeneous nature of the uncertainty of the feature po-
sition in the energy function. The feature position error is
considered in the target frame as shown in Fig. 1 and we
assume that the position error follows a 2D Gaussian distri-
bution in the image plane with a known covariance matrix
Σ2D,i per feature. In the supplementary we show how the
covariance matrix can be extracted for KLT tracks from the
KLT energy function using Laplace’s approximation [3].

Given the 2D covariance matrix of the feature position in
the target frame Σ2D,i, we propagate it through the unpro-
jection function using the unscented transform [60] in order
to obtain the 3D covariance matrix Σi of the bearing vector
f ′i. Using the unscented transform ensures full-rank covari-
ance matrices after the transform. We derive the details of
the unscented transform in the supplementary material and
show qualitative examples.

Propagating this distribution to the normalized epipolar
error gives the probabilistic distribution of the residual. Due
to the linearity of the transformations, the distribution of the
residual is a univariate Gaussian distributionN (0, σ2

i ), with
variance

σ2
i (R, t) = t>f̂ iRΣiR

>f̂ i
>t . (4)

We integrate this variance into the cost-function of the
NEC so that the Euclidean distance becomes the Mahalono-
bis distance [8] and define the PNEC Energy Function

EP (R, t) =
∑
i

e2
i

σ2
i

=
∑
i

|t>(f i ×Rf ′i)|2

t>f̂ iRΣiR
>f̂ i

>t
, (5)

which results in a weighted optimization problem. In the
supplementary material we show a geometric interpretation
of the above derivation.

Algorithm 1: PNEC Optimization Scheme

1 Initialize weights σ̃i,0 ← 1 ∀i
for s← 1 to S do

2 Optimize over R (cf. Sec. 4.3)
Rs ← OptR λmin(MP (R; {σ̃i,s−1}i))

3 Optimize over t (cf. Sec. 4.2)
ts ← Optt EP (Rs, t)

4 Update the weights (cf. Eq. 4)
σ̃i,s ← σi(Rs, ts) ∀i

end
5 Joint Refinement (cf. Sec. 4.4) using (RS , tS) as starting value
R∗, t∗ ← OptR,t EP (R, t)

4. Optimization
To optimize the PNEC energy function Eq. 5, we propose

a two-stage optimization scheme consisting of an alternat-
ing iterative optimization and a joint refinement. We pro-
pose this two-stage approach since the eigenvalue-based op-
timization of the NEC [33] cannot be naively applied to our
derived PNEC energy function, which we show in Sec. 4.1.
The whole PNEC optimization is given in Alg. 1 and we
detail the first stage in Sec. 4.2 & Sec. 4.3, and the second
stage in Sec. 4.4.

4.1. Background – Optimizing the NEC

Following [33], the NEC energy function Eq. 3 is re-
written as E(R, t) = t>M(R)t using the (symmetric and
positive-semidefinite) Gramian matrix

M(R) =
∑
i

(f i ×Rf ′i)(f i ×Rf ′i)
> . (6)

Because the energy is a quadratic form in the unit vector
t, the optimization over the translation t can be carried out
analytically, i.e.

min
R∈SO(3)
t: ‖t‖=1

t>M(R)t = min
R∈SO(3)

λmin(M(R)) . (7)

The eigenvector corresponding to the smallest eigenvalue
λmin of M(R) minimizes the Rayleigh quotient t>M(R)t
over all unit-length vectors t. The constructed sub-problem
is then optimized over the rotation R using the Levenberg-
Marquardt algorithm [40, 46], whereas the translation t is
obtained by solving an eigenvalue problem.

4.2. Optimizing the PNEC - Translation

The PNEC energy function Eq. 5 is the sum of
generalized Rayleigh quotients (GRQs) in the translation
t, and thus the optimum is not simply given by an eigen-
value as for the NEC. Optimizing the sum of GRQs over
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the unit sphere has recently been studied in the context of
data science and wireless communications [2,66,67], and it
has been shown by Zhang et al. [67] that the self-consistent-
field (SCF) algorithm [26] outperforms generic manifold
optimization methods.

Since the sum of GRQs can exhibit many local min-
ima [2], and thus the SCF iteration is not guaranteed to
converge to a global optimum, we propose a simple, yet
effective globalization strategy. To this end, we make use
of the intrinsic low dimension of the unit sphere in R3 by
sampling evenly distributed initial points tk efficiently us-
ing the Fibonacci lattice [21]. We then pick the point with
the lowest objective function and apply the SCF iteration
for N steps. Due to the inherent parallelism, the result-
ing optimization procedure can be implemented efficiently.
We present the effectiveness of the globalization strategy, as
well as technical details for the SCF iteration, in the supple-
mentary material.

4.3. Optimizing the PNEC - Rotation

Kneip and Lynen [33] have shown how to optimize Eq. 7
efficiently using the Levenberg-Marquardt algorithm with
the rotation parametrized based on the Cayley transforma-
tion [7]. To account for the weights in the PNEC energy
function Eq. 5, we employ an optimization scheme similar
to the popular iteratively reweighted least squares (IRLS)
algorithm [37]. Specifically, given a previous estimate of
the rotation and translation (Rp, tp), we compute fixed
weights σ̃i = σi(Rp, tp) for all i, and define the weighted
matrix

MP (R; {σ̃i}i) =
∑
i

(f i ×Rf ′i)(f i ×Rf ′i)
>

σ̃2
i

(8)

that depends only on the rotation R. The rotation is ob-
tained by finding R such that the smallest eigenvalue of
MP (R; {σ̃i}i) is minimal. After doing so based on the
optimizer of Kneip and Lynen [33], the weights {σ̃i}i are
updated with new R, t.

4.4. Optimizing the PNEC - Joint Refinement

After the first stage we improve the result using joint re-
finement. Specifically, we use a least-squares optimization
strategy, which is effective for finding a local optimum of
the energy function given a good starting point [52]. For
the PNEC we optimize over

EP (R, t) =
∑
i

 t>(f i ×Rf ′i)√
t>f̂ iRΣiR

>f̂ i
>t

2

, (9)

the least-squares formulation of the constraint. The
Levenberg-Marquardt algorithm optimizes the objective
function in the rotation R and translation t simultaneously

NEC PNEC
PNEC with

Regularization

Figure 4. Visualization of the NEC, the PNEC, and the PNEC
with the regularization proposed in Sec. 4.5. The plot shows t in a
neighborhood of f (in polar coordinates), where the center of the
circle corresponds to t = f . For t = f , the PNEC shows a finite
discontinuity, for which the limit depends on the direction. Our
regularization eliminates this singularity while also maintaining
the overall shape of the energy function.

and uses the solution of the first stage as the starting value.
Because R is a rotation matrix, we use manifold optimiza-
tion [27] to optimize over the special orthogonal group
SO(3). For the translation t we use spherical coordinates
with the radius fixed to one in order to ensure that ‖t‖ = 1
holds. We would like to highlight that this joint refinement
is different from bundle adjustment. Most notably, it does
not need to calculate the 3D position of the features.

4.5. Singularities of the PNEC

The PNEC energy function Eq. 5 has a singularity if the
translation t is parallel to a bearing vector f i because the
variance σ2

i vanishes due to f̂ it = f i × t = 0. On the
other hand, the numerator involves the same term and thus
the energy function is bounded and possesses a finite dis-
continuity, as illustrated in Fig. 4. In the supplementary
material we present the derivation of the directional limit of
the energy function.

While the discontinuity is finite and less problematic
than an infinite discontinuity, it still poses challenges. First,
in contrast to the function values, the derivatives of the en-
ergy function are not bounded, which is problematic for the
joint refinement. Second, the matrix MP , unlike the en-
ergy function, includes f̂ it only in its denominator not the
numerator. Hence MP tends to infinity for t → f i. To
address these issues, we consider a variance of the form
σ′i

2 = σ2
i + c with regularization constant c > 0. Fig. 4

shows the effect that the regularizer has on the energy func-
tion.

5. Evaluation

We evaluate the performance of the PNEC and compare
it to the original NEC on simulated data as well as in a vi-
sual odometry setting on real world data. On the simulated
data, the proposed PNEC achieves better results than the
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Figure 5. Experiments for omnidirectional cameras. Results are averaged over 10 000 random instantiations for anisotropic inhomogeneous
noise over different noise intensities. Our PNEC consistently leads to smaller errors compared to the NEC [33] for all noise levels. This
holds for rotation and translation estimates in the general case in Fig. 5a and Fig. 5b, respectively, as well as the rotation in the zero-
translation case in Fig. 5c.
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Figure 6. Experiments for pinhole cameras. Results are averaged over 10 000 random instantiations for anisotropic inhomogeneous noise
over different noise intensities. As for an omnidirectional camera in Fig. 5, our PNEC consistently leads to smaller errors compared to
the NEC [33]. For a pinhole camera the average errors are higher for both methods in comparison to an omnidirectional camera. The
experiments show that our PNEC is viable for the two most common camera types.

NEC and several other popular relative pose estimation al-
gorithms. On KITTI we compare our approach to the MRO
algorithm [9] that uses the NEC for rotation estimation. For
evaluating the PNEC we replace the ORB features in MRO
with Kanade-Lucas-Tomasi (KLT) tracks [45,58], which al-
low for uncertainty extraction as discussed in Sec. 3.2, and
the NEC with the PNEC.

In the supplementary material, a more detailed analy-
sis including translational errors shows that compared to
the NEC the PNEC is not only significantly more accurate
on average, but also more consistent. An ablation study
on KITTI demonstrates that all stages of our optimization
scheme are essential for best results. We furthermore de-
tail all hyperparameter choice and detail the experimental
protocol for reproducibility.

5.1. Frame-to-Frame Simulation

With the simulated experiments we evaluate the perfor-
mance of the PNEC in a frame-to-frame setting. The ex-
periments consist of randomly generated problems of two
frames with known correspondences. We use

erot := ∠(R>R̃), and (10)

et := arccos (t>t̃) (11)

as error metrics between the ground truth R, t and the esti-
mated values R̃, t̃, where ∠(·) returns the angle of the rota-
tion matrix.

Omnidirectional Camera. In this experiment we follow
the experimental outline proposed by Kneip and Lynen [33]
closely. We differ from the original experiments in the fol-
lowing ways: we only add noise to the points in the second
frame; to compensate for the lack of noise in the first frame,
we scale the standard deviation by a factor of 2; we recreate
the experiment with different noise types based on the clas-
sification by Brooks et al. [5] and generate individual co-
variance matrices for each point. A detailed description of
how the matrices are generated can be found in the supple-
mentary material. To show the effectiveness of the PNEC
still holds even for pure rotation, we repeat the experiment
with the translational difference fixed to zero.

Fig. 5 shows the results for anisotropic inhomogeneous
noise for both experiments. The PNEC achieves consis-
tently better results for the rotation over all noise levels in
both experiments.

Pinhole Camera. Since most cameras are modeled as
pinhole cameras we also repeat the previous experiments
for pinhole cameras. The generation of the frames stays the
same. Points are sampled in viewing direction of the coordi-
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OMNIDIRECTIONAL PINHOLE

W/ T W/O T W/ T W/O T

Noise level [px] 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5
Metric [degree] erot et erot et erot et erot erot erot erot et erot et erot et erot erot erot

7pt [25]/8pt [24] 0.19 1.76 0.26 2.36 0.33 2.64 0.10 0.15 0.20 0.62 4.64 0.89 6.09 1.07 6.74 0.17 0.23 0.28 +95%
Stewenius 5pt [56] 0.23 2.34 0.30 2.97 0.37 3.38 0.18 0.30 0.33 0.61 3.14 0.71 4.04 0.89 4.57 0.46 0.64 0.77 +137%
Nistér 5pt [51] 1.61 6.82 1.64 7.55 1.92 8.42 0.29 0.39 0.42 3.26 8.72 3.46 9.80 3.76 10.39 0.51 0.67 0.83 +643%
NEC [33] 0.11 1.90 0.15 2.10 0.17 2.11 0.11 0.15 0.18 0.25 2.41 0.34 2.78 0.41 2.91 0.19 0.25 0.29 +24%
PNEC (Ours) 0.08 1.29 0.12 1.60 0.14 1.66 0.09 0.13 0.15 0.20 2.06 0.28 2.38 0.34 2.54 0.15 0.21 0.25

