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Figure 1. Overview of AutoRF. Our model consists of an encoder that extracts a shape and an appearance code from an object’s image,
which can be decoded into an implicit radiance field operating in normalized object space and leveraged for novel view synthesis. Object
images are generated from real-world imagery by leveraging machine-generated 3D object detections and panoptic segmentation. At test
time, we fit objects to respective target instances using a photo-metric loss formulation.

Abstract
We introduce AutoRF – a new approach for learning

neural 3D object representations where each object in the
training set is observed by only a single view. This set-
ting is in stark contrast to the majority of existing works
that leverage multiple views of the same object, employ ex-
plicit priors during training, or require pixel-perfect anno-
tations. To address this challenging setting, we propose
to learn a normalized, object-centric representation whose
embedding describes and disentangles shape, appearance,
and pose. Each encoding provides well-generalizable, com-
pact information about the object of interest, which is de-
coded in a single-shot into a new target view, thus en-
abling novel view synthesis. We further improve the re-
construction quality by optimizing shape and appearance
codes at test time by fitting the representation tightly to
the input image. In a series of experiments, we show
that our method generalizes well to unseen objects, even
across different datasets of challenging real-world street
scenes such as nuScenes, KITTI, and Mapillary Metropo-
lis. Additional results can be found on our project page
https://sirwyver.github.io/AutoRF/.

1. Introduction

In this work, we address the challenging problem of in-
ferring 3D object information from individual images taken

Work was done during Norman’s and Andrea’s internships at Meta
Reality Labs Zurich.

in the wild. Providing an objects’ 3D shape with 6DOF
pose and corresponding appearance from a single image
is key to enabling immersive experiences in AR/VR, or
in robotics to decompose a scene into relevant objects for
subsequent interaction. The underlying research problem
is related to novel view synthesis or inverse graphics, and
has recently gained a lot of attraction in our community
[10,12,17,21,34,39,42,43], leading to remarkable improve-
ments in terms of monocular 3D reconstruction fidelity.

Many existing works [10, 17, 21, 34, 42, 43] are limited
in their applicability – in particular due to their imposed
data and supervision requirements: The majority of works
require multiple views and non-occluded visibility of the
same physical object, near-perfect camera pose informa-
tion, and the object of interest being central, at high reso-
lution, and thus the most prominent content of the image.
Due to a lack of real-world datasets providing such features
(with the notable, recently released exception of [33]), an
overwhelming number of methods have only shown experi-
mental results on synthetic datasets, and thus under perfect
data conditions, or require large datasets of CAD models to
construct a shape prior. When applied to real data the exist-
ing domain gap becomes evident, typically leading to major
performance degradation.

Our work investigates the limits of novel view synthe-
sis from monocular, single-image real-world data. We fo-
cus on street-level imagery where objects like cars have
high variability in scale and can be very small compared
to the full image resolution. Also, such objects are often
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occluded or may suffer from motion blur as a consequence
of the data acquisition setup. We only consider a single-
view object scenario during both training and inference, i.e.,
we do not impose constraints based on multiple views of
the same object. For supervision, we limit our method to
learning only from machine-generated predictions, leverag-
ing state-of-the-art and off-the-shelf, image-based 3D ob-
ject detection [20, 35] and instance/panoptic segmentation
algorithms [11, 18, 32], respectively. This data setting also
enables us to benchmark our results on existing autonomous
driving research datasets [2,7,28]. However, the absence of
human quality control requires our method to cope with la-
bel noise introduced by machine-predictions from monocu-
lar 3D object detectors (itself addressing an ill-posed prob-
lem), and imperfect instance segmentation masks.

Our proposed method follows an encoder/decoder ar-
chitecture trained on images with machine-predicted 3D
bounding boxes and corresponding 2D panoptic segmen-
tation masks per image. The encoder learns to transform
a training sample from its actual (arbitrary) pose and scale
representation into two canonical, object-centric encodings
representing shape and appearance, respectively. The de-
coder translates the object’s shape and appearance codes
into an object-centric, implicit radiance field representa-
tion, which provides occupancy and color information for
given 3D points and viewing directions in object space. Our
training procedure benefits from the segmentation mask to
gather information about the object’s foreground pixels and
to cope with potential occlusions, while it leverages the pose
information provided by the 3D bounding box to enforce the
object-centric representation. At test time, we further opti-
mize predicted latent codes to fit the representation tightly
to the given input image by using a photometric loss for-
mulation. Ultimately, our architecture can learn strong im-
plicit priors that also generalize across different datasets.
We provide insightful experimental evaluations and ablation
studies on challenging real-world and controllable synthetic
datasets, defining a first state of the art for the challenging
training setting that we consider. In summary, our key con-
tributions and differences with respect to existing works are:
• We introduce novel view synthesis based on 3D object

priors, learnt from only single-view, in-the-wild observa-
tions where objects are potentially occluded, have large
variability in scale, and may suffer from degraded image
quality. We neither leverage multiple views of the same
object, nor utilise large CAD model libraries, or build
upon specific, pre-defined shape priors.

• We successfully exploit machine-generated, 3D bound-
ing boxes and panoptic segmentation masks and thus im-
perfect annotations for learning an implicit object repre-
sentation that can be applied to novel view synthesis on
real-world data. Most previous works have shown experi-
ments on synthetic data or require the object of interest to

be non-occluded and the main content of the image (ex-
cept for [13] leveraging masks from [11]).

• Our method efficiently encodes shape- and appearance
properties for the objects of interest, which we are able
to decode to a novel view in a single shot, and option-
ally fine-tune further at test time. This enables corrections
from potential domain shifts and to generalise across dif-
ferent datasets, which has not been demonstrated so far.

2. Related works

3D reconstruction from a single image. The task of ex-
tracting 3D information from a single image, also known
as “inverse graphics” has received considerable attention
in recent years. Several works focus on reconstructing the
shape, or the shape and appearance of a single object per
image [12, 17, 34, 39], while others attempt to extract mul-
tiple objects per image [6, 10, 21, 43] or to build a holistic
representation of an entire scene [5, 42]. All of these ap-
proaches use differentiable rendering to formulate a recon-
struction cost to compare the predicted 3D model to the 2D
image while differing in the specific representation used to
encode the 3D model. Common choices here include 3D
meshes [10, 12, 17], signed distance functions [6, 21, 27],
depth [39], and implicit models [34,42,43]. The last option,
i.e., implicit models, will be the focus of the next section,
and is the one we adopt in our work.

Most of these approaches exploit some form of shape
prior, either learned in the form of an implicit model [42,
43], or constructed from some collection of template
shapes [6, 21]. Either way, they utilize large libraries of
CAD models to bootstrap their networks or as the sole form
of training data, incurring in a considerable domain gap
when moving to real images. Similarly, multiple views of
the same object are generally required at training time, fur-
ther justifying the use of synthetic data. In contrast, our
method can be trained with a single view per object, and
entirely on real images. Among those mentioned above,
the only works that overcome these limitations are those of
Henderson et al. [12] and Wu et al. [39]. These, however,
utilize high-resolution, unobstructed, and generally clean
views of the objects of interest (e.g., well-lit frontal shots
of faces [39]). In contrast, our method is trained and vali-
dated on occluded and/or low-resolution images.
Differentiable rendering and implicit models. A com-
mon denominator of many inverse graphics formulations
is the use of “differentiable rendering”. Differentiable ren-
dering encompasses a large array of techniques to produce
2D views of some 3D model, while also allowing for the
back-propagation of gradients from the image domain to
the model’s parameters. The earliest such formulations in-
cluded forms of “differentiable rasterization” [3,22,24]; i.e.,
back-propagable extensions of traditional rendering algo-
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rithms for (textured) 3D meshes. More recently, approaches
based on volumetric rendering have found great success,
in particular when coupled with so-called “implicit mod-
els” [4, 23, 26, 29, 36, 41].

Implicit models represent objects or scenes as functions
(i.e., neural networks), which map from 3D points to some
local set of properties of the entity being modeled, e.g.,
whether the entity occupies the given point [25]. While
some approaches focus solely on encoding shape [9, 16, 25,
31], others [23, 26, 29, 36, 41] have shown success in en-
coding shape and appearance together, meaning that i) they
can produce photo-realistic renderings of the object they en-
code; and ii) can be trained using only 2D images. In our
work we follow the Neural Radiance Fields (NeRF) formu-
lation of Mildenhall et al. [26], which belongs to the latter
category. Differently from NeRF, our model can general-
ize across multiple objects, and can synthesize novel views
of an object given a single input image. The capability of
single-view, novel view synthesis has investigated before
with Scene Representation Networks [36], ShaRF [19] and
pixelNeRF of Yu et al. [41]. In [36], a scene presentation
is learnt that can be fine-tuned to a test scene with given
camera poses. In ShaRF, a shape generation network is pre-
trained on synthetic data and optimized via Generative La-
tent Optimization [1], whereas in this work, we do not use
any geometric information. As pixelNeRF leverages local
image features to synthesis novel views, it is (in contrast
to ours) trained on at least two views of the same instance.
In the recent work FiG-NeRF [40], Xie et al. introduce a
2-component, deformable neural radiance field for jointly
modeling object categories and a foreground/background
segmentation. In [30], Ost et al. learn a scene graph to
represent automotive data enabling novel views. However,
their method requires video data and remains in the sce-
nario of over-fitting the model to single scenes. The latter
limitation is addressed in [33] and [13], where large-scale
posed video data is leveraged to learn object-category spe-
cific generalization for novel view rendering. In contrast to
all these methods, we use solely a single view of each object
instance, allowing us to leverage large-scale, unstructured
data at training time. Related to ours, CodeNeRF [15] lever-
ages a neural radiance field that learns to disentangle latent
embeddings for shape and appearance in an object-specific
way. However, since CodeNeRF works as an auto-decoder
architecture, it requires optimizing shape and appearance
codes at test time to photometrically match a given input im-
age before novel view synthesis can be run. AutoRF does
not have this limitation, because it can regress shape and
appearance codes directly via the encoder, yet offering the
possibility of refining the object encoding at test-time. We
finally refer to [37] for a survey about recent advances in
neural rendering.

3. Method

Given a single input image, our goal is to encode each
3D object that is present in the scene into a compact rep-
resentation that allows to, e.g., efficiently store the ob-
jects into a database and re-synthesize them from different
views/contexts in a later stage. While this problem has been
already addressed in the past [15, 41], we focus on a more
challenging scenario when it comes to training such an en-
coder. As opposed to the vast majority of methods that as-
sume to have access to at least a second view of the same
object instance when training such an encoder, we focus
on addressing the more challenging setting where object in-
stances can be observed from a single view only. Moreover,
no other prior knowledge about the object’s geometry (e.g.,
CAD models, symmetries, etc.) is exploited. Finally, we
train our model using real-world images that have not been
curated for the specific task at hand. E.g., we might leverage
3D object detection datasets to train, where images contain
multiple, possibly occluded object instances, each having
possibly different scales and thus resolutions.

To be able to train the encoder in the underconstrained
scenario mentioned above, we take advantage of pre-trained
instance or panoptic segmentation algorithms to identify in
the image 2D pixels belonging to the same object instance
as well as pre-trained monocular 3D object detectors in or-
der to get a prior about the objects’ poses in 3D space. Ac-
cordingly, both at training and test time, we assume to get
for each image a set of 3D bounding boxes with associated
2D masks, which represent the detected object instances,
and information about camera calibration.

By leveraging the information about the object 3D
bounding box, we can disentangle the object representation
from the actual object pose and scale. Indeed, we obtain a
normalized, object-centric encoding, which is factored into
a shape and an appearance component. Akin to a condi-
tional NeRF model, the shape code is used to condition an
occupancy network, which outputs a density given a 3D
point in normalized object space and the appearance code
is used to condition an appearance network that provides a
RGB color given a 3D point and a viewing direction in nor-
malized object space. The two networks yield an implicit
representation of the 3D object.

3.1. Preliminaries

Image I . Given a 2D image where multiple objects of in-
terest are present, we run a 3D object detector along with
panoptic segmentation in order to extract for each object
instance a 3D bounding box and an instance mask (see
Fig. 2). The bounding box and the mask are used to produce
a masked 2D image I of the detected object instance, fitting
a fixed input resolution. In addition, the 3D bounding box
captures extent, position, and rotation of an object in cam-
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Figure 2. Pre-processing step: first, we use pre-trained models to
detect the objects of interest in 3D and segment the image. Then,
we crop per-object views and compute their occupancy masks
(white: foreground, black: background, grey: unknown).

era space, while the segmentation mask provides per-pixel
information about possible occlusions w.r.t. other objects in
the scene. The RGB color of pixel u ∈ U in image I is
denoted by Iu ∈ R3, where U represents its set of pixels.

Normalized Object Coordinate Space O. Each object in-
stance has an associated 3D bounding box β that identifies a
rectangular cuboid in camera space describing the pose and
extent of the associated object. The 3D points contained in
a 3D bounding box β can be mapped via a diffeomorphism
to the (centered) unit cube O :=

[
− 1

2 ,
1
2

]3
called Normal-

ized Object Coordinate Space (NOCS). Indeed, every 3D
bounding box can be translated, rotated and scaled into a
unit cube. In light of this fact, we will use directly β to
represent the aforementioned diffeomorphism and, hence,
to map points from camera space to the NOCS.

Object-Centric Camera γ. Each image I depicting a 3D
scene has an associated camera denoted by ρ. Camera ρ
maps pixels u ∈ U to unit-speed rays in camera space de-
noted by ρu : R+ → R3, where ρu(t) gives the 3D point
along the ray at time t. By leveraging the bounding box β of
a given object, we can map each ray ρu from camera space
to NOCS yielding an object-centric ray γu. Specifically, γu
is a unit speed reparametrization of the remapped ray β◦ρu.
We refer γ as the object-centric camera for a given object.

Occupancy Mask Y . We use panoptic segmentation to pro-
duce a 2D occupancy mask Y associated with an object’s
image I . An occupancy mask Y provides for each pixel
u ∈ U a class label Yu ∈ {+1, 0, 1}. Foreground pixels,
i.e., pixels belonging to the object instance mask, are as-
signed label +1. Background pixels, i.e., pixels that are not

occluding the object of interest, are assigned label −1. Pix-
els for which it is not possible to determine whether they
occlude the object or not are assigned label 0. A pixel is
assigned the background label if it belongs to a semantic
category that is not supposed to occlude the object of in-
terest (e.g., for car, we have sky, road, sidewalk, etc.). See
Fig. 2 for an example.

3.2. Architecture Overview

We provide an overview of our architecture in Fig. 3 and
provide a description below.
Inputs (I, γ, Y ). Our architecture takes as input the im-
age I of an object that has been detected, the corresponding
camera γ in NOCS, which has been derived by exploiting
the information about the object’s 3D bounding box, and
the occupancy mask Y obtained by leveraging panoptic seg-
mentation. Details about I , γ and Y have been provided in
Sec. 3.1. Examples of object images, occupancy masks and
3D bounding boxes are given in Fig. 2.
Shape and Appearance Encoder ΦE. We encode an in-
put image I depicting a given object of interest into a shape
code φS and an appearance code φA via a neural network
ΦE; i.e., (φS, φA) := ΦE(I). The encoder comprises a CNN
feature extractor that outputs intermediate features that are
fed to two parallel heads, responsible for generating the
shape and appearance code, respectively. Implementation
details of the encoder and decoders that follow can be found
in the supplementary material.
Shape Decoder ΨS. The shape code φS is fed to a decoder
network ΨS, which implicitly outputs an occupancy network
σ; i.e., σ := ΨS(φS). The occupancy network σ : O → R+

outputs a density for a given 3D point x ∈ O expressed in
NOCS.
Appearance Decoder ΨA. As opposed to the shape de-
coder, the appearance decoder ΨA takes in input both shape
and appearance codes and implicitly outputs an appearance
network ξ, i.e. ξ := ΨA(φA, φS). The appearance network
ξ : O×S2 → R3 outputs an RGB color for a given 3D point
x ∈ O and a viewing direction d on the unit 3D sphere S2.
Volume Renderer V . The occupancy network σ and the
appearance network ξ form a radiance field representing an
object in NOCS. We can compute the color associated with
u by rendering the object-centric ray γu using the approach
proposed in [26]. However, since we are interested in mod-
elling only the object of interest, the object-centric ray is
limited to points intersecting O. This yields the following
volume rendering formula:1

V (γu|σ, ξ) := −
∫ bu

au

α̇t(γu, σ)ξ(γu(t), du)dt ,

1The formula differs at first sight from the one in [26], but the two
become equivalent after computing the time derivative α̇t.
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Figure 3. Given an RGB image with a corresponding 3D object bounding box and occupancy mask, our autoencoder learns to encode
shape and appearance in separate codes. These codes condition individual decoders to re-render the input image for the given view.

where [au, bu] is the time-window where γu intersects O
and du ∈ S2 is the unit velocity of γu. Moreover, α̇t denotes
the time derivative of the accumulated transmittance along
the ray γu in the range [au, t] defined as

αt(γu, σ) := exp

(
−
∫ t

au

σ(γu(s))ds

)
.

The integral in the volume renderer V can be solved with a
quadrature rule by leveraging sampled points along the ray
(see, [26] for more details).

3.3. Training

To train our architecture we rely on two loss terms: a
photometric loss and an occupancy loss. We provide the
losses for a given training example Ω = (I, γ, Y ) compris-
ing the image I , the occupancy mask Y , the object-centric
camera γ. Moreover, we assume that the radiance field
(σ, ξ) for the object has been computed from I using the
encoder ΦE and the decoders ΨS and ΨA. Finally, we denote
by Θ all learnable parameters involved in the architecture.
Photometric Loss LRGB. The photometric loss term resem-
bles an autoencoder loss, for it forces the model to fit the
input it is given after encoding it into a shape and appear-
ance code with ΦE, decoding it into an object radiance field
by using ΨS and ΨA, and finally rendering it with the vol-
ume renderer V . The loss is formally defined as follows

LRGB(Θ|Ω) :=
1

|WRGB|
∑

u∈WRGB

‖Iu − V (γu|σ, ξ)‖2 ,

whereW ⊂ U contains only foreground pixels; i.e., Yu =
+1 whose object-centric rays γu intersect O.
Occupancy Loss LOCC. We use panoptic segmentation to
infer whether a pixel is a foreground, background or un-
known pixel. This information is encoded in the occupancy
mask Y , which is used to directly supervise the accumu-
lated transmittance component α of the volume rendering
equation V . Indeed, α(γu, σ) := αbu(γu, σ) represents the
probability that the object does not intersect ray γu, or in

other terms that u is potentially a background pixel. Simi-
larly 1− α(γu, σ) is the probability of u to be a foreground
pixel. We can therefore implement a classification loss di-
rectly on the accumulated transmittance as follows:

LOCC(Θ|Ω) := −
∑

u∈WOCC
log
[
Yu( 1

2 − α(γu, σ)) + 1
2

]
|WOCC|

.

where WOCC ⊂ U contains only foreground or background
pixels; i.e., Yu 6= 0, with rays γu intersecting O.
Final LossL. The final loss that we use to train our network
is a linear combination of the two losses described above:

L(Θ|Ω) = LRGB(Θ|Ω) + λLOCC(Θ|Ω) ,

where the occupancy loss is modulated with a hyperparam-
eter λ ≥ 0.

3.4. Test-Time Optimization

Our method enables a forward encoding of an object at
test-time due to the presence of an ad-hoc encoder ΦE. Nev-
ertheless, we can further refine the regressed codes or even
the object’s prior pose to make the output more robust, for
instance, to domain shifts in the object’s appearance or er-
rors in the predicted 3D bounding box. To this end, we
keep optimizing our loss L at test time, but with the object’s
shape/appearance codes (φS, φA) and the 3D bounding box
β being regarded as variables to be optimized. Since the
optimization requires a good initial estimate to converge to-
wards a good solution, we use the initial 3D bounding box
prediction from the 3D object detector and the object’s en-
coding provided by our encoder ΦE to initialize the vari-
ables. Our formulation allows also to optimize a subset of
those variables by keeping the other fixed (e.g., fine-tune
appearance only by optimizing φA, while keeping φS and β
fixed). It is worth mentioning that in a monocular setting
optimizing the bounding box β is not well-defined, because
of the scale-depth ambiguity. In practice, we keep the size
component of the bounding box fixed to the one regressed
by the 3D object detection and optimize only the bounding
box pose; i.e., rotation and translation.
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Figure 4. Full scene novel view synthesis from single unseen images for nuScenes (top), KITTI (middle), and Mapillary Metropolis
(bottom) after training our model exclusively on nuScenes test data. Please note the high-fidelity reconstruction results obtained for objects
of different scale, aspect ratio, and image quality.

4. Experiments
We quantitatively evaluate our approach for the task of

novel view synthesis from a single view on the nuScenes
dataset [2], and on the SRN-Cars synthetic car dataset intro-
duced in [36]. Finally, we also evaluate our model trained
on nuScenes data on images taken from the KITTI [8]
and Mapillary Metropolis2 datasets, respectively. In Fig. 4
we provide reconstruction results together with synthesised,
novel views after training on nuScenes for 1) nuScenes vali-
dation (top), 2) KITTI validation (middle), and 3) Mapillary
Metropolis validation (bottom). Please note that the model
has never seen any data from KITTI or Metropolis during
training.

Baselines. We compare quantitatively and qualitatively to
PixelNeRF [41] on the task of one-view, 2D-supervised re-
construction. For experiments on nuScenes, we extend their
method to support training only on foreground and back-
ground pixels, and transform the camera system into the
normalized object space in order to leverage 3D object an-
notations. As pixelNeRF is trained in a multi-view setup,
we provide an additional view during training time leverag-
ing provided tracking annotations. In contrast, we train our
model using only a single observation of the same instance.

Metrics. We report the standard image quality metrics
PSNR (Peak Signal to Noise Ratio) and SSIM (Structural
Similarity Index Measure) [38] for all evaluations. Further-
more, we include LPIPS [44] and FID [14] scores to more
accurately reflect human perception.

Implementation Details. Similar to PixelNeRF [41], our

2https://www.mapillary.com/dataset/metropolis

image encoding uses a ResNet34 backbone pre-trained
on ImageNet, while each decoder consists of five fully-
connected residual blocks. For an in-depth description of
our architecture, we refer to the supplementary material.

4.1. Evaluation on nuScenes

The nuScenes dataset is a large-scale driving dataset with
3D detection and tracking annotations for 7 object classes.
It contains 700 training, 150 validation, and 150 test se-
quences, comprising 168k training images, 36k validation
images, and 36k test images. As this dataset is commonly
used for perception tasks in autonomous driving research,
we pre-process the data to make it suitable for the task of
novel view synthesis: We filter for sequences at daytime
(provided as meta-information) and we run a pre-trained
2D panoptic segmentation model [32] as nuScenes does not
provide 2D segmentation masks.

We match provided 3D bounding box annotations with
the resulting instance masks and categorize the panoptic
results into foreground (visible part of the object), back-
ground (non-occluding semantic categories like street, sky,
sidewalk), and unknown regions (potentially occluding cat-
egories like people, vehicles or vegetation) as we do not rely
on depth information in order to resolve occlusions. Fur-
thermore, we filter for sufficiently visible instances and use
tracking information for evaluation purposes. For training,
we select from each instance a single view at random to
train on (two views for the baseline) and evaluate on a pre-
determined subset of 10k pairs of views of car instances in
the validation split. We refer to the supplementary material
for details about the data generation process.
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Input View PixelNeRF
AutoRF 
(no opt.) AutoRF Target View

Figure 5. Qualitative comparison on NuScenes: novel view syn-
thesis of single instances.

Single-view synthesis results. We report our performance
in comparison to state-of-the-art baselines pixelNeRF and
CodeNeRF in Tab. 1. Even without any multi-view infor-
mation, our model is able to synthesize higher quality re-
sults compared to the baseline trained with multi-view in-
formation. Test-time optimization allows the model to re-
cover instance-specific details while preserving shape and
overall appearance. In Fig. 5 we demonstrate qualitatively
that our model produces overall sharper results and more
natural shapes, while pixelNeRF struggles to synthesize
views that are significantly different from the input view.
We quantify this observation by plotting PSNR and LPIPS
values against the rotational difference between input and
target view in Fig. 6: While the performance of the mod-
els evaluated on views close to the input view is similar,
pixelNeRF degrade significantly with increasing change of
perspective but to the maximum rotational error, where the
models can leverage similarities to the input view (e.g., a
car seen from the left and right side).

nuScenes cars PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
pixelNeRF [41] 18.25 0.459 0.236 160.60
CodeNeRF [15] 18.44 0.462 0.241 146.32

AutoRF (no opt.) on test 18.69 0.479 0.227 138.23
AutoRF on test 18.94 0.491 0.223 145.10

Table 1. Overview of novel-view synthesis results on nuScenes
cars from the validation set.

4.1.1 Shape reconstruction quality

We additionally evaluate our methods’ shape reconstruction
quality on the nuScenes validation split by comparing the
resulting depth renderings against ground truth (GT) object
LiDAR points. We crop the LiDAR recordings according
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Figure 6. Novel view evaluation: measures of image fidelity plot-
ted against the rotational delta between input and target view.

to the oriented GT 3D bounding-box annotations, remove
points in the lower 10% of the bounding box (to exclude Li-
DAR points belonging to the street), and finally evaluate on
samples with at least 20 remaining points. Tab. 2 shows that
our model trained on single views and from auto-generated
3D detection and segmentation results produces more pre-
cise surfaces in terms of L1 and RMSE metrics compared
to the pixelNeRF baseline trained with GT annotations and
multiple views per instance (additional qualitative recon-
structions can be found in the supplementary document).

nuScenes cars L1 ↓ RMSE ↓
pixelNeRF [41] 0.357 0.984
CodeNeRF [15] 0.239 0.641

AutoRF (no opt.) 0.209 0.632
AutoRF 0.204 0.614

Table 2. Qualitative compari-
son on SRN-chairs trained on
single views.

Avg. perturb. PSNR ↑ LPIPS ↓
0°/ 0cm 18.95 0.210
5°/ 10cm 18.67 0.216
10°/ 20cm 17.95 0.269
20°/ 40cm 16.83 0.348

Table 3. Novel-view synth. of
AutoRF trained with perturbed
annotations on nuScenes.

4.2. Evaluation on synthetic data

We evaluate our method against the baselines on the
SRN dataset introduced in [36]. The SRN-Cars dataset
contains 3514 samples of car renderings (based on shapes
from 3D Warehouse) with a predefined split across object
instances. While each model is rendered from 50 random
views per object instance, we select a single random frame
for training our method and CodeNeRF (and two random
frames for the pixelNeRF baseline). For each object in the
test set, we evaluate novel view synthesis from 251 views
sampled on an Archimedean spiral based on a single, ran-
domly chosen view as input for our method. We refer to the
supplementary for evaluation on additional categories.
Single-view synthesis results. We compare our method in
Tab. 4 to pixelNeRF trained on additional views and Co-
deNeRF. We notice that our model outperforms the base-
lines on all metrics while not requiring multi-view con-
straints at training time. Additionally, we provide qualita-
tive results in Fig. 7 illustrating our method’s high-fidelity
reconstruction results, and how we are preserving fine-
grained details such as differently colored roof-tops of cars.
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SRN-Cars PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
pixelNeRF [41] 19.55 0.847 0.177 142.9
CodeNeRF [15] 18.93 0.844 0.172 127.1

AutoRF (no opt.) 18.08 0.833 0.180 121.6
AutoRF 19.66 0.860 0.165 122.4

Table 4. Evaluation of novel-view synthesis on the SRN-Cars
dataset from [36].

Figure 7. Qualitative comparison on SRN-Cars dataset, illustrating
our high-fidelity, single-view reconstruction results compared to
the 2-view pixelNeRF baseline.

4.3. Ablations

Data quality. In Tab. 3, we report novel-view synthe-
sis results of AutoRF trained with random perturbations
of the ground truth annotations in terms of average differ-
ent rotation and translation errors. We note that smaller
inaccuraries have minor impact. Furthermore, we inves-
tigate the performance when we train AutoRF on human-
annotated data on the nuScenes train split and evaluate
the results against our model fully trained on machine-
annotated single-view data. The results are summarized
in Tab. 5 and show that leveraging high-quality annotations
does not significantly improve the novel view synthesis re-
sults. While PSNR and SSIM are very similar, the main im-
provements are gained in terms of perceptual losses (LPIPS
and FID). Qualitative analyses show that the model trained
on GT annotations are slightly less blurry, which we assign
to the fact that inaccurate pose annotations result in impre-
cise ray sampling in NOC space.

Domain transfer. While trained solely on the nuScenes
street-level dataset, we show qualitative results in Fig. 4
demonstrating that the learnt object radiance field priors
generalize well to novel datasets. Examples on nuScenes,
KITTI, and Mapillary Metropolis show that AutoRF (no
opt.) can reliably assign matching object priors and that
test time optimization consistently preserves fine-grained

nuScenes cars PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
AutoRF (no opt.) on test 18.69 0.479 0.227 138.23
AutoRF (no opt.) on train 18.58 0.473 0.211 84.14

AutoRF on test 18.94 0.491 0.223 145.10
AutoRF on train 18.95 0.493 0.210 106.50

Table 5. Novel-view evaluation on the nuScenes validation set.

Figure 8. Scene editing examples on nuScenes. Starting from the
input view, we can change the codes of the objects and synthesize
novel scene layouts.

details also in novel views.

Scene editing. Our approach naturally decomposes an ob-
ject into pose, shape, and appearance. This directly enables
3D scene editing, where the objects observed in an input
view can be rendered with novel poses, shapes and/or ap-
pearances, effectively creating a novel scene. We provide a
example of the scene editing capability in Fig. 8 and refer
to the supplementary document for further demonstrations.

5. Conclusions

In this work, we proposed a new approach for learning
neural 3D object representations that in contrast to the ma-
jority of existing works exploits exclusively single views of
object instances during training, without leveraging other
3D object shape priors such as CAD models or resort-
ing to curated datasets. To address this challenging train-
ing setting, our method leverages machine-generated labels,
namely 3D object detection and panoptic segmentation, to
learn a normalized object-centric representation, which is
pose independent and factorizes into a shape and an ap-
pearance component. These two components are decoded
into an implicit radiance field representation for the object,
which can then be rendered into novel target views. We
show that our approach generalizes well to unseen objects,
even across different datasets of real-world street scenes.

Societal impact and limitations. Our work helps to fur-
ther investigate the possibilities of leveraging real-world,
large-scale data for building representations needed in fu-
ture AR/VR applications. As for the limitations, our work
requires significant computational efforts for producing ren-
derings of novel views, akin to related works from neural
representation learning. Further, we will investigate Au-
toRF’s applicability to more articulated object categories.
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