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Abstract

In this paper, we propose a new cue of depth sensing
using thermal radiation. Our method realizes passive, tex-
ture independent, far range, and dark scene applicability,
which can broaden the depth sensing subjects. A key ob-
servation is that thermal radiation is attenuated by the air
and is wavelength dependent. By modeling the wavelength-
dependent attenuation by the air and building a multi-
spectral LWIR measurement system, we can jointly estimate
the depth, temperature, and emissivity of the target. We
analytically show the capability of the thermal radiation
cue and show the effectiveness of the method in real-world
scenes using an imaging system with a few bandpass filters.

1. Introduction
Depth sensing is an important technology, as shown

by its wide range of applications. Depth sensing tech-
niques refer to physics-based cues used to recover the scene
depth, known as “shape from X.” Historically, a great num-
ber of cues such as triangulation/disparity [23], time-of-
flight [21], polarization [46], shading [25], silhouettes [9],
focus/defocus [44], and texture [60] have been proposed.
These “X” cues play an important role in depth sensing in
various scenarios. However, existing depth sensing tech-
niques require either clear visibility of the texture or an ac-
tive light source to illuminate the surface, and there is no
approach to passively measure depth in dark environments.

In this paper, we propose an unprecedented depth sens-
ing modality that can be used in dark and passive scenarios.
As a key to achieving this property, we use the attenuation
of long wavelength infrared (LWIR) radiation through the
air. As all objects emit thermal radiation according to their
temperature, we can see the objects without any active light
sources. Besides, since the attenuation of LWIR is much
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Figure 1. Overview of the shape from thermal radiation. Our
method jointly estimates the depth, temperature, and emissivity
images from multi-spectral LWIR images. A key observation is
that thermal radiation from the target object is attenuated through
the air and is wavelength dependent.

larger than that of visible light and the amount of attenu-
ation decays exponentially with respect to the depth, it is
possible to recover the depth.

Because the observed intensity depends on both the ob-
ject’s temperature and the attenuation, we have to separate
these factors. Fortunately, attenuation through the air is
wavelength dependent. Thus, we use multi-spectral obser-
vation in the LWIR range to jointly estimate the depth and
temperature of the target object as shown in Fig. 1.

This paper focuses on the possibility of depth sensing by
only using passive thermal radiation. The contributions of
this study are twofold.

• We propose a novel cue for “shape from X” tech-
niques. The shape from thermal radiation uses the at-
tenuation of thermal radiation by the air. This is new to
computer vision and computational imaging areas and
broadens the field of research.

• To the best of our knowledge, the proposed method
is the first attempt to realize passive, texture-less, far
range, and can be used for dark scenes. This property
proves that air absorption cues in LWIR are useful for
depth sensing.
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2. Related Work

Three-dimensional imaging Three-dimensional (3D)
imaging has been studied over the decades and remains an
active research topic in the computer vision area. Here, we
briefly review the existing shape from X approaches.

Triangulation-based approaches use the disparity be-
tween two viewing/lighting positions. They include stereo
cameras [6, 45, 52, 54, 65], multi-view stereo [17, 23, 59],
structure from motion [57], and structured light [11, 19, 37,
49,67]. Stereo reconstruction using thermal cameras is also
proposed [38,56]. The accuracy of triangulation depends on
the baseline; hence, it is not suitable for far-range imaging.

Time-of-flight [21] is also a major 3D imaging technique
and known as the principle of Lidar and the time-of-flight
camera. They use a pulse or periodically modulated light
and measure the round-trip time of light. It is effective for
texture-less targets; however, either strong active illumina-
tion or a point scanning mechanism is required.

Monocular depth estimation methods that use deep
learning [14, 35, 66] estimate the scene depth from a sin-
gle RGB image. This approach is up-to-scale and easy
to deceive using, for example, a printed photo placed in
front of the camera. Recently, to mitigate this problem,
physics-based assistance for monocular depth estimation
is proposed [7, 10, 20, 42, 53, 62]. Another extension of
learning-based depth estimation is to use thermal imaging
to apply dark and night environments [29, 33], which are
pure learning-based.

Depth from focus/defocus [24, 44, 63] is another well-
known approach of monocular depth estimation, which re-
covers the depth from the amount of blur. These methods
require textures on the target to measure the focus and are
not applied for dark scenes.

Photometric information is a rich cue for 3D imaging.
Several methods, for example, shape-from-shading [64],
photometric stereo [1, 50, 61], shape from polarization [5,
40, 46], shape from water absorption [2, 3, 30], light fall-
off stereo [32], and attenuation by fog or haze [31, 43] have
been proposed. Although these methods can recover a high-
quality shape, an active or pre-calibrated light source is re-
quired.

Table 1 shows a comparison of major depth sensing ap-
proaches. Our method first uses multi-spectral LWIR obser-
vations to estimate scene depths based on air absorption of
thermal radiation. Our approach is fundamentally passive,
texture independent, and very far range depth sensing. One
of the advantages of the approach is that it is fully passive
and applicable to a dark scene.

Computational thermal imaging The unique property
of thermal radiation is very useful for computer vision and
computational imaging problems. For example, the polar-
ization cue of thermal radiation is used to resolve the ambi-

Method Dark scene Far range Texture independence
Time-of-flight Light source No Yes

Lidar Light source Yes Yes
Structured light Light source Baseline Yes
Multi-camera No Baseline No

Focus/Defocus No No No
Ours Yes Yes Yes

Table 1. Comparison of depth sensing approaches. Fundamental
features are compared. Our method is adaptable to a dark scene,
capable of sensing a far-range target, and texture independent.

guity of shape from polarization [39]. The transient feature
of the thermal heating and cooling cycle is also used for
material classification [51]. LWIR observation is useful for
computational imaging problems, such as non-line-of-sight
imaging [28, 34] and lensless imaging [47]. Our method
falls into this computational thermal imaging category as a
new 3D imaging.

The properties of thermal radiation have also been used
for 3D sensing problems. Tanaka et al. [55] illuminated an
object from various positions and recovered the surface nor-
mal of various materials using the shape-from-shading ap-
proach. Erdozain et al. [15] developed an LWIR projector
and applied structured light algorithms. The shape of trans-
parent and metallic objects can be measured using triangu-
lation by scanning the heating point [4, 8, 16] because the
objects are opaque in the LWIR region. Although these ap-
proaches are effective in active illumination scenarios, our
method is the first attempt at passive LWIR 3D imaging.

Thermography The study of thermography has focused
on the accurate measurement of temperature [12, 58]. Be-
cause thermal radiation through the air is attenuated accord-
ing to its distance from the target object, the temperature
of a distant object must be corrected by atmosphere trans-
mittance databases [13, 18], the application of a simplified
model [36], or displaying a reference target with known
temperature or known size as a guide. We contrarily use
the air absorption of LWIR for depth estimation. Although
our goal is depth estimation, the temperature of the object
can be also estimated at the same time. This can be an ad-
vantage over conventional thermography because the cor-
rect temperature is measured even when the target depth is
unknown.

Spectral information in the LWIR region is useful for
some applications. While thermography requires the user to
set the emissivity of the object or assumes uniform emissiv-
ity, two-color or ratio thermography recovers both emissiv-
ity and temperature using two bands [27] in LWIR. Spec-
tral information in the LWIR region is also used for gas
detection [48]. Our method uses multi-bands in LWIR for
depth sensing because air absorption of LWIR depends on
the wavelength.
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3. LWIR Light Transport
We start from a brief review of thermal radiation the-

ory and temperature measurement. After that, we build an
imaging model using the attenuation by the air.

Thermal radiation theory [26] Planck’s law explains
the spectral radiant exitance (emittance) Me of a black body
at the absolute temperature T as

Me(λ;T ) =
2πhc2

λ5

1

ehc/λkT − 1
, (1)

where λ is the wavelength of light, c is the speed of light, h
is the Planck constant1, and k is the Boltzmann constant2.

As most objects are not black bodies, their radiation E is
less than that of a black body:

E(λ; ϵ, T ) = ϵMe(λ;T ), (2)

where ϵ is the emissivity, which is object dependent.

Thermography [58] A thermographic camera is de-
signed to measure the intensity of thermal radiation. A typ-
ical sensor measures the intensity of LWIR (typically, 8–14
µm) as

E(ϵ, T ) =

∫ λ2

λ1

E(λ; ϵ, T )dλ, (3)

where E is the intensity of the radiated LWIR light. As al-
most all radiation energy is within this integration range, the
temperature T can be obtained using the Stefan-Boltzmann
law, in theory. In practice, the correspondence between the
intensity E and temperature T is calibrated using a black
body in the factory. Thermal cameras assume that the emis-
sivity is known: they either use a constant value or have
a dialog that can be used to select the target’s material to
adjust the emissivity.

3.1. Imaging model

The air is an attenuating medium and some LWIR light
is absorbed through the air as it travels from the target to the
camera [58]. Using the Lambert-Beer law, the transmission
of the medium is expressed as

iout(λ) = exp(−σair(λ)d)iin(λ), (4)

where iin and iout are the input and transmitted intensity of
light, respectively, σair is the extinction coefficient of the
medium, and d is the thickness of the medium. Thermal
cameras either cancel this attenuation by allowing the user
to manually input the depth of interest or simply ignore it.
We contrarily take this into account to estimate the depth of
the target.

1Planck constant: h = 6.62607015× 10−34Js
2Boltzmann constant: k = 1.380649× 10−23JK−1

Based on Eqs. (1), (2), and (4), the observed intensity I
at wavelength λ is expressed as

I(λ) = Rv(λ) exp(−σair(λ)d)ϵMe(λ;T ), (5)

where Rv(λ) is the sensitivity that associates the energy
density with the observed intensity. The sensitivity Rv(λ)
depends on the imaging system (e.g., image sensor, lens,
and spectral filter) and is known by calibration beforehand.
We aim to recover the depth d with additional unknowns,
emissivity ϵ and temperature T , from the observation I(λ).

4. Depth from Multi-spectral LWIR Measure-
ments

Equation (5) has three unknown variables: T , ϵ, and d.
These variables cannot be obtained using only a single ob-
servation. This means that we cannot identify whether the
target object is far away or the radiation from the target is
low.

We address this problem using multi-spectral LWIR ob-
servations to estimate the variables, as shown in Fig. 1. A
key idea is to use the wavelength dependence of the extinc-
tion coefficient of the air. Because spectral radiance follows
Planck’s law and the attenuation by the air is wavelength
dependent, we can separate the effect of the depth and the
amount of radiation from the target.

4.1. Assumptions

Before explaining our proposed method, we clarify the
assumptions of the scene. These assumptions are reason-
able as they are also assumed in thermography and the cov-
erage of the material is very wide.

• As the major attenuating medium is water and car-
bon dioxide [36], the attenuating spectrum of the air
σair(λ) is known. It can be measured in advance, as
well as being obtained from databases of extinction co-
efficients of the air [13, 18].

• The target object is a gray body, that is, the emissiv-
ity of the target is not wavelength-dependent in LWIR.
Only a few materials, such as metal, do not satisfy this
assumption.

• The target object does not reflect LWIR light from any
other heat source.

4.2. Proposed method

Suppose that we obtain two measurements using differ-
ent wavelengths: I(λi) and I(λj). By dividing one mea-
surement by another, we cancel out the emissivity ϵ:

Îi,j =
I(λi)

I(λj)

=
Rv(λi) exp(−σair(λi)d)Me(λi;T )

Rv(λj) exp(−σair(λj)d)Me(λj ;T )
, (6)
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Figure 2. A plot of the solution space. The two lines represent the
different combinations of filters. The intersection is the estimate
of the temperature and depth.

where Îi,j is the divided ratio image. By transforming the
expression, we can represent the depth d as

di,j(T ) =
1

σair(λj)− σair(λi)
ln

(
Rv(λj)Me(λj ;T )

Rv(λi)Me(λi;T )
Îi,j

)
.

(7)

This equation describes a curved line as the solution
space of T and d as shown in Fig. 2, because σair and
Rv are known and Me is calculable using Eq. (1). As we
have multiple wavelength observations with sufficiently dif-
ferent amounts of air absorption, for example, λi, λj , and
λk, Eq. (7) also represents another set of wavelengths. For
example, we have two solution spaces of depth d and tem-
perature T that use three wavelength combinations, and the
crossing point of these curves is a unique solution. We can
find the temperature T and depth d that satisfies the follow-
ing equation:

di,j(T ) = di,k(T ). (8)

Optionally, we can estimate the emissivity ϵ by substituting
the estimated depth d and temperature T into Eq. (5).

Effect of broad bandpass filters In the above discus-
sion, we implicitly assume that the measurement is imple-
mented using an ideal filter, whose response function is a
delta function. If a bandpass filter of broader bandwidth is
used, we have to integrate the imaging model with respect
to the wavelength; therefore, Eq. (5) becomes

Is(λi) =

∫ ∞

0

fi(λ)Rv(λ) exp(−σair(λ)d)ϵMe(λ;T )dλ,

(9)

where fi is the spectral response of the bandpass filter.
Although this model is no longer the Lambert-Beer

model, the observation is still monotonically decreasing
with respect to the depth, and the magnitude of attenuation
varies depending on the filter. Therefore, it is possible to es-
timate the depth numerically. In our environment, we found
that the observation using a filter of a sufficiently narrow

(a) w/o filter (b) w/ filter (c) Reference image

(d) Difference (e) Proposed

Figure 3. Example of the unique noise in LWIR images. (a) With-
out filer: a clear image can be obtained. (b) With filter: as the
radiation from the camera is reflected by the optics, the image be-
comes unclear (narcissus effect). (c) Reference image of the shut-
ter plane in front of the optics. (d) Subtraction of (c) from (b):
image remains noisy because of 1/f noise. (e) Result using the
external shutter: unwanted effects are canceled and a clear image
is obtained.

bandwidth can be approximated using Eq. (5); hence, we
do not use the extended imaging model.

Optimization As the method above is naı̈ve and sensitive
to noise, the estimated values can be physically incorrect
values, such as a negative depth. Therefore, we adopt an
optimization technique to regulate scene parameters. We
formulate the optimization problem as

d̂, ϵ̂, T̂ = argmin
d,ϵ,T

N∑
i

∥I(λi)− I ′(λi : d, ϵ, T )∥
2
2 (10)

s.t. 0 ≤ ϵ ≤ 1, d ≥ 0, T ≥ 0,

where N is the number of observations and I ′ is a rendered
image using Eq. (5). We initialize all parameters using the
naı̈ve result obtained using Eq. (8) and estimated using con-
strained gradient descent.

5. Unique Noise Characteristics of the LWIR
Camera

As an LWIR camera is very different from an RGB cam-
era, several issues exist that do not appear in traditional
imaging. In this section, we introduce two unique effects
in LWIR imaging and explain how to deal with them.

5.1. Narcissus effect

In LWIR observation, radiation from the camera body
is reflected by the surface of the optics, including lens and
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filters. This is known as the narcissus effect [58]. Fig-
ure 3(b) shows an example of the narcissus effect. This ef-
fect is generally canceled using the non-uniformity correc-
tion (NUC) [58] function in the camera. NUC is calibrated
to cancel the camera’s radiation in the factory. Because it
is calibrated for the built-in optics, it does not work well if
another optic is added to the system. Therefore, we have to
perform this correction for each filter explicitly.

To cancel the narcissus effect, we require an image with
a black body plane with the known temperature immedi-
ately in front of the optics. By subtracting two images (i.e.
scene and reference) captured through a filter, we can obtain
only the filter transmitted component. We can obtain pure
transmitted component I(λi) by subtracting the scene and
reference images:

I(λi) = Is(λi)− Ir(λi), (11)

where Is and Ir are the observed images with the narcis-
sus effect of the scene and reference, respectively. Fig. 3(d)
shows an example of canceling the narcissus effect by sim-
ply subtracting Fig. 3(c) from Fig. 3(b).

5.2. 1/f noise

Another unique noise characteristic of an LWIR camera
is 1/f noise. In particular, this noise dominates the total
noise of the microbolometer sensor [22, 41]. 1/f noise is a
low-frequency fluctuation; hence, it strongly appears when
images taken at long intervals are processed. For example,
averaging multiple images does not improve the signal-to-
noise ratio (SNR) but degrades the image, which is com-
pletely different from RGB imaging. Considering the pro-
cessing of NUC, this noise is very noticeable, as shown in
Fig. 3(d), because there is a very long interval between the
two images.

5.3. Noise mitigation using an external shutter

To mitigate both the narcissus effect and 1/f noise, we
propose to use an external shutter in front of the optics. The
shutter is operated open and closed, alternately, and we ob-
tain a total of M pairs of a scene and reference images.
Then, we suppress the narcissus effect by taking a subtrac-
tion of each pair. Note that the 1/f noise is ignorable each
of them is captured in a short time. Finally, we suppress the
1/f noise by taking the average of them. This corresponds
to locking-in high frequency signals. Fig. 3(e) shows the
result of noise reduction using M = 10 pairs.

6. Depth Resolution Analysis
Before conducting the experiment, we confirmed the fea-

sibility of our method in terms of depth resolution. The
depth resolution depends on the sensitivity of the sensor, in
addition to the temperature and depth of the object. To ana-
lyze the depth resolution, we first explain a standard sensor

noise measure for LWIR cameras known as the noise equiv-
alent temperature difference (NETD). NETD represents the
minimum temperature that changes the intensity at the same
level of system noise and is typically provided as a camera
specification.

Definition of NETD [58] We consider the area of the de-
tector Ad, the f-number of the imaging lens F , and the spec-
tral sensitivity of the sensor Rv(λ). The power of LWIR
that irradiates to the detector is represented as

P (λ) =
Ad

4F 2
Me(λ;T ). (12)

Assuming that the LWIR camera captures the intensity from
λ1 to λ2, the sensor output voltage is represented as

Vs =

∫ λ2

λ1

Rv(λ)P (λ)dλ. (13)

The change in Vs when the temperature changes by ∆T is
represented as

∆Vs =
∂Vs

∂T
∆T. (14)

As the microbolometer sensor has almost flat spectral sen-
sitivity, Eq. (14) is typically simplified as

∆Vs =
AdRv

4F 2

∂
∫ λ2

λ1
Me(λ;T )dλ

∂T
∆T. (15)

The change in the output voltage when the temperature
changes by 1K is expressed as

Vt =
∆Vs

∆T
. (16)

The temperature change when the voltages of the output and
noise are balanced (i.e., NETD) is defined as

NETD ≜
Vn

Vt
(17)

=
4F 2Vn

AdRv

1

∂
∫ λ2
λ1

Me(λ;T )dλ

∂T

, (18)

where Vn is the root mean square noise voltage. The first
factor represents the sensor characteristics and the second
factor is numerically obtainable.

Definition of noise equivalent depth difference (NEDD)
We extend the discussion to the depth resolution of our
method. Considering the air absorption into the model, the
power of LWIR that reaches the camera is rewritten as

P (λ) =
Ad

4F 2
e−σairdMe(λ;T ). (19)
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Equation (13) also holds for this model. We define the
NEDD analogously to NETD. The change in Vs when the
depth of the target changes by ∆d is represented as

∆Vs =
∂Vs

∂d
∆d. (20)

NEDD is defined as

NEDD ≜
Vn

Vd
, (21)

where Vd is the change of the output voltage caused by 1m
depth change defined as

Vd =
∆Vs

∆d
. (22)

Based on the flat sensitivity of the microbolometer sensor,
Eq. (21) is expanded as

NEDD =
4F 2Vn

AdRv

1

∂
∫ λ2
λ1

e−σairdMe(λ;T )dλ

∂d

. (23)

The second factor of this equation can be also numerically
obtained. Substituting Eq. (18) into Eq. (23), the NEDD can
be expressed using the NETD measure as

NEDD =

∂
∫ λ2
λ1

Me(λ;T )dλ

∂T

∂
∫ λ2
λ1

e−σairdMe(λ;T )dλ

∂d

NETD. (24)

NEDD using bandpass filters The SNR becomes worse
when bandpass filters are placed in front of the camera as
they block a large amount of energy. The voltage of the
sensor output with a bandpass filter is represented as

Vf =

∫ λ2

λ1

f(λ)Rv(λ)P (λ)dλ, (25)

where f(λ) is the spectral transmittance of the bandpass fil-
ter. Following the NEDD definition, the NEDD using the
filter is expressed as

NEDDf =
Vn

V ′
d

(26)

=
4F 2Vn

AdRv

1

∂
∫ λ2
λ1

e−σairdMe(λ;T )f(λ)dλ

∂d

, (27)

where

V ′
d =

∆Vf

∆d
. (28)

Similar to the above specific example, the NEDD of any
bandpass filter observations can be numerically calculated.

Figure 4. A theoretical plot of the observable depth difference of
our measuring system. Each observation has an NEDD of less than
approximately 1.5m, which determines the total depth resolution
of the method.

Specific example A typical LWIR sensor records the in-
tensity from 8 µm to 14 µm. The value of the numerator of
the first factor in Eq. (24) at 300 K in this bandwidth is

∂
∫ 14µm
8µm Me(λ; 300K)dλ

∂T
≈ 2.123. (29)

Assuming the target depth is at 20m and σair = 0.008m−1

the denominator is,

∂
∫ 14µm
8µm e−σairdMe(λ; 300K)dλ

∂d
≈ 0.939. (30)

If the NETD of the camera is 40 mK (= 0.04 K), the NEDD
of a bare LWIR sensor is calculated by Eq. (24) as,

NEDD =
2.123

0.939
NETD = 0.090m. (31)

For a bandpass filter of the center wavelength (CWL)
10.400 µm and full width at half maximum (FWHM)
737 nm,

∂
∫ λ2

λ1
e−σairdMe(λ; 300K)f(λ)dλ

∂d
≈ 0.088. (32)

The NEDD with the bandpass filter is calculated as
NEDD10µm = 2.123

0.0880.04 = 0.965 m. This demonstrates
that it is feasible to use the NEDD for large-scale scenes.
Figure 4 shows the plot of NEDD of our system with the
target temperature at 300K. The feasibility of our method
is confirmed by this analysis.

7. Real-world Experiments

We build a multi-spectral LWIR imaging system and
evaluate the effectiveness of our proposed method in real-
world experiments.
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Figure 5. Imaging system and profiles of each filter. (a) The multi-
spectral imaging system consists of an LWIR camera, filter wheel
with three bandpass filters, and external shutter. The external shut-
ter is painted with black body spray and kept at low temperature
using a Peltier device. (b) The response ratio of the bare LWIR
sensor with the lens and transmittance of each filter.

7.1. Imaging system and calibration

Multi-spectral LWIR imaging system Our multi-
spectral LWIR imaging system is shown in Fig. 5(a). The
system consists of a thermal imaging camera (FLIR Bo-
son 640, NETD = 40mK) and a filter wheel with three
narrow bandpass filters. We select three filters with the
best NEDD values in our laboratory (8 µm (CWL 8.248 µm,
FWHM 452 nm), 9 µm (CWL 9.127 µm, FWHM 545 nm),
and 10 µm (CWL 10.400 µm, FWHM 737 nm)). The spec-
tral response ratio of each filter is shown in Fig. 5(b). These
filters are automatically changed using the filter wheel. An
external shutter in front of the camera removes the narcis-
sus effect and reduces 1/f noise. The shutter is sprayed
with black body paint. To obtain a strong signal, the shutter
is cooled using a Peltier device.

Calibration In the calibration step, we obtain the sensi-
tivity Rv and extinction coefficients σair of all wavelengths.
We use a black body furnace, whose surface temperature is
controllable. Fig. 6(a) shows the experimental setup. By
placing the black body at 0m, Rv can be obtained directly.
By placing the black body at several known depths, and fit-
ting the Lambert-Beer law to the measured value, we can
obtain the extinction coefficients at each wavelength. We
set the temperature of the black body at 80 °C. The fitting
result is illustrated in Fig. 6(b) and the calculated extinction
coefficients are shown in Table 2. The fitted result shows
that the extinction coefficients are different at each wave-
length.

Black body

Camera

Scale

(a) Experimental set up
0 10 20

Depth to the camera [m]

800

1000

1200

1400

M
ea

su
re

d 
va

lu
e

8μm 9μm 10μm

(b) Attenuation 

Figure 6. Experiment for measuring the extinction coefficients.
(a) Experimental setup. (b) Measured values attenuated by the air.
Dashed lines represent the fit curve of the Lambert-Beer law for
each filter.

Table 2. Fitting results for the extinction coefficients.

wavelength 8 µm 9 µm 10 µm
σair(λ) 0.00787m−1 0.00436m−1 0.00346m−1
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Figure 7. Results for the black body. Temperature is set to 50 °C
(left column) and 90 °C (right column). Estimated depth, temper-
ature, and emissivity are shown. Root mean squared error (RMSE)
is calculated for each result. In the case of 90 °C, in particular, we
demonstrate the clear effectiveness of our method.

7.2. Results

Black body target We first evaluate the method using
a black body target, whose emissivity is almost 1. we set
the temperature of the black body to 50 °C and 90 °C, and
placed it at several distances from the camera. Figure 7
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Figure 8. Result for some practical targets. Top: the photo of the target object with its ground truth of the depth. Middle: the thermal image
(w/o filter). Bottom: the estimated depth. Red rectangles are the zoom up of the target region.

shows the results for the estimated depth, temperature, and
emissivity. Regardless of the target temperature, the target
depth is estimated well with respect to the target depth. The
temperature and emissivity are estimated at the correct val-
ues. The result for 50 °C is slightly noisier than that for
90 °C because the SNR depends on the target temperature.
This demonstrated that our method works better as the tem-
perature is higher.

Our proposed method also has an advantage in the sce-
nario of long range temperature measurement. When the
target is measured at a long distance with conventional ther-
mography, the result becomes lower than its actual temper-
ature due to the attenuation. Compared with conventional
thermography, the temperature is flat with respect to the
depth as shown in the middle row of Fig. 7.

Practical scenes Figure 8 shows the applicability of our
method to real-world objects. The target objects are a
pot, oven, clothes iron, electric griddle, and motorcycle.
The temperatures of the objects are approximately between
80 °C and 120 °C. In the two-pot scene, the depths of the
pots are estimated as 3m and 8m, which shows that our
method distinguishes the depth difference. In the motorcy-
cle scene, although it is very difficult to measure the depth
using ordinary passive approaches because the scene is very
dark, our method estimates the depth of the motorcycle as
15m. All objects are estimated well considering approxi-
mately 0.7m NEDD of our system as shown in the analysis.

8. Conclusion

We propose a novel and unique approach for fully pas-
sive, texture-less, and far-range depth sensing using an
LWIR camera. We demonstrate that the attenuation of ther-
mal radiation is a cue for the scene depth. We build a multi-
spectral LWIR measurement system and demonstrated the
effectiveness of our proposed method in real-world experi-
ments.

As this is the first attempt at passive LWIR depth sensing,
there are many open challenges to applying it at an indus-
trial level. A major problem to be solved is the low SNR
of the LWIR measurement, which makes it difficult to mea-
sure low-temperature objects. On the other hand, consider-
ing the recent advancement of the LWIR sensor, we believe
the measurable temperature will reach air temperature in the
future.

Another interesting future direction is the combination
of our method with learning-based approaches. As multi-
spectral LWIR images fundamentally contain the physics
information of the depth, it is possible to build a physics-
based learning model to estimate spatially consistent depth
images and/or estimate low-temperature objects.
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