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Abstract

Neuromorphic cameras or event cameras mimic human
vision by reporting changes in the intensity in a scene, in-
stead of reporting the whole scene at once in a form of an
image frame as performed by conventional cameras. Events
are streamed data that are often dense when either the scene
changes or the camera moves rapidly. The rapid movement
causes the events to be overridden or missed when creating
a tensor for the machine to learn on. To alleviate the event
missing or overriding issue, we propose to learn to concen-
trate on the dense events to produce a compact event rep-
resentation with high details for depth estimation. Specifi-
cally, we learn a model with events from both past and fu-
ture but infer only with past data with the predicted future.
We initially estimate depth in an event-only setting but also
propose to further incorporate images and events by a hier-
archical event and intensity combination network for better
depth estimation. By experiments in challenging real-world
scenarios, we validate that our method outperforms prior
arts even with low computational cost. Code is available
at: https://github.com/yonseivnl/se-cff.

1. Introduction
A common practice to tackle design challenges is learn-

ing from nature. Mimicking natural strategies by copying

their form, shape, process, or even ecosystem for specific

applications is called biomimicry [2]. Stereo depth estima-

tion mimics the human visual ability to understand depth

from a pair of cameras. The computer vision community

has shown significant interest in stereo vision, while it has

remained a challenging task. The ill-posed nature of stereo

depth estimation, shortcomings from RGB sensors (e.g.,

low dynamic range, motion blur and etc.), and algorith-

mic limitations make stereo vision very challenging. Ex-

amples of imperfect sensing the scene include low dynamic

range, blurry, or noisy images. Special cases that the algo-

rithms cannot handle include repeating patterns, reflective
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Figure 1. Overview of our stereo depth estimation from events.
We predict dense depth with sharp edges by ‘concentrating’ the

event representation tensors to preserve details. We further transfer

the knowledge of future events by training with past and future

events while keeping our system causal at inference.

(i.e., shiny) objects, and low-texture areas [23, 27].

Event cameras which are also referred to as neuromor-

phic cameras follow the same concept of biomimicry as

they mimic human vision. Similar to the human eye, an

event camera captures only pixel-wise intensity differences

and reports them as a stream instead of the whole scene at

once as a frame. Although event cameras bring new and

unique specifications, they require a paradigm shift in the

algorithms that use these devices. This paper falls within

both mentioned trends coined as neuromorphic stereo vi-

sion and mimics the human eye to estimate depth from a

stereo pair of event cameras. This line of research has gath-

ered interest within the event camera community and has

advanced in many aspects [23] including novel algorithms

and attempts to generalize to real-world situations.

The stream of events is sparse in nature and does not fol-

low any predefined pattern in terms of the density of events

either in time or space, and relies purely on the scene and

camera movements. We use this unpredictable sparse-dense

stream and divide it into a sequence of stacked events that
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each stack holds the most recent event location and their

time information. The sequence is made with multiple num-

bers of events per stack, and we call it the multi-density se-
ries of stacks. As depicted in Fig 1, we feed this collection

of event stacks with event slices that end at the GT times-

tamp to an event concentration network. As the name sug-

gests, it concentrates all events into a clear edge-like tensor

without any blur-like artifacts or omitting any details.

Event concentration helps create further details and

sharp edges. It only depends on previous information, the

events, thus it is a causal system. However, some details

may also be omitted from the scene as we only use previ-

ously fired events. As a remedy, we further take into ac-

count the future events, but not directly as inputs. Specifi-

cally, we teach our network to distill from future events by

feeding the past and future events at training time which

may help the network to understand the scene contents and

produce better predictions. Intuitively, we implicitly teach

the network to contemplate or distillate from the knowledge

of previously observed future events. Our experiments sup-

port this intuition by showing a significant increase in per-

formance when training using the past and future events in

comparison to training only with the past events.

Furthermore, unlike image frames that the conventional

camera takes, events are sparse, which may lead to larger

depth estimation errors in comparison to the depth from im-

age frames. We supplement the sparse information by the

combination of concentrating events and using the trans-

ferred knowledge from the future events. We evaluate our

method on the challenging outdoor stereo events from the

public benchmark dataset of DSEC [13], and use their met-

rics to compare with the state-of-the-art event stereo depth

estimation methods. We present qualitative and quantitative

comparisons to show how we outperform previous arts.

2. Preliminary: Event Cameras
Unlike traditional cameras, an event camera reports the

scene as a stream of sparse and disconnected events, i.e.,

per-pixel intensity changes larger than a predefined thresh-

old. Each event is fired when it happens with very low la-

tency, in the order of microseconds. The asynchronous na-

ture of events brings the unique capability of being less ad-

versely impacted by motion blur under rapid scene changes

and camera movements but not completely immune to it

[17]. Event cameras have higher dynamic ranges that re-

veals scene details that ordinary cameras may miss. We dis-

cuss more details in supplementary material for space sake.

3. Related Work
3.1. Stereo Depth Estimation on Images

Frame-based depth estimation is heavily studied by the

computer vision community [36]. It traditionally involves

stereo matching [42], optimized stereo matching using

graph-cuts [22], and cost-volume filtering [16]. Recently,

learning-based approaches improved accuracy drastically

[4, 19, 26] which was also further improved by utilizing

more 3D convolutions [5], deformable convolutions [18]

and adaptive aggregations [45, 46].

3.2. Stereo Depth Estimation on Events

With the rise of event cameras, event-based stereo depth

estimation emerged rapidly as the events already held times-

tamps and position details that may be efficiently utilized

for synchronization and stereo matching [39]. However,

imperfections such as real-world noise and different event

threshold values among stereo pairs make the problem non-

trivial [21, 34]. Such problems were addressed by utilizing

orientation-sensitive filters [3], and cooperative regulariza-

tion [10, 33]. Spiking neural networks were also the main

study direction to address event-based stereo depth [1,8,31].

Other proposals include utilizing camera velocity for

event synchronization [49], or estimating depth without ex-

plicit event matching [47]. Deep learning solutions consid-

ered combining a novel sequence embedding [43], or fus-

ing depth and intensity images to cover the best from both

worlds [27] to create highly detailed depth estimates. Both

are capable of estimating dense depth from stereo events.

3.3. Event Alignment and Maximization

Events are reported as sparse points, thus adding addi-

tional appearance information about the scene may help re-

veal the underlying structure. In the varying sparse-dense

stream, the events may not align easily over small time pe-

riods or counts of the number of events. Specifically in

the presence of rapid camera trajectories in 6 degrees of

freedom. An early attempt, considered estimating the ‘life-

time’ of events computed from their velocity on the image

plane [30] for constructing sharp gradient images. Con-

trast maximization [12], warped events along motion tra-

jectories, with which its parameters rely on the number of

events in relation to a reference time. Its usages include mo-

tion, depth, and optical flow estimation applications. Con-

trast maximization is extended by analyzing possible re-

wards [41] and showing how a robust reward to noise and

aperture uncertainty may be created. The objective func-

tions [11] were also studied as ‘focus loss’ as they resemble

the loss functions in shape-from-focus applications. Event

segmentation [40] utilized an iterative clustering algorithm

to distinguish between events fired from the camera move-

ment and events created by moving objects in the scene.

These methods so far, require a good initialization to pre-

vent bad local minimum convergence. The rotational mo-

tion estimation on event streams based on the branch-and-

bound method is presented in [24], which aims for appli-

cations such as video stabilization and attitude estimation
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without perfect initialization. A shallow convolutional se-

quence was utilized [28] for rectifying events with the aid

of optical flow from events to keep more details in the event

stacks and was used for events to reconstruct super-resolved

images. As spatiotemporal registration further produces

feature tracks, it can be utilized in visual odometry. A sim-

ple yet very fast visual odometry using graph-based opti-

mizations was presented [25] for motion averaging and was

verified by the motion of a high-precision robot arm. Unlike

all of the aforementioned optimization-based methods that

are usually limited due to their setting assumptions, we pro-

pose an event concentration method that produces a sharp

edge-like tensor that holds scene details with high precision

regardless of the scene or camera speed, movement direc-

tions, or degrees of freedom, and is aimed for real-world

applications such as stereo depth estimation.

4. Approach
4.1. Event Preparation

We begin with the left and right rectified event se-

quences, EL and ER. Each event sequence E =
{(xi, yi, ti, pi) | ti+1 > ti, i = 1...N} consists of N events

sorted by time, where x and y present the pixel location,

while t, and p present the timestamp, and polarity respec-

tively. Given the left and right event sequences, our goal is

to predict the disparity map D at time tN .

We initially represent the event stream using the simple

stacking methods based on the number of events (SBN),

i.e., by reversely counting the number of fired events from

the depth timestamp until a pre-defined number, e.g., 5, 000
events following [27–29, 44]. Although stacking based on

time, i.e., including all event in a short period of time,

e.g., 10 milliseconds can be also used, w e only use SBN

throughout this paper. Although more complicated stack-

ing methods exist [43, 48], we show that this simple repre-

sentation is adequate to estimate depth with high accuracy,

thanks to the attentive event usage by the ‘concentration

network’ of our model. In our experiments, we use a sin-

gle channel SBN stack unless otherwise stated. Following

SBN, the single-channel tensor is initialized with intensity

value 128. New incoming events per pixel location, update

previous values. The value is updated to 256 when there is

a positive event and set to 0 when there is a negative event.

4.2. Mixed-density Event Stacking
Event cameras generate different amounts of events de-

pending on the movement of the camera or the objects in

the scene. Faster movements create further events and vice
versa. While stacking the events based on time or the num-

ber of events, if the pre-defined number of events or time

period to include the event sequence or stacks is small (short

stack), information on objects with low movement may be

omitted. Conversely, if the number of events included in the

(a) intensity image (b) long stack (c) short stack (d) concentrated stack

Figure 2. Shortcomings of conventional event stacking method
by a number of stacks (SBN). Representing the event stream

by a predefined number of events or time intervals either over-

writes previous events when the number of events is large, ((b)

long stack) or omits scene details when the number of events is

small ((c) short stack). (d) Our concentration network produces

meaningful stacks (c) without overriding or missing events. The

intensity image (a) is presented for reference.
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Figure 3. Event sequence creation for the ‘concentration net-
work’. We utilize a sequence of stacks created with different

numbers of events per stack. Moving backward in time from the

ground-truth (GT) depth timestamp, we first stack a very large

number of events that include all movements from a long time

span. For the next stack, we use half of the events used in the pre-

vious slice of the event stream and use the chunk that is connected

to the GT location. We continue slicing the events in half until we

reach the final stack M that we choose based on the number of

stacks we want to include in our attention network.

event sequence is large (large stack), the excessive events

from rapid-moving objects may overwrite previous events.

This is depicted in Fig. 2 for both the long and short

stack cases, together with a temporally nearby intensity im-

age for reference. This problem occurs more frequently in

real-world situations, such as driving cars or flying drones,

because scene objects are moving at different speeds while

the camera may also be moving. In such situations, it is very
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Figure 4. Architecture overview. We create a series of multi-density event stacks (Sec. 4.2) and use the concentration network (Sec. 5.1)

to create the detailed event-based tensor called concentrated stack. We use the multiscale encoder to extract features (with shared weights)

and correlate them to create cost volumes (Sec. 5.2). By ‘deformable aggregation’ and ‘multiscale refinement’ of the prediction we create

our output dense depth estimation. Utilizing past and future events at training (Sec. 5.3) we can distill the knowledge from future events

through the KL-divergence loss and reach higher quality depth estimations. The learning objectives are described in Sec. 5.4.

difficult to determine how many events should be included

in the sequence of events which in return heavily distorts

the quality of the downstream application, i.e., depth esti-

mation. As a remedy, we propose an event ‘concentration’

method that utilizes multiple event sequences with differ-

ent event counts and learns to create an event tensor that is

highly detailed without overriding previous details or miss-

ing the structural information.

As presented in Fig 3, we start by creating the first

stack in our event sequence E1 with an exaggeratedly large

number of events n=N to contain all possible event infor-

mation necessary for stereo matching. The length of our

event sequence has M=10 stacks and we set N to five

million events for our experiments which linearly depends

on the resolution of our event camera, e.g., 640×480 for

the dataset we utilized. We continue creating the event se-

quence with E2, which ends at the same timestamp of E1,

however, with only half of the events in the previous event

stack. We continue this, i.e., stacking half of the events

in the previous stack for the next stack with E3−EM , un-

til reaching the final stack M that we choose; i.e. EM has

n=N/2(M−1) events. Note that n is rounded to the nearest

integer to remain valid.We remove the first half when creat-

ing subsequent stacks since the first stack (E1) that already

has N events, has less relevant information from already

moved objects and is far from the GT timestamp which in

return may reduce the accuracy under rapid movements.

5. Network Design
For the depth estimation, we design an end-to-end neural

network model depicted in Fig. 4. We first concentrate the

sequence of events and transfer them to a highly detailed

tensor (Sec. 5.1). Following the event concentration net-

work, we introduce our depth estimation backbone design

(Sec. 5.2). We present how to utilize past and future events

at training in Sec. 5.3, to reach high-quality depth estimates

from past-only events at inference as a causal system. Our

learning objective is defined in Sec. 5.4, and we further

show how to incorporate intensity images with events in our

design in Sec. 5.5.

5.1. Event Concentration Network

Our concentration network handles mixed-density event

stacks to create a detailed representation from events. The

mixed-density event stacks contain a lot of detailed infor-

mation, although transferring the event stream to stacks has

shortcomings as described in Sec. 4.2. To reduce the neg-

ative effect of stacking, such as overriding previous events

and also missing fine details, we design our event concen-

tration network following the U-Net architecture [35] that

can focus only on important information from M mixed-

density event stacks E1...M using an attention mechanism.

We concatenate the mixed-density event stack in the

channel dimension and use it as input to the event concen-

tration network. This network receives image-like tensors

E1...M ∈ R
H×W×M as the input and outputs an attention

score z ∈ R
H×W×M , where H and W denote height, width

of an image, respectively. The output of this network gen-

erates the weight W ∈ R
H×W×M that is utilized for as-

signing a weight to each event stack through a pixel-wise

softmax operation formulated:

W (y, x,m) =
ez(y,x,m)∑M
i=1 e

z(y,x,i)
, (1)

where y and x denote pixel positions, and m is a layer index

of mixed density event input. We then perform a weighted

sum with the output weights W on the mixed-density event

stacks E1...M to obtain our concentrated event stack tensor
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Econ ∈ R
H×W as:

Econ(y, x) =

M∑
i=1

W (y, x, i) · Ei(y, x). (2)

Our experiments show the effect of using an event con-

centration network by comparing the depth results from the

concentrated event stack to the depth estimates from a ran-

domly assigned low number of events and a high number of

events per stack. Please refer to Sec. 6.3, Table 2 for quan-

titative analysis, and Fig 6 for qualitative comparisons, and

also the supplementary material for further experiments.

5.2. Depth Estimation Network

Following well-performing stereo depth estimation net-

works [27], we design our model using some of their sub-

networks. Note that we do not use their initial modules such

as the event representation in [43] or the parts for merg-

ing event and intensity images in [27] and rather focus on

the stereo matching modules. Our stereo matching network

consists of four main modules as presented in Fig. 4, that are

namely (1) the feature extraction module, (2) the cost vol-

ume module, (3) the deformable aggregation module, and

(4) the multiscale refinement module. These modules are

commonly used in stereo depth estimation networks, thus

we follow the stereo matching design from [27], which in

turn is also inspired from previous arts.

Specifically, we use ResNet for the feature extraction

module [14] for its widely proved functionality and simplic-

ity. We use feature pyramid networks [5] to recover details

from each layer in a coarse to fine manner in multiple res-

olutions. Feature correlation [9] is used instead of concate-

nating features as the inner product convolves data from the

left pair with data from the correct pair instead of convolv-

ing data with filters, resulting in a light-weighted network.

We use deformable convolutions [6] on our cost volume for

aggregation as they have non-fixed receptive fields which

help matching sparse events better. To estimate accuracy

depth at edges, we hierarchically upsample the predicted

low-resolution disparity to higher intermediate scales by re-

finement [4]. More details can be found in [23, 27, 43].

5.3. Knowledge Transfer from Future Events

Even though we created the concentrated event stack as

described in Sec. 5.1, problems such as occlusion, repeti-

tive patterns, and incomplete sensing of the scene may still

prevent from reconstructing high fidelity depth due to insuf-

ficient information from the past. Here, we propose to use

the event information from the future to further enhance the

quality of depth estimation. However, it is not viable at in-

ference as the system is causal. As a remedy, we propose

a novel scheme to predict the latent representation of fu-

ture events by a loss function even if it receives past events

only. Our empirical validations back up the validity of the

approach by showing that we can better estimate the depth

with the predicted future.

Specifically, we prepare two different stacking schemes

as described in Sec. 5.1; an event stack focusing only on

past events denoted as Econ,past and an event stack focus-

ing on both past and future events denoted as Econ,both.

We incorporate a loss function in which the intermediate

representation in the latent space of the network, i.e., bpast
and bboth, are enforced to be similar although the inputs are

different, i.e., using past-only Econ,past, and past with fu-

ture Econ,both. For Econ,both, we use 2M mixed-density

event stacks, M from the past up to the GT timestamp,

and another M from the GT timestamp towards the future

events. The Econ,both has 2× more events in comparison

to Econ,past, and completely overlaps with Econ,past. To

this end, we utilize the output of the deformable aggregation

module, that holds the disparity probability for each pixel,

and enforce the similarity loss. We use KL-Divergence be-

tween the two latent space representations for the similarity

loss as:

Lsim(bboth, bpast) =
∑

bboth log

(
bboth
bpast

)
. (3)

As we aim to enforce the intermediate latent space repre-

sentation of bpast to be similar to bboth, thus, the gradient

for similarity loss is only backpropagated through the past

event stack path.

Regarding the choice of KL-Divergence, we first consid-

ered direct alignments (e.g., L2, L1) but they may underper-

form as the location of future events may not land on cor-

responding GT depth edges due to the movement of objects

in the scence in the future. Instead, we choose to align the

future information to current ‘softly’ [38], computing the

discrepancy between past-only and past and future events

by the probability distance through the relative entropy (the

well-known and widely used KL divergence for knowledge

distillation [15, 38] and recent successful application in the

event literature [7].

5.4. Learning Objectives

We use the smooth L1 loss between the ground truth

disparity and the predicted disparity as our main objective

term to train our network. Smooth L1 loss is widely used

in image-based stereo matching because of its robustness

in disparity discontinuities and low sensitivity to outliers or

noise in comparison to L2 loss [5,37,45,46]. The loss func-

tion is defined as:

Lsl1(D, D̂) =
1

V

V∑
v=0

smoothL1(dv − d̂v),

smoothL1
(x) =

{
x2, if |x| < 1,

|x| − 0.5, otherwise,

(4)
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where D is the ground truth disparity, D̂ is the disparity

predicted by the model, and V is the number of valid pixels

with ground truths for training.

By combining the loss of predicted disparity by using

past event information only and using both past and future

event information with the predicted future by the similarity

loss (Eq. 3), we define the final loss as:

L = Lsl1(D, D̂past) + Lsl1(D, D̂both)

+Lsim(bboth, bpast).
(5)

Although the loss of using both past and future implicitly

include information about the past, the past only loss is nec-

essary to take the input with only the past at inference.

5.5. Events and Intensity Image Fusion

In an early work of estimating stereo depth in a comple-

mentary setting by utilizing both events and intensity im-

ages [27], they unify the event stacks and intensity images

in a ‘recycling network’, a recurrent module that iterates

over events and images to reconstruct a blur-free image-

like tensor that has high dynamic range properties of events.

They utilize the intensity values from the ordinary camera

when there are no scene changes as the events do not fire in

that condition and shows better performance in comparison

to the setting that uses only the event or intensity camera.

Following the intuition, we also report the performance

of using images and events together with a simple method

of fusing both sensors. Note that our method does not use a

heavy sub-network to fuse the events and images. Instead,

we use our concentrated event stack and the intensity image

as inputs to two separate feature extractor modules.

Specifically, we concatenate the two feature maps by

channel dimension, then further fuse the features of the

two sensors by a 1×1 convolution. This fusing method is

very simple yet effective. As shown in Table 1, the fu-

sion performs better in all metrics. In Fig. 5, we qualita-

tively compare the output depth predictions of our method

to the state-of-the-art event-intensity stereo depth estima-

tion method [27]. Our depth predictions are either on par or

slightly better than the prior arts. Furthermore, our method

is computationally efficient as it does not use recurrent ele-

ments (see Table 1).

6. Experiments
We implement our network using the PyTorch [32] and

initialize the network with random values and train from

scratch end-to-end. We trained our model for 100 epochs

with a batch size of 16. The maximum disparity is set to

192. We use Adam [20] with beta of (0.9, 0.999) for the

optimizer, and weight decay to 1e-4. The learning rate starts

at 5e-4 and decays with a cosine annealing. We use the

DSEC dataset [13] for empirical validation. We describe

the details of the dataset in the supplementary material.

Table 1. Comparison of our method with state-of-the-art depth
estimation methods on the DSEC dataset. ‘E’: Events-only,

‘E+I’: Events plus intensity. Lower values are preferred (↓) in

all metrics except FPS (frames per second). FPS is reported for

two input resolutions ‘346 × 260 / 640×480.’ Note: we obtain

the FPS of [43] by authors’ public code. The best is in bold and

second best is in underline.

Method Modality MAE(↓) 1PE(↓) 2PE(↓) RMSE(↓) FPS (↑)

Baseline [43] E 0.576 10.915 2.905 1.386 17.4 / 7.4

E-Stereo [27] E 0.529 9.958 2.645 1.222 - / -

Ours on E E 0.519 9.583 2.620 1.231 23.2 / 11.3

EI-Stereo [27] E+I 0.396 5.814 1.055 0.905 10 / -

Ours on E+I E+I 0.364 4.844 0.840 0.818 18.2 / 9.3

Evaluation Metrics. To quantitatively evaluate the qual-

ity of predicted disparity maps, following the standard

metrics for the DSEC disparity benchmark, we use mean

absolute error (MAE), root-mean-square disparity error

(RMSE), and also the 1-pixel error (1PE) and 2-pixel er-

ror (2PE) that are the percentage of ground truth pixels with

disparity error bigger than 1 and 2 respectively.

6.1. Quantitative Analysis

We first present the performance of our stereo depth esti-

mation method using the DSEC disparity benchmark web-

site in Table 1. As shown in the table, our method that only

utilizes events (Ours on E) has much lower errors in com-

parison to the DSEC event-only baseline [43] in all met-

rics and to the state of the art [27] in MAE (the main met-

ric), 1PE and 2PE but only worse in RMSE. When we uti-

lize event and intensity images using our fusion scheme,

ours (Ours on E+I) clearly outperforms the state-of-the-art

method [27] by large margins.

Additional, our method is computationally much more

efficient than the prior arts as we do not loop or iterate

through recurrent modules; our method reaches more than

23 frames per seconds (FPS) using the 346×260 resolu-

tion event sensor in the event-only regime while the base-

line [43] reaches 17.4 FPS. When we use events and images

as input, our model reaches 18.2 FPS, while [27] only per-

forms at 10 FPS. We compute FPS in Tab. 1 using a single

NVIDIA 2080 Ti GPU, same as [27].

The pipeline of EI-Stereo [27] is arguably popular in lit-

erature [45, 46] but component determines the quality; we

have a concentration network and (b) knowledge transfer

from future. The benefits from event camera (e.g., high dy-

namic range, negligible motion blur and low latency) are

translated into better depth estimation by recovering miss-

ing details. As we focus on quality depth estimation, op-

erational latency was beyond our scope; model compres-

sion with special neural engine hardware may help and are

a great future research avenue. Note that despite the com-

putational cost, ours is more than 2× faster with better ac-

curacy than the arts as presented in Table 1.
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(a) intensity image (b) concentrated stack (c) event-only [43] (d) Ours event-only (e) event-intensity [27] (f) Ours event-intensity

Figure 5. Qualitative comparison on dense depth estimation. We present our dense depth estimations using event-only (d) and events

fused with intensity images (f) together with the (a) intensity image and (b) concentrated event stack for reference. We compare them to

the (c) event-only [43] and (e) event-intensity [27] methods respectively. In the highlighted regions by yellow boxes, our method constructs

fine details much better, e.g., better clarity in cars (first, second, and fourth rows) and details of road sign with a post (third row), compared

to its prior arts in both event-only and event-intensity modalities. Best viewed with the highlighted regions for detailed comparison.

(a) intensity (b) short stack (c) long stack (d) concentrated stack (a) intensity (b) short stack (c) long stack (d) concentrated stack

Figure 6. Effect of the number of events on depth quality. (a) intensity image, together with the depth predictions using a (b) short

stack, (c) long stack, and also the (d) concentrated stack. The concentrated stack creates crisp clear boundaries and covers the scene details

much better than using a fixed number of events in a stack, i.e., short or long stacks.

6.2. Qualitative Analysis

We qualitatively compare our methods with prior arts in

Fig. 5. Same as Table 1, we compare the results from [43]

and [27]. We present randomly selected multiple scenes

to showcase the performance. Our event-only method esti-

mates more details in comparison to the event-only method

[43] and our event-intensity method also predicts almost

similar but with slightly sharper boundary details with less

artifacts when compared to the event-intensity method [27].
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Table 2. Ablation on network components on depth. Adding

the mixed-density event stacking, event concentration network and

distilling knowledge from future events all contribute meaning-

fully by reducing different error metrics.

Network MAE(↓) 1PE(↓) 2PE(↓) RMSE(↓)
Only stereo matching network 0.864 20.175 6.330 1.939

+ Mixed-density Event Stacking (MES) 0.852 19.182 6.070 1.923

+ MES + Concentration Network (CN) 0.831 18.875 5.757 1.880

+ MES + CN + Future Knowledge 0.797 18.053 5.369 1.799

Table 3. Latent spaces to transfer future knowledge from. We

empirically investigate different possible latent spaces to trans-

fer knowledge of future in training. Future knowledge at the de-

formable aggregation performs the best as argued in Sec. 5.3.

Knowledge Transfer at MAE(↓) 1PE(↓) 2PE(↓) RMSE(↓)
Feature extraction 0.810 18.177 5.436 1.853

Deformable aggregation 0.797 18.053 5.369 1.799
Multiscale refinement 0.833 19.143 5.880 1.867

(a) Intensity (b) Trn/Test past only (c) Trn/Test both (d) Trn both/Test past

Figure 7. Qualitative results by KD from future. (both: past+future)

6.3. Further Analysis

Ablation Study. Starting from the base depth network

presented in Sec. 5, with no bells and whistles, we add the

proposed modules one by one. We present the results in

Table 2. As presented in this table, all of the modules we

proposed to lead to a performance improvement.

Latent Space To Transfer Future Knowledge From.
Incorporating the future events by enforcing consistency

between the past-only and past-future intermediate (latent)

representations by the KL-Divergence loss improves our

performance (Sec. 5.3). We argue that the location from

which the future knowledge is transferred would be after

the deformable convolutions. Unlike traditional convolu-

tions, deformable convolutions learn dense spatial trans-

formations with additional offsets by learning to expand

(deform) to a ‘larger receptive field’ instead of fixed off-

sets [18]. It is likely that the future events would fall within

the receptive field of past events by the deforming, transfer-

ring after the deformable aggregations would be beneficial.

We empirically verify this by experimenting with differ-

ent candidate locations. As shown in Table 3, transferring

the knowledge at the early stage of the network, i.e., after

feature extraction, exhibits the least error. We believe it is

because the multiscale refinement harms the semantic of the

representation space to reconstruct the detailed depths.

Impact of knowledge distillation (KD) beyond accuracy.
In Fig. 7, we compare two scenarios: (1) only using past

events (no KD) for train/test and (2) using past and future

events (both) for train/test (non causal). Ours (Fig. 7d) esti-

mates depths correctly at edges with less unwanted artifacts

although we do not provide future events for inference.

7. Conclusion

We present a new stereo depth estimation network to

estimate dense depth from stereo event cameras. Specifi-

cally, we propose to concentrate event stacks with multiple

density events by an attention-based concentration network.

The concentrated events shows scene details by missing less

details without overriding events. We further propose to use

future events in training for fine details without requiring

the future at inference, but predict latent space represen-

tation of the future to maintain our system causal. More-

over, we show how to incorporate intensity images with

events using a simple fusion scheme to reach higher qual-

ity depth estimates. Our method is computationally effi-

cient, reaching more than 18 and 23 FPS for events plus im-

ages and events-only respectively, outperforming prior arts

(10 and 17 FPS). We evaluate our method with challenging

real-world dataset, DSEC, and show the usefulness of our

method in both quantitative and qualitative analyses.

Limitations. Even with the proposed event concentration

network, we still have to specify our minimum and maxi-

mum events by the size of the input image, though it is not

as coarse or critical as the number of events. Although our

method is computationally more efficient (18-23 FPS) than

the prior arts (10 and 17 FPS), it is still far from practical.

A promising research avenues include developing computa-

tionally efficient version of our method.

Potential Negative Societal Impact. Although the event

camera is relatively less privacy-sensitive than conventional

cameras as it largely ignores the textural details, it can still

inadvertently capture unwanted private information from

the human subjects, e.g., the silhouette of humans on the

road. Although we do not intend to allow such privacy hole,

it does not have a mechanism to systematically prevent from

doing so. Any privacy-preserving computer vision on event

cameras is another promising research avenue.
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radt, and Christoph Richter. Spiking cooperative stereo-

matching at 2 ms latency with neuromorphic hardware. In

Conference on Biomimetic and Biohybrid Systems, pages

119–137. Springer, 2017. 2

[9] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip

Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van

Der Smagt, Daniel Cremers, and Thomas Brox. Flownet:

Learning optical flow with convolutional networks. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2758–2766, 2015. 5

[10] Mohsen Firouzi and Jörg Conradt. Asynchronous event-

based cooperative stereo matching using neuromorphic sil-

icon retinas. Neural Processing Letters, 43(2):311–326,

2016. 2

[11] Guillermo Gallego, Mathias Gehrig, and Davide Scara-

muzza. Focus is all you need: Loss functions for event-

based vision. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12280–

12289, 2019. 2

[12] Guillermo Gallego, Henri Rebecq, and Davide Scaramuzza.

A unifying contrast maximization framework for event cam-

eras, with applications to motion, depth, and optical flow es-

timation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3867–3876,

2018. 2

[13] Mathias Gehrig, Willem Aarents, Daniel Gehrig, and Davide

Scaramuzza. Dsec: A stereo event camera dataset for driving

scenarios. IEEE Robotics and Automation Letters, 2021. 2,

6

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 5

[15] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distill-

ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7), 2015. 5

[16] Asmaa Hosni, Christoph Rhemann, Michael Bleyer, Carsten

Rother, and Margrit Gelautz. Fast cost-volume filtering for

visual correspondence and beyond. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 35(2):504–511,

2012. 2

[17] Yuhuang Hu, Shih-Chii Liu, and Tobi Delbruck. V2e: From

video frames to realistic dvs events. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1312–1321, 2021. 2

[18] Dai Jifeng, Li Yi, He Kaiming, and Sun Jian. R-FCN: Object

detection via region-based fully convolutional networks. In

Proceedings of the Neural Information Processing Systems
Conference, 2016. 2, 8

[19] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter

Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.

End-to-end learning of geometry and context for deep stereo

regression. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 66–75, 2017. 2

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 6

[21] Jurgen Kogler, Martin Humenberger, and Christoph

Sulzbachner. Event-based stereo matching approaches for

frameless address event stereo data. In International Sympo-
sium on Visual Computing, pages 674–685. Springer, 2011.

2

[22] Vladimir Kolmogorov and Ramin Zabih. Computing vi-

sual correspondence with occlusions using graph cuts. In

Proceedings Eighth IEEE International Conference on Com-
puter Vision. ICCV 2001, volume 2, pages 508–515. IEEE,

2001. 2

[23] Hamid Laga, Laurent Valentin Jospin, Farid Boussaid, and

Mohammed Bennamoun. A survey on deep learning tech-

niques for stereo-based depth estimation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2020. 1, 5

[24] Daqi Liu, Alvaro Parra, and Tat-Jun Chin. Globally optimal

contrast maximisation for event-based motion estimation. In

Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 6349–6358, 2020. 2

[25] Daqi Liu, Alvaro Parra, and Tat-Jun Chin. Spatiotemporal

registration for event-based visual odometry. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 4937–4946, 2021. 3

[26] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,

Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A

large dataset to train convolutional networks for disparity,

6122



optical flow, and scene flow estimation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 4040–4048, 2016. 2

[27] Mohammad Mostafavi, Kuk-Jin Yoon, and Jonghyun Choi.

Event-intensity stereo: Estimating depth by the best of both

worlds. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 4258–4267, 2021. 1, 2,

3, 5, 6, 7

[28] S. Mohammad Mostafavi I., Jonghyun Choi, and Kuk-Jin

Yoon. Learning to super resolve intensity images from

events. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 2768–2786,

June 2020. 3

[29] Sayed Mohammad Mostafaviisfahani, Yeongwoo Nam,

Jonghyun Choi, and Kuk-Jin Yoon. E2sri: Learning to super-

resolve intensity images from events. IEEE Transactions on
Pattern Analysis & Machine Intelligence, (01):1–1, 2021. 3

[30] Elias Mueggler, Christian Forster, Nathan Baumli,

Guillermo Gallego, and Davide Scaramuzza. Lifetime

estimation of events from dynamic vision sensors. In 2015
IEEE international conference on Robotics and Automation
(ICRA), pages 4874–4881. IEEE, 2015. 2

[31] Marc Osswald, Sio-Hoi Ieng, Ryad Benosman, and Giacomo

Indiveri. A spiking neural network model of 3d perception

for event-based neuromorphic stereo vision systems. Scien-
tific reports, 7(1):1–12, 2017. 2

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An

imperative style, high-performance deep learning library. In

H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
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