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Abstract

We study a new problem of detecting hands and finding
the location of the corresponding person for each detected
hand. This task is helpful for many downstream tasks such
as hand tracking and hand contact estimation. Associating
hands with people is challenging in unconstrained condi-
tions since multiple people can be present in the scene with
varying overlaps and occlusions.

We propose a novel end-to-end trainable convolutional
network that can jointly detect hands and the body loca-
tion for the corresponding person. Our method first de-
tects a set of hands and bodies and uses a novel Hand-Body
Association Network to predict association scores between
them. We use these association scores to find the body lo-
cation for each detected hand. We also introduce a new
challenging dataset called BodyHands containing uncon-
strained images with hand and their corresponding body
locations annotations. We conduct extensive experiments
on BodyHands and another public dataset to show the ef-
fectiveness of our method. Finally, we demonstrate the ben-
efits of hand-body association in two critical applications:
hand tracking and hand contact estimation. Our experi-
ments show that hand tracking and hand contact estima-
tion methods can be improved significantly by reasoning
about the hand-body association. Code and data can be
found at http://vision.cs.stonybrook.edu/
˜supreeth/BodyHands/

1. Introduction
Hand analysis is an important problem in Computer

Vision with applications in human understanding, action,
gesture, and sign-language recognition. The visual anal-
ysis of human hands is also vital for Augmented & Vir-
tual Reality applications. Although the Computer Vi-
sion community has studied problems such as hand detec-
tion [7, 13, 23, 24, 30, 39, 49, 58, 59], hand pose estima-
tion [17, 44, 51, 66, 67], hand tracking [48, 52, 53, 55, 63],
and hand contact estimation [5, 33, 36, 47], there has been
no significant effort in studying hand-body association.

Figure 1. Hand Detection & Hand-Body Association. We de-
velop a method to detect hands and their corresponding body loca-
tions. Hands and bodies belonging to the same person have bound-
ing boxes in the same color and identification numbers.

In this work, we study the problem of detecting hands
in an image and finding the location of the correspond-
ing person for each detected hand. This task is useful for
action recognition and scene understanding, especially for
multiple-person images and videos. For example, it is help-
ful to identify people when understanding hand gestures in
human-human communication. Another example is to as-
sess the motor and social skills of children with mental dis-
orders by tracking their hands and how hands interact with
objects and other people in a tabletop game. Hand-body as-
sociation helps develop safety applications and assists peo-
ple working with hand-held tools in manufacturing settings.

Detecting hands and associating them with suitable bod-
ies is challenging in unconstrained conditions. As shown
in Fig. 1, an image may contain multiple people with sub-
stantial overlaps and occlusions between hands and bodies.
One approach is to detect hands and people separately and
use heuristics based on their sizes, distances, or overlap-
ping areas to establish correspondences between hands and
bodies. However, such methods do not perform well due
to the extreme articulation of hands and bodies, leading to
tremendous variations in the relative locations and sizes be-
tween a hand and the corresponding human body. An al-
ternative method is to use a human pose detector to find
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the skeleton of humans and find the hands of each detected
pose in the image. However, pose detection by itself is un-
reliable. For a scene of congregated or interacting people,
the hand and arm of one person might be entangled with the
skeleton of another person. Furthermore, the pose detector
might not detect poses for everyone in the image, especially
for people who are partially occluded or partly outside the
camera’s field of view. Thus we cannot solely rely on pose
detection to associate hands with people. Our experiments
empirically show that pose-based approaches are unreliable
for associating hands and bodies.

This work proposes a novel convolutional architecture
that can jointly detect hands and bodies and associate them.
Specifically, we build upon MaskRCNN [18], a state-of-the-
art object detector, and extend it by adding a novel Hand-
Body Association Network module. We first use a Region
Proposal Network to generate candidate hand and body pro-
posal boxes. We then use the bounding box regression and
mask generation heads to obtain the bounding box and seg-
mentation maps for hands and bodies. The detected hands
and bodies are then passed to the Hand-Body Association
Network to obtain an association between them.

The Hand-Body Association Network has two novel
modules. The first module is the Overlap Estimation Mod-
ule that uses the visual features of hands and bodies to es-
timate if they can overlap. Intuitively, if a hand and a body
have no overlap, they cannot belong to the same person. The
converse, however, does not hold; a hand and a body can
overlap even though they belong to different people. For in-
stance, in the proposed BodyHands dataset, more than 33%
of the people have their hands overlapping with other peo-
ple. The overlap is a piece of mutual geometric informa-
tion between two regions. Learning mutual geometric in-
formation between hands and bodies using their appearance
features allows learning-rich discriminative representations
useful for associating hands and bodies. The second mod-
ule is the Positional Density Module that uses hand features
to estimate a density over possible body locations for each
detected hand. Intuitively, the appearance and location of
a hand provide some cues for estimating its body location.
However, directly locating the body from the hand can be
difficult due to the tremendous variation in relative scales
between hands and bodies and mutual occlusions between
people. We thus first estimate a density over possible loca-
tions and use these density values to find compatible match-
ing for all hand-body pairs using the Hungarian Algorithm.

We also contribute a large-scale dataset of unconstrained
images containing annotations for hand locations and their
corresponding body locations. The dataset has around 20K
images with bounding box annotations for more than 57K
hand and 63K body instances. This dataset has numerous
images containing multiple people with varying degrees of
occlusions and overlap, where it is challenging to detect and

associate hands and bodies.

Finally, we demonstrate the benefits of the hand-body
association in two crucial downstream tasks: hand tracking
and hand physical contact estimation. We show that hand
tracking and hand contact estimation methods can be im-
proved by reasoning about the hand-body association.

2. Related Work

Hand Analysis. Hands have been extensively studied by
the Computer Vision community and there are methods for
hand detection [7, 12, 13, 21, 23, 24, 30, 35, 39, 45, 58, 59],
hand pose estimation [9, 10, 17, 22, 25, 28, 44, 46, 51, 60,
66, 67], hand tracking [32, 48, 52, 53, 55, 63], and hand
contact estimation [5, 33, 36, 47]. However, previous works
do not consider the problem of hand-body association. Ex-
isting works mostly focus on constrained scenarios such as
ego-centric perspectives with a single subject in a video. In
such cases, the full body is not always visible, and it may
not be essential to find them. Some works analyze hands
in unconstrained conditions [35, 36, 47] but they do not
address this problem either. Zhou et al. [64] address the
problem of hand-raiser recognition in classroom scenarios.
However, their work is developed for indoor classroom en-
vironments and is unsuitable for unconstrained outside en-
vironments. Lee et al. [26] and Tsutsui et al. [54] study
the problem of hand disambiguation in egocentric videos.
However, they identify only the person’s identity but not
their body locations. On the other hand, we try to address
the hand-body association problem, and our work focuses
mainly on third-person views.

Hand datasets. Although there are several datasets with
annotated hand locations, such as [35, 36], they do not have
annotations for the corresponding body locations. Another
option would be to use human pose datasets [1, 2, 27],
which have human body joint locations. However, such
datasets do not have bounding box annotations for hands.
Zhou et al. [64] propose a dataset containing hand and body
locations, but they develop the dataset in indoor environ-
ments. Moreover, their dataset is not publicly available.
Bambach et al. [3] propose a dataset containing 48 videos of
first-person interaction between two people. However, they
provide annotations for only hand locations but not body
locations. Jin et al. [20] develop the COCO-WholeBody
dataset by annotating hand key points for images from the
COCO dataset. Compared to this dataset, the proposed
BodyHands dataset has a higher number of crowded im-
ages with significant overlaps and occlusions between peo-
ple; 34% people in BodyHands have their hands overlap-
ping with different people compared to 19% from COCO-
WholeBody.
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Figure 2. Proposed Architecture. A ResNet network extracts the backbone features of the input image. We use the feature maps of hand
and body proposal boxes to obtain their bounding boxes and binary segmentation masks. The Overlap Estimation Module uses the feature
maps of the hand and body to predict if they can overlap, i.e., P(I(h,b) = 1). The Positional Density Module uses the hand features
and the output from the Overlap Estimation Module to estimate the conditional likelihood P(b | h, I(h,b) = 1). The outputs from these
two modules are combined to obtain the likelihood that the body b belongs to the hand h, i.e., P(b|h). We use the estimated conditional
likelihood to find compatible matching for all hand-body pairs using the Hungarian Algorithm (used only during inference).

3. Problem Definition and Proposed Method
This section describes the proposed architecture that can

jointly detect hands and bodies and provide an association
score between them. We also provide details on the training
objective that allows training the proposed architecture end-
to-end. In the following subsection, we will first formally
define the problem.

3.1. Problem Definition

Given an image I ∈ RH×W×3, our goal is to:

1. Detect the bounding box locations H = {hi ∈ R4 :
1 ≤ i ≤ m} and B = {bj ∈ R4 : 1 ≤ j ≤ n} for
hands and bodies, respectively. Here, m and n denote
the number of hands and bodies in the image I. Each
bounding box is represented by a 4-dimensional vector
for its left, top, right, bottom locations.

2. For each detected hand h ∈ H, we need to associate
a body b ∈ B such that the following two constraints
are satisfied: (1) each hand h ∈ H is associated with
exactly one body b ∈ B; (2) each body b ∈ B can
be associated to at most two hands in H. Note that
we consider any visible regions of the human as the
body. Therefore when the detector fails to detect any
humans, i.e., B = ∅, we treat a hand bounding box as
its corresponding person bounding box.

3.2. Architecture Overview

We illustrate the proposed architecture in Fig. 2. We
build upon a two-stage object detector [15, 16, 18, 43] such
as MaskRCNN. Given an input image, we use a ResNet to
obtain backbone features and a Region Proposal Network to
obtain proposals corresponding to two object classes: hands
and bodies. We then use the RoIAlign operation to ex-
tract features corresponding to these proposals and perform
bounding box regression and mask generation.

For each detected hand h ∈ H, we use a novel Hand-
Body Association Network to estimate the conditional-

likelihood P(b|h) over all the detected bodies b ∈ B. The
conditional P(b|h) denotes the probability that the body b
is associated with the hand h. We use P(b|h) as weights
of a bipartite graph between hands and bodies and pose
the hand-body association problem as finding a maximum-
weighted assignment satisfying the constraints described by
the problem definition in Sec 3.1. We finally use the Hun-
garian algorithm [34] to obtain a solution for this matching
problem. We implement the Hand-Body Association Net-
work as a new branch of MaskRCNN and train this module
end-to-end together with other MaskRCNN components.

3.3. Hand-Body Association Network

The inputs to the Hand-Body Association Network are
the set of detected hands H and bodies B. For each detected
hand instance h ∈ H, it outputs the conditional-likelihood
P(b|h) over all bodies b ∈ B. The probability P(b|h)
is high whenever the body b belongs to the hand h, oth-
erwise it is low. We show that under some independence
assumptions, the term P(b|h) can be factorized as a prod-
uct of two terms involving overlap between h and b and
positional density over b:

P(b|h) = P(Ih,b = 1)︸ ︷︷ ︸
overlap between h & b

·P(b|h, Ih,b = 1)︸ ︷︷ ︸
density over b

. (1)

To see this, we first note an important relationship be-
tween the hands and body that belong to the same person.
Since hands are a part of the human body, a hand bound-
ing box and a body bounding box that belong to the same
person must have a positive overlap. In other words, if a
hand and a body have no overlap, they cannot belong to
the same person. The converse, however, does not hold.
Hands and bodies can overlap even though they belong to
different people. For instance, in the proposed BodyHands
dataset, more than 33% of people have their hands signif-
icantly overlapping with other people. Formally, if we let
Ih,b be an indicator random variable to denote whether h
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and b have any overlap, we have

P(b|h, Ih,b = 0) = 0. (2)

We can use the law of total probability and condition over
possible values of Ih,b ∈ {0, 1} to write:

P(b | h) = P(Ih,b = 0 | h) · P(b | h, Ih,b = 0)

+ P(Ih,b = 1 | h) · P(b | h, Ih,b = 1), (3)

Combining Eq. (2) and Eq. (3), we get:

P(b | h) = P(Ih,b = 1 | h) · P(b | h, Ih,b = 1). (4)

The independence assumption P(Ih,b = 1|h) = P(Ih,b =
1) reduces Eq. (4) to Eq. (1). We learn the probabilities
P(Ih,b = 1) using the Overlap Estimation Module and
P(b | h, Ih,b = 1) using the Positional Density Module.

Overlap Estimation Module. This module takes as in-
put the visual features corresponding to the hand bound-
ing box h and the body bounding box b and estimate the
probability of them overlapping each other. Specifically,
we use a neural network foverlap to model P(Ih,b = 1) :=
foverlap(h,b).

We implement foverlap as an additional branch of
MaskRCNN using convolutional and fully-connected lay-
ers. This network module is computationally light and
we learn their parameters together with MaskRCNN dur-
ing training using the following binary cross-entropy loss:

Loverlap :=− Y
(gt)
h,b log foverlap(h,b)

−
(
1− Y

(gt)
h,b

)
log (1− foverlap(h,b)) . (5)

In the above, Y (gt)
h,b denotes the groundtruth and is equal to 1

if h and b overlap and 0 otherwise.
Note that we predict foverlap(h,b) using the appearance

features of the hand and the body rather than computing the
overlap between bounding boxes h and b directly. This is
because the overlap is a piece of mutual geometric informa-
tion between two regions. Learning mutual geometric in-
formation between hands and bodies using their appearance
features allows learning-rich discriminative representations
useful for associating hands and bodies. We show this em-
pirically in our experiments.

Positional Density Module. We use this module to model
the term P(b | h, Ih,b = 1) in Eq. (1). Specifically, given
any hand h, for any possible body location b with Ih,b = 1,
we model this probability using the following distribution:

fdensity (b|h, Ih,b = 1) ∝ exp

(
−
||bh − µh

body||
2σ2

)
.

(6)

In the above equation, µh
body ∈ R4 is the mean body loca-

tion relative to the hand h, bh is an encoding of the body
box coordinates b relative to the hand h, and σ is a tunable
hyperparameter. More specifically, inspired by the bound-
ing box regression formulation in FasterRCNN [42], we use

bh =

(
bx − hx

hw
,
by − hy

hh
, log

bw

hw
, log

bh

hh

)
. (7)

In the above, (hx,hy) denotes the (x, y) coordinates of the
center of h, hw and hh denotes the width and height of h.
Similarly, (bx,by) denotes the (x, y) coordinates of the
center of b, bw and bh denotes the width and height of b.
We predict µh

body in Eq. (6) using the appearance features
and bounding box location of the hand h.

Intuitively, the appearance features and location of the
hand provide some cues on estimating its body location.
However, directly locating the body from hand features can
be difficult due to the tremendous variation in relative scales
between hands and bodies and mutual occlusions between
people. We, therefore, first estimate a density over possible
locations and use these density values to find compatible
matching for all hand-body pairs using the Hungarian Al-
gorithm. If the body b is far from the estimated mean body
location µh

body , then P(b|h, Ih,b = 1) is small, and there-
fore according to Eq. (1), P(b|h) is also small.

We can efficiently implement the network fdensity as
an additional branch of MaskRCNN using convolutional
and fully-connected layers. We train fdensity together
with MaskRCNN end-to-end by minimizing the smooth-L1
loss [15] between the predicted µh

body and the groundtruth
body bh

(gt) associated with the hand h:

Ldensity :=

4∑
i=1

Smooth-L1

(
µh
body[i]− bh

(gt)[i]
)
, (8)

In the above equation, µh
body[i] and bh

(gt)[i] denote the ith

components of four dimensional vectors µh
body and bh

(gt).

3.4. Training Objective

We train the proposed Hand-Body Association network
together with the MaskRCNN end-to-end by optimizing the
following multi-task loss:

Ltotal = Lcls + Lbox + Lmask + Lassociation. (9)

Here, Lcls, Lbox, Lmask denote the classification, the
bounding box regression, and the segmentation mask losses
for the detection. These are the standard losses used in
MaskRCNN [18]. The term Lassociation denotes the hand-
body association loss and is defined as:

Lassociation := λ1Loverlap + λ2Ldensity, (10)
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In the above, Loverlap denotes the loss for the Overlap Es-
timation Module and Ldensity is the loss for the Positional
Density Module. These losses are defined in Eq. (5) and
Eq. (8). The scaling factors λ1 and λ2 are tunable hyperpa-
rameters denoting the relative importance between the over-
lap estimation and positional density estimation.

3.5. Hungarian Hand-Body Assignment

Given a set of detected hands H = {hi : 1 ≤ i ≤ m},
bodies B = {bj : 1 ≤ j ≤ n}, and the conditional distri-
bution P(b|h) estimated from the Hand-Body Association
network, we need an assignment strategy to match hands
and bodies subject to the constraints described in Sec. 3.1.

We follow the bipartite matching strategy and use
P(b|h) as the weight between hand h and body b in the
bipartite graph. We obtain a maximum-weighted assign-
ment between the detected hands H and bodies B using the
Hungarian Algorithm [34].

Note that the Hungarian algorithm matches each hand
with exactly one body, but also it produces an undesirable
result: each body can match to at most one hand. However,
we need the flexibility to match a body to two hands. We
provide a simple solution to this by duplicating B to ensure
that each body is present exactly twice before running the
Hungarian algorithm. This ensures that a body can have two
hands associated with them.

4. BodyHands Dataset
This section describes BodyHands, the new dataset col-

lected to develop and evaluate hand-body association meth-
ods. BodyHands is a large-scale dataset containing uncon-
strained images with annotations for hand and body loca-
tions and correspondences.

Dataset Source. We built the BodyHands dataset starting
from the images from the ContactHands dataset [36]. Con-
tactHands is a large-scale dataset containing unconstrained
images annotated with hand polygon locations and their
contact states. It has images from popular datasets such as
MS COCO [27], PASCAL VOC [14], Oxford-Hand [30],
TV-Hand [35], and COCO-Hand [35]. We chose the Con-
tactHands dataset for several reasons. First, we wanted to
develop a dataset that we can use to train methods that ro-
bustly detect and associate hands and bodies regardless of
shape, size, skin tone, and motion blur. Second, we want to
detect and associate hands and bodies in challenging cases
where people have mutual occlusions. Third, we wanted to
use hand-body association in existing applications such as
hand contact estimation and thus require contact state an-
notations. The ContactHands dataset has numerous images
which satisfy these requirements.

Annotation and Quality Control. We hired several anno-
tation workers to annotate our dataset. For each person with

Figure 3. Representative images from the BodyHands dataset.
Hands and bodies belonging to the same person have bounding
boxes in the same color and identification numbers.

an annotated hand instance in the ContactHands dataset,
we asked an annotator to draw a rectangular bounding box
around the person and enter an identification number for the
hand and the body. The hands and body which belong to the
same person have the same identification number and there-
fore serve as an association between hands and bodies. We
asked the annotators to draw the human bounding box to
include all visible parts of the person. If an image contains
N people who did not have hand location annotations, we
asked annotators to annotate body bounding boxes for all
N people if N ≤ 5 and for at least five people otherwise.
This can help us use such human bounding boxes as nega-
tive pairs with other hand instances. We also instructed the
annotators to ensure that each body has at most two hands
associated with it, and also each hand is associated with pre-
cisely one body. Thus, every hand instance in our dataset
has a body associated with it. When hands are the only vis-
ible regions of the person, we use the hand bounding box as
the human bounding box. There are some human bounding
boxes with no associated hands; this is when hands are oc-
cluded or not visible. We collected annotations in batches
and manually verified the annotation results ourselves.

Statistics. The BodyHands dataset has 20,490 images
with 57,898 annotated polygons for hands and 63,095 axis-
parallel rectangular bounding boxes for people. There are
19,810 people with one annotated hand, 19,044 people with
two annotated hands, and 24,241 annotated people with no
annotated hands (because their hands were either occluded
or too small). We use the same training and test splits as the
ContactHands dataset to be backward compatible. Fig. 3
shows some representative images. We provide more statis-
tics in the supplementary material.

5. Experiments

In this section, we describe two sets of experiments. The
first experiments analyze the proposed method’s hand-body
association performance and benchmark it against several
other baseline methods. The second set of experiments
demonstrates the benefits of hand-body association for hand
tracking and hand contact estimation.
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5.1. Hand-Body Association Experiments

This subsection describes the evaluation metrics used
and experimental results for the hand-body association task.

5.1.1 Evaluation Metrics

We measure the hand detection performance using the stan-
dard VOC Average Precision (AP) metric. To measure the
hand-body association performance, we consider two met-
rics: (1) Conditional Accuracy for body association. We
define this as the percentage of correctly associated bod-
ies among the correctly detected hand instances. Here we
define that a body is correctly associated with the hand if
the Intersection over Union (IoU) between the associated
body box and the corresponding ground truth body box is
greater than 0.5. We call this conditional accuracy since we
only consider associated bodies corresponding to the cor-
rectly detected hand instances. Note that a hand detection
is correct if the IoU between the detected hand bounding
box and a ground truth bounding box is greater than 0.5.
(2) Joint AP for hand detection and body association. In
this metric, a detected hand is considered a true positive if:
(a) the Intersection over Union (IoU) between the bounding
box of the detected hand and a ground truth hand bounding
box is greater than 0.5; and (b) the Intersection over Union
(IoU) between the body bounding box associated with the
detected hand instance and the ground truth body bounding
box is greater than 0.5.

5.1.2 Competing Methods and Comparison Results

We conducted several experiments to measure the hand-
body association performance and compare them to the pro-
posed method. Note that in the proposed method variant
with an option to match the detected hand to itself, we al-
low the hand box to be its corresponding body box when
running the Hungarian Algorithm. We summarize the re-
sults in Table 1. The proposed method outperforms other
methods by a significant margin. We describe the methods
in the comparison below.

2D Human Pose. We run different 2D pose estimation
methods such as OpenPose [8, 50, 56], Keypoint Communi-
ties [61] and DOPE [57] to obtain hand keypoints and body
joints. We obtain the hand bounding boxes and correspond-
ing body bounding boxes using these keypoints and joints.
We use a less-stricter evaluation protocol since the detected
hand keypoints can be very noisy: we consider a hand to
be a true positive if its bounding box has positive IoU with
a ground-truth bounding box. These methods do not per-
form well since obtaining accurate hand and body pose in
unconstrained conditions is challenging.

MaskRCNN + X. We train MaskRCNN using a ResNet101
backbone to detect hands and bodies. We then use the Hun-
garian matching algorithm to match hands to bodies us-

Success Success Failure

Figure 4. Qualitative results and failure cases. We visualize
hands and bodies that belong to the same person using the same
color and identification numbers.

ing several cost functions: (1) Feature Distance first ex-
tracts MaskRCNN’s box regression 1024-dimensional fea-
ture vectors for hands and bodies and then uses the L2

distance between these feature vectors; (2) Feature Sim-
ilarity first extracts MaskRCNN’s box regression 1024-
dimensional feature vectors for hands and bodies, and then
uses the inner product between these feature vectors; (3)
Location Distance uses the L2 distance between the cen-
ter of the detected hand and body bounding boxes; (4) IoU
uses the Intersection over Union (IoU) overlap between the
detected hand and body bounding boxes.

Ablation Studies. We conduct ablation studies to study
the effects of different components of the proposed method.
Specifically, we train three different models using the train-
ing set of BodyHands: (1) the proposed method without the
Overlap Estimation Module; (2) the proposed method with-
out the Positional Density Module; and (3) the proposed
method using overlap computed from hand and bounding
boxes instead of Overlap Estimation Module. The Joint AP
on the BodyHands test set of these methods are 59.03%,
50.29%, and 60.34 %, respectively. These results show that
both the overlap estimation module and the positional den-
sity module are helpful for the hand-body association.

Qualitative Results. Fig. 4 shows some qualitative results
and failure cases from our method. Failure cases are mainly
due to incorrect hand detections and false body association,
especially in crowded images.

5.2. Benefits of Hand-Body Association

The ability to associate each detected hand to a human
body is beneficial for many downstream tasks. This subsec-
tion demonstrates the benefits of this ability for two such
tasks: hand tracking and hand contact estimation.
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Dataset BodyHands COCO-WholeBody [20]

Method Hand AP Cond. Accuracy Joint AP Hand AP Cond. Accuracy Joint AP

DOPE 9.09 32.51 2.27 15.02 47.56 9.09
OpenPose 39.69 74.03 27.81 30.22 82.97 18.65
Keypoint Communities 33.62 71.48 20.71 44.39 87.91 40.89
MaskRCNN + Feature Distance 84.82 41.38 23.16 75.92 59.97 38.44
MaskRCNN + Feature Similarity 84.82 39.12 23.30 75.92 53.60 33.72
MaskRCNN + Locaction Distance 84.82 72.83 50.42 75.92 78.47 50.92
MaskRCNN + IoU 84.82 74.52 51.74 75.92 79.53 53.08
Proposed 84.82 83.44 63.48 75.92 88.05 62.87
Proposed (with hand self-association option) 84.82 84.12 63.87 75.92 88.69 62.92

Table 1. Hand detection and hand-body association performance of several methods evaluated on BodyHands and COCO-WholeBody.

5.2.1 Hand-Body Association for Hand Tracking

Hand tracking is essential with many applications, includ-
ing gesture recognition and skill evaluation. We hypoth-
esize that the ability to associate hands with human bod-
ies can improve tracking results. Intuitively, by associating
hands with human bodies and linking human bodies across
frames, we can establish correspondence between detected
instances of the same hand across different frames, reducing
identity switches in tracking.

Proposed hand tracking method and other baselines.
Tracking hands is a multi-object tracking (MOT) problem,
and a popular approach to address this problem is tracking
by detection. This approach consists of two main steps: (1)
detecting hands in individual video frames and (2) linking
the detected hands between frames to form hand tracks. We
adopt this tracking by detection approach in this work. For
detection, we use our network trained for hand detection
and hand-body association. For linking, we use the Hungar-
ian algorithm [34] to optimize for the best set of one-to-at-
most-one correspondence between a set of detected hands
in frame t and a set of previously established hand tracks up
until frame t− 1. The matching outcome by the Hungarian
algorithm depends on the affinity/cost matrix that defines
the compatibility/cost for matching a hand to a hand track-
let. A popular approach is to define the affinity based on
the Intersection over the Union (IoU) value between two
detected objects (i.e., hands in this case). We will refer to
this as the Hand-IoU baseline. However, hands are fast-
moving objects, and the location and size of a hand can
change drastically from one frame to the next. Thus, linking
hands using Hand-IoU leads to incorrect identity switches
in many cases. We consider a simple approach for linking
based on hand-body association that treats a hand-and-body
pair as a single identity. We define their affinity for two
hand-body pairs detected at two different frames based on
the weighted sum of the hand IoU and the body IoU. We
refer to this method as Hand-&-Body-IoU. We also con-
sider several other linking methods as follows. In Re-ID,
the matching cost between two detected hands is defined
based on the distance between the corresponding embed-

ding vectors. In Pose-based, we use LightTrack [37] to
detect and track skeleton keypoints and associate each de-
tected hand instance to a skeleton based on the distances
between the predicted wrist keypoint and center of the de-
tected hand bounding box. Flow-based is the method that
uses optical flows to link detections. Here, we use the aver-
age optical flows for pixels inside the detected object to link
it with detection in the previous frame.

Evaluation dataset. There were no publicly available
datasets for tracking hands in unconstrained environments.
Most of the existing datasets [11, 31, 38, 40, 41] for hand
tracking was captured in constrained environments such
as ego-centric perspectives and contained only one or two
hands. To evaluate hand tracking methods in unconstrained
conditions, we collected 20 videos from YouTube and man-
ually annotated hand bounding boxes and their trajecto-
ries. Specifically, we annotated every 15 frames, and al-
together the dataset has 3299 annotated frames, 8893 hand
instances, and 131 hand trajectories. We call this dataset
YoutubeHands-20, and this dataset has many videos that
contain multiple people interacting in the scene, so track-
ing hands in such cases is challenging. YoutubeHands-20
has now been expanded to a larger dataset YoutubeHands
containing 200 videos [19].

Evaluation metric. To evaluate hand tracking perfor-
mance, we use the standard multi-object-tracking evalua-
tion metrics [4, 29]: False Positives (FP), False Negatives
(FN), Identity Switches (IDs), and Multiple Object Track-
ing Accuracy (MOTA). MOTA is the combined metric, and
it is considered the most crucial metric to quantify the over-
all detection and tracking performance.

Tracking results. Table 2 compares the tracking results of
all methods. CenterTrack [65] and FairMot [62] are end-
to-end methods in which object detection and association
are performed together. To the best of our knowledge, there
is no publicly available large-scale hand tracking datasets
to train these methods. We do our best to train these two
methods: first, we use static images from TVHand [35]
and COCOHand [35] datasets to pre-train these methods.
We then use the VIVAHandTracking [41] dataset to fine-
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FP↓ FN↓ IDs↓ MOTA↑
FairMOT [62] 412 3859 114 8.6
CenterTrack [65] 376 3909 2 10.7
MPNTrack [6] (offline) 1192 1074 545 41.4
CenterTrack (our detection) 458 1553 750 42.5
Re-ID 681 1284 817 42.0
Hand-IoU 681 1284 624 46.1
Flow-based 681 1284 882 40.7
Pose-based 681 1284 591 46.8
Hand-&-Body-IoU (proposed) 681 1284 436 50.0

Table 2. Hand tracking results.

tune them to perform hand tracking. We also conducted
experiments by replacing the detection component of Cen-
terTrack with the proposed hand detector. MPNTrack [6]
is an offline tracking method. We pre-train MPNTrack on
the VIVA [41] dataset and then use hands detected from our
method as inputs to the tracker. These methods do not work
well on hands, perhaps because they are geared towards less
deformable classes such as pedestrians and vehicles.

The methods Re-ID, Hand-IoU, Flow-based, Pose-
based, and Hand-&-Body-IoU use the same hand detector,
so they have the same FP and FN. The main differences are
how we link the detected hands into tracks. As seen, using
both hands and bodies for linking yields the highest MOTA.

5.2.2 Hand-Body Assoc. for Physical Contact Analysis

We now demonstrate the benefits of hand-body association
for recognizing the physical contact state of a hand, which
could be: (1) No-Contact, (2) Self-Contact, (3) Person-
Contact, and (4) Object-Contact. These conditions are not
mutually exclusive, and a hand can be in more than one
state. Recognizing the physical contact states of hands has
many applications in human understanding, augmented re-
ality, and virtual reality.

Contact state recognition is a complex problem in gen-
eral, and the most challenging category to recognize is
Person-Contact, with the current state-of-the-art result be-
ing 39.51% Average Precision (AP) [36]. This is due to
the difficulty of distinguishing between Person-Contact and
Self-Contact. The visual appearance of a hand and its sur-
rounding local context can determine if the hand is touching
a body part. However, it is not easy to know if this body
part is part of the same person (Self-Contact) or a differ-
ent person (Person-Contact). Next, we will describe two
approaches to improve the performance of Person-Contact
recognition by reasoning about the hand-body association.

Heuristic method. We consider a simple post-processing
heuristic to improve the performance of an off-the-shelf
contact estimation network [36] as follows. Given a de-
tected hand H and its person-contact score s obtained by
running the pre-trained hand-contact network of [36], our
simple heuristic method will adjust s while leaving the
scores of other contact states unchanged. We provide more
details about this in the supplementary material. The heuris-

NC SC OC PC mAP

Previous SoTA [36] 62.48 54.31 73.34 39.51 57.41
Leveraging hand-body association

Heuristic 62.48 54.31 73.34 40.89 57.56
End-to-end 64.74 56.12 74.32 47.09 60.56

Table 3. Hand contact estimation results. The states NC, SC,
PC, OC, denotes No-Contact, Self-Contact, Person-Contact, and
Object-Contact, respectively. We can advance the state-of-the-art
by leveraging the ability to associate detected hands to bodies.

tic improves the AP for detecting other person-contact from
39.51% to 40.89%. This heuristic is simple, but is only pos-
sible because we have a network that tells us who is the self
person among the set of detected people. Next, we will de-
scribe an end-to-end trainable network that jointly performs
contact state estimation and body association.

End-to-end method. We build a new architecture that ex-
tends the proposed method in Sec. 3 with an additional
branch to estimate the contact state of a detected hand. The
inputs to this new branch are the RoI feature maps of the
detected hand and the corresponding body. We concatenate
the RoI features and use fully-connected layers to obtain the
contact state scores for the hand. We train this new archi-
tecture end-to-end using the following multi-task loss:L :=
Lcls+Lbox+Lmask +Lassociation+Lcontact. The losses
Lcls,Lbox,Lmask,Lassociation are the same as described in
Eq. (9). The term Lcontact is the loss for contact state of the
hand. Following [36], we define Lcontact to be the sum of
four independent binary cross-entropy losses corresponding
to four possible contact states. We train this architecture on
the training set of ContactHands [35] and evaluate its per-
formance on the test set of ContactHands. This method im-
proves the AP for Person-contact from 39.51% to 47.09%.
We summarize the results in Table 3.

6. Conclusions, limitation, and societal impact
We investigated a new problem of detecting hands and

associating them with their corresponding bodies. We in-
troduced a novel architecture based on MaskRCNN, and we
also contributed a large-scale dataset of images annotated
with hand locations and corresponding body locations. Fi-
nally, we demonstrated the benefits of this new problem in
two tasks, hand tracking and hand contact estimation.

The potential negative social impacts of the work are
similar to most action and activity recognition applications,
where privacy could be a concern. Our code will be avail-
able for research usage. However, one must be cautious
when using it to support the making of accusations or deci-
sions since our method still makes many mistakes.
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ral solver for multiple object tracking. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6247–6257, 2020. 8

[7] Patrick Buehler, Mark Everingham, Daniel P Huttenlocher,
and Andrew Zisserman. Long term arm and hand tracking
for continuous sign language tv broadcasts. In Proceedings
of the British Machine Vision Conference, 2008. 1, 2

[8] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh.
Realtime multi-person 2d pose estimation using part affinity
fields. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017. 6

[9] Zhe Cao, Ilija Radosavovic, Angjoo Kanazawa, and Jitendra
Malik. Reconstructing hand-object interactions in the wild.
In Proceedings of the International Conference on Computer
Vision, 2021. 2

[10] Yu-Wei Chao, Wei Yang, Yu Xiang, Pavlo Molchanov,
Ankur Handa, Jonathan Tremblay, Yashraj S. Narang, Karl
Van Wyk, Umar Iqbal, Stan Birchfield, Jan Kautz, and Di-
eter Fox. Dexycb: A benchmark for capturing hand grasping
of objects. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2021. 2

[11] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Antonino Furnari, Jian Ma, Evangelos Kazakos, Davide
Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and
Michael Wray. Rescaling egocentric vision. CoRR,
abs/2006.13256, 2020. 7

[12] Xiaoming Deng, Yinda Zhang, Shuo Yang, Ping Tan, Liang
Chang, Ye Yuan, and Hongan Wang. Joint hand detection
and rotation estimation using cnn. IEEE Transactions on
Image Processing, 2018. 2

[13] Eng-Jon Ong and R. Bowden. A boosted classifier tree for
hand shape detection. In Proceedings of the International
Conference on Automatic Face and Gesture Recognition,
2004. 1, 2

[14] Mark Everingham, Luc Gool, Christopher K. I. Williams,
John Winn, and Andrew Zisserman. The PASCAL visual ob-
ject classes (VOC) challenge. International Journal of Com-
puter Vision, 88(2):303–338, 2009. 5

[15] Ross Girshick. Fast R-CNN. In Proceedings of the Interna-
tional Conference on Computer Vision, 2015. 3, 4

[16] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2014.
3

[17] Yana Hasson, Gul Varol, Dimitrios Tzionas, Igor Kale-
vatykh, Michael J. Black, Ivan Laptev, and Cordelia Schmid.
Learning joint reconstruction of hands and manipulated ob-
jects. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019. 1, 2

[18] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In Proceedings of the International
Conference on Computer Vision, 2017. 2, 3, 4

[19] Mingzhen Huang, Supreeth Narasimhaswamy, Saif Vazir,
Haibin Ling, and Minh Hoai. Forward propagation, back-
ward regression, and pose association for hand tracking in
the wild. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2022. 7

[20] Sheng Jin, Lumin Xu, Jin Xu, Can Wang, Wentao Liu, Chen
Qian, Wanli Ouyang, and Ping Luo. Whole-body human
pose estimation in the wild. In Proceedings of the European
Conference on Computer Vision (ECCV), 2020. 2, 7

[21] Leonid Karlinsky, Michael Dinerstein, Daniel Harari, and
Shimon Ullman. The chains model for detecting parts by
their context. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2010. 2

[22] Dong Uk Kim, Kwang In Kim, and Seungryul Baek. End-to-
end detection and pose estimation of two interacting hands.
In Proceedings of the International Conference on Computer
Vision, 2021. 2

[23] Mathias Kolsch and Matthew Turk. Robust hand detection.
In Proceedings of the International Conference on Automatic
Face and Gesture Recognition, 2004. 1, 2

[24] Pavan. M. Kumar, Andrew Zisserman, and Philip. H. S. Torr.
Efficient discriminative learning of parts-based models. In
Proceedings of the International Conference on Computer
Vision, 2009. 1, 2

4897



[25] Taein Kwon, Bugra Tekin, Jan Stühmer, Federica Bogo, and
Marc Pollefeys. H2o: Two hands manipulating objects for
first person interaction recognition. In Proceedings of the
International Conference on Computer Vision, 2021. 2

[26] Stefan Lee, Sven Bambach, David J. Crandall, John M. Fran-
chak, and Chen Yu. This hand is my hand: A probabilis-
tic approach to hand disambiguation in egocentric video.
In 2014 IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2014. 2

[27] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva
Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft
COCO: Common objects in context. In Proceedings of the
European Conference on Computer Vision, 2014. 2, 5

[28] Shaowei Liu, Hanwen Jiang, Jiarui Xu, Sifei Liu, and Xiao-
long Wang. Semi-supervised 3d hand-object poses estima-
tion with interactions in time. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2021. 2

[29] Anton Milan, Laura Leal-Taixe, Ian Reid, Stefan Roth, and
Konrad Schindler. Mot16: A benchmark for multi-object
tracking. arXiv arXiv:1603.00831, 2016. 7

[30] Arpit Mittal, Andrew Zisserman, and P. H. S. Torr. Hand
detection using multiple proposals. In Proceedings of the
British Machine Vision Conference, 2011. 1, 2, 5

[31] Franziska Mueller, Dushyant Mehta, Oleksandr Sotny-
chenko, Srinath Sridhar, Dan Casas, and Christian Theobalt.
Real-time hand tracking under occlusion from an egocentric
rgb-d sensor. In Proceedings of the IEEE International Con-
ference on Computer Vision Workshops, pages 1284–1293,
2017. 7

[32] Franziska Mueller, Florian Bernard, Oleksandr Sotny-
chenko, Dushyant Mehta, Srinath Sridhar, Dan Casas, and
Christian Theobalt. Ganerated hands for real-time 3d hand
tracking from monocular rgb. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2018. 2

[33] Lea Müller, Ahmed A. A. Osman, Siyu Tang, Chun-Hao P.
Huang, and Michael J. Black. On self-contact and human
pose. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2021. 1, 2

[34] James Munkres. Algorithms for the assignment and trans-
portation problems. Journal of the Society of Industrial and
Applied Mathematics, 5(1):32–38, March 1957. 3, 5, 7

[35] Supreeth Narasimhaswamy, Zhengwei Wei, Yang Wang,
Justin Zhang, and Minh Hoai. Contextual attention for hand
detection in the wild. In Proceedings of the International
Conference on Computer Vision, 2019. 2, 5, 7, 8

[36] Supreeth Narasimhaswamy, Trung Nguyen, and Minh Hoai.
Detecting hands and recognizing physical contact in the
wild. In Advances in Neural Information Processing Sys-
tems, 2020. 1, 2, 5, 8

[37] Guanghan Ning and Heng Huang. Lighttrack: A generic
framework for online top-down human pose tracking. Pro-
ceedings of CVPRW 2020 on Towards Human-Centric Im-
age/Video Synthesis and the 4th Look Into Person (LIP)
Challenge, 2020. 7

[38] Tomas Pfister, James Charles, Mark Everingham, and An-
drew Zisserman. Automatic and efficient long term arm and
hand tracking for continuous sign language tv broadcasts. In
British Machine Vision Conference, 2012. 7

[39] Pramod Kumar Pisharady, Prahlad Vadakkepat, and Ai Poh
Loh. Attention based detection and recognition of hand pos-
tures against complex backgrounds. International Journal of
Computer Vision, 2013. 1, 2

[40] Chen Qian, Xiao Sun, Yichen Wei, Xiaoou Tang, and Jian
Sun. Realtime and robust hand tracking from depth. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2014. 7

[41] Akshay Rangesh, Eshed Ohn-Bar, Mohan M Trivedi, et al.
Driver hand localization and grasp analysis: A vision-based
real-time approach. In IEEE International Conference on
Intelligent Transportation Systems, 2016. 7, 8

[42] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems, 2015. 4

[43] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in Neural Information Pro-
cessing Systems, 2015. 3

[44] Javier Romero, Dimitrios Tzionas, and Michael J. Black.
Embodied hands: Modeling and capturing hands and bodies
together. Proceedings of the ACM SIGGRAPH Conference
on Computer Graphics, 2017. 1, 2

[45] Kankana Roy, Aparna Mohanty, and Rajiv Ranjan Sahay.
Deep learning based hand detection in cluttered environment
using skin segmentation. In Proceedings of ICCV Work-
shops, 2017. 2

[46] Viktor Rudnev, Vladislav Golyanik, Jiayi Wang, Hans-Peter
Seidel, Franziska Mueller, Mohamed Elgharib, and Chris-
tian Theobalt. Eventhands: Real-time neural 3d hand pose
estimation from an event stream. In Proceedings of the In-
ternational Conference on Computer Vision, 2021. 2

[47] Dandan Shan, Jiaqi Geng, Michelle Shu, and David F.
Fouhey. Understanding human hands in contact at internet
scale. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2020. 1, 2

[48] Toby Sharp, Cem Keskin, Duncan Robertson, Jonathan Tay-
lor, Jamie Shotton, David Kim, Christoph Rhemann, Ido Le-
ichter, Alon Vinnikov, Yichen Wei, Daniel Freedman, Eyal

4898



Krupka, Andrew Fitzgibbon, Shahram Izadi, and Pushmeet
Kohli. Accurate, robust, and flexible real-time hand track-
ing. In ACM Conference on Human Factors in Computing
Systems, 2015. 1, 2

[49] Roy Shilkrot, Supreeth Narasimhaswamy, Saif Vazir, and
Minh Hoai. WorkingHands: A hand-tool assembly dataset
for image segmentation and activity mining. In Proceedings
of the British Machine Vision Conference, 2019. 1

[50] Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser
Sheikh. Hand keypoint detection in single images using mul-
tiview bootstrapping. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017. 6

[51] Adrian Spurr, Jie Song, Seonwook Park, and Otmar Hilliges.
Cross-modal deep variational hand pose estimation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018. 1, 2

[52] Srinath Sridhar, Franziska Mueller, Antti Oulasvirta, and
Christian Theobalt. Fast and robust hand tracking using
detection-guided optimization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2015. 1, 2

[53] Srinath Sridhar, Franziska Mueller, Michael Zollhoefer, Dan
Casas, Antti Oulasvirta, and Christian Theobalt. Real-time
joint tracking of a hand manipulating an object from rgb-d
input. In Proceedings of European Conference on Computer
Vision (ECCV), 2016. 1, 2

[54] Satoshi Tsutsui, Yanwei Fu, and David J. Crandall. Whose
hand is this? person identification from egocentric hand ges-
tures. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV). 2

[55] Robert Y. Wang and Jovan Popović. Real-time hand-tracking
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