Table 1. Rotation and translation error for different algorithms. Results for omnidirectional and pinhole cameras for experiments with and
without translation over different noise levels for anisotropic and inhomogenous noise. Errors are averaged over 10 000 random problems
each with 10 points. For experiments without translation (W/O T) only erot is reported, due to et not being defined for zero translation. For
all other algorithms apart from our PNEC we use the implementations from OpenGV [32]. (7pt) falls back to (8pt) for the non-minimal
number of 10 correspondences. Our PNEC consistently achieves the best results, outperforming the NEC and several popular relative pose
estimation algorithms. The last column gives the average error increase compared to the PNEC.

nate system of the first frame. The points are projected into
the world coordinate system and then into the two frames
using a pinhole camera model. The noise offset is added in
the image plane. As with the omnidirectional camera exper-
iment, we repeat this experiment for pure rotation.

Fig. 6 shows the results for the pinhole camera experi-
ment for anisotropic inhomogeneous noise. While the over-
all error for both methods is slightly higher for pinhole cam-
eras than for omnidirectional cameras, the PNEC still out-
performs the NEC consistently.

Tab. 1 gives a quantitative comparison of our PNEC to
other relative pose estimation algorithms from the litera-
ture on the experiments presented in Fig. 5 and Fig. 6. Our
PNEC consistently achieves the best result for both camera
models for experiments with and without translation.

Additional experiments on other noise types show that
our PNEC outperforms the NEC even in cases of isotropic
and homogeneous noise. Although the covariance matrices
are identical, the variance for each residual is different due
to the geometry of the problem. Furthermore, our PNEC
is robust against wrongly estimated noise parameters. We
present the results to these experiments in the supplemen-
tary material.

5.2. Visual Odometry

Besides the simulated experiments, we also validate the
PNEC on real world data, namely the highly popular KITTI
odometry dataset [20]. We compare our results with the
MRO algorithm by Chng et al. [9] that uses the optimiza-
tion from [33]. For MRO and our algorithm we disable ro-
tation averaging and loop closure to focus on local rotation
estimation. Our approach differs from MRO in two ways.

First, we use the KLT-based tracking implementation
also used in [61] to extract feature keypoints instead of ORB
features. Second, we replace the NEC with our PNEC for
relative rotation estimation. To capture the effects of both

changes, we compare the rotation estimation of MRO, as
reported in [9], KLT-NEC, using KLT tracks and the NEC,
and KLT-PNEC, the proposed PNEC with KLT tracks. Both
KLT-NEC and KLT-PNEC use the same KLT tracks for the
relative rotation estimation.

The proposed PNEC can account for uncertainties in
the feature correspondence positions that approximately
follow a Gaussian distribution. To overcome outlier cor-
respondences from failed KLT tracks, we use the same
RANSAC [18] routine as the NEC for estimating the ro-
tation in the first loop of Alg. 1.

Fig. 7 shows a trajectory generated from the rotation es-
timates of MRO and our approach. In Tab. 2 we compare
the mean performance over 5 runs of all approaches in the
rotation-only version of the Relative Pose Error (RPE) for
n camera poses as defined in [9]. The RPE evaluates the
root mean square error (RMSE) of rotational residuals over
frame pairs. The residual for a “time-step” ∆ is

Ei := ∠((R>i Ri+∆)>(R̃>i R̃i+∆)). (12)

The RMSE is calculated over m := n−∆ residuals

RMSE(∆) :=

(
1

m

m∑
i=1

E2
i

) 1
2

. (13)

For our evaluation we use

RPE1 := RMSE(1), and (14)

RPEn :=
1

n

n∑
∆=1

RMSE(∆), (15)

to capture local frame-to-frame rotation error and long term
drift, respectively.

The results show the following: With a single exception
(seq. 01), using KLT tracks instead of ORB features is ben-
eficial for relative rotation estimation with the NEC. PNEC
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Figure 7. Qualitative trajectory comparison for KITTI seq. 08. The
trajectory was generated with the estimated rotations of MRO [9]
and PNEC, respectively, and are combined with the ground truth
translations for visualization purposes. Relative rotations com-
puted with the proposed PNEC lead to a significantly reduced drift.

MRO [9] KLT-NEC KLT-PNEC
(Ours)

Seq. RPE1 RPEn RPE1 RPEn RPE1 RPEn

00 0.360 8.670 0.125 5.922 0.119 3.429
01* 0.290 16.030 0.695 27.406 0.782 23.500
02 0.290 16.030 0.093 6.693 0.122 9.687
03 0.280 5.470 0.073 2.728 0.059 1.411
04 0.040 1.080 0.041 0.619 0.038 0.463
05 0.250 11.360 0.079 4.489 0.070 3.203
06 0.180 4.720 0.073 3.162 0.042 2.322
07 0.280 7.490 0.105 4.640 0.074 2.065
08 0.270 9.210 0.070 5.523 0.060 3.347
09 0.280 9.850 0.088 3.533 0.080 3.514
10 0.380 13.250 0.073 3.959 0.072 4.094

Table 2. Quantitative comparison for KITTI. The significant gap
between MRO and KLT-NEC confirms the benefit of using KLT
tracks. The difference between KLT-NEC and KLT-PNEC shows
the effectiveness of our PNEC compared to the NEC. *In seq. 01
the KLT implementation of [61] fails and produces many wrong
tracks with incorrect covariances due to self-similar structure.

outperforms NEC on 8 out of 11 sequences in both metrics,
often significantly. Excluding seq. 01, the PNEC on aver-
age improves the RPE1 for frame-to-frame rotational error
by 10% and the RPEn for long term drift by 19%.

5.3. Runtime

Tab. 3 shows the average frame processing time on the
KITTI dataset for MRO, KLT-NEC and KLT-PNEC. The
experiments were performed on a laptop with a 2.4 GHz
Quad-Core Intel Core i5 processor and 8 GB of memory.
For MRO we use the same configuration as for their demo.
The results show the runtime advantage of KLT tracks that
do not need feature matching like ORB features. While
the proposed optimization scheme for the PNEC is slightly
slower than the simpler NEC optimization algorithm, the
odometry with KLT-PNEC runs in real-time on KITTI.

MRO [9] KLT-NEC KLT-PNEC

feature creation 36 30 30
matching 120
optimization 5 23 47

total time 161 53 77

Table 3. Average frame processing time in milliseconds. For
MRO, most of the time is needed for matching. KLT-NEC and
KLT-PNEC (Ours) achieve real-time performance on KITTI.

6. Discussion and Future Work
While the proposed optimization scheme effectively op-

timizes the PNEC energy function, it relies on two consec-
utive stages, and is thus more involved than the optimiza-
tion scheme proposed for the NEC [33]. Further and more
detailed limitations of the proposed approach are given in
the supplementary material. Nevertheless, we have shown
in Sec. 5.3 that the proposed algorithm is real-time capa-
ble. As we explain in Sec. 4.2, the optimization over the
translation alone is an actively studied problem for which
no simple solution is known. Nevertheless, investigating
improved optimization schemes for our PNEC energy func-
tion is a promising direction for future work. Recent works
have shown that deep learning can boost the performance of
visual odometry algorithms [22,62,63]. However, the focus
of our work is on the correct modelling of the uncertainty
for relative pose estimation, similar to [33, 34]. As such,
while in our work we do not consider deep learning, we be-
lieve that the integration of our ideas into learning systems
may be an interesting direction for follow-up works. For
example, the 2D feature position covariance matrices could
be predicted by a neural network.

7. Conclusion
This paper shows how to utilise 2D feature position un-

certainties to obtain more accurate relative pose estimates
from a pair of images. To this end, we introduce the proba-
bilistic normal epipolar constraint (PNEC), and we propose
an effective optimization scheme that runs in real-time. In
synthetic experiments, the PNEC gives more accurate ro-
tation estimates than the NEC and several popular relative
rotation estimation algorithms for different noise levels and
for the pure-rotation case. The results on KITTI show, that
the relative rotation estimation of the PNEC improves upon
the NEC-based MRO, a state-of-the-art rotation-only VO
system, and can be used e.g. for global initialization in SfM.
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