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Abstract

Quantitative descriptions of confidence intervals and un-
certainties of the predictions of a model are needed in many
applications in vision and machine learning. Mechanisms
that enable this for deep neural network (DNN) models
are slowly becoming available, and occasionally, being in-
tegrated within production systems. But the literature is
sparse in terms of how to perform statistical tests with the
uncertainties produced by these overparameterized models.
For two models with a similar accuracy profile, is the former
model’s uncertainty behavior better in a statistically signifi-
cant sense compared to the second model? For high resolu-
tion images, performing hypothesis tests to generate mean-
ingful actionable information (say, at a user specified sig-
nificance level o = 0.05) is difficult but needed in both mis-
sion critical settings and elsewhere. In this paper, specif-
ically for uncertainties defined on images, we show how
revisiting results from Random Field theory (RFT) when
paired with DNN tools (to get around computational hur-
dles) leads to efficient frameworks that can provide a hy-
pothesis test capabilities, not otherwise available, for un-
certainty maps from models used in many vision tasks. We
show via many different experiments the viability of this
framework.

1. Introduction

With the adoption of deep neural network models in pro-
duction systems for vision tasks, there is a growing con-
sensus that we must be aware of what our model does not
know. This is relevant not only for systems used for au-
tonomous driving or medical imaging but also in less criti-
cal situations where such a model informs decision making
in general and/or is responsible for generating triggers for
user intervention. For example, inaccurate but overconfi-

Figure 1. Top shows a raw uncertainty of the depth estimation process.
Bottom shows significant regions selected by our method, with guarantees
to restrict family-wise error rate. This region can be used for calibration,
model comparisons, or other use cases.

dent predictions can lead to undesirable outcomes in assem-
bly line manufacturing and logistics. This need has led to
interest in the design of mechanisms for model calibration
as well as for estimating uncertainties from deep neural net-
work (DNN) models used in vision for tasks including but
not limited to prediction [38,45], segmentation [3,41,47],
depth estimation [14,20] and visual odometry [4,32].

Uncertainties can be roughly categorized into aleatoric
(statistical) and epistemic (systematic). Aleatoric uncer-
tainty can help capture inherent and irreducible data noise,
which cannot be reduced even if more data were collected.
It can be represented by heteroscedastic models [26, 40],
since they assume that the observation noise (uncertainty)
can vary with the input. Epistemic uncertainty accounts for
uncertainty in model parameters, and can be improved by
observing more data. Capturing epistemic uncertainty in a
DNN can involve putting a prior on the latent space (e.g.,
Variational Auto Encoder (VAE) [46]) or model parame-
ters (e.g., Bayesian Neural Networks (BNN) [7, 33, 42]),
and adopting any available scheme to estimate the poste-
rior probability. Several strategies exist which use hybrid
approaches to capture either aleatoric or epistemic (or both)

406



by combining heteroscedastic NNs and BNNss, e.g., [30].

Example scenarios. While capturing different types of
uncertainties is useful, in practical scientific/industrial set-
tings, uncertainty estimates are merely a “means to an end”.
‘We must understand what actions the estimates enable, re-
gardless of whether it is aleatoric or epistemic.

Scenario 1. Uncertainty estimates enable calibration,
e.g., by a practitioner evaluating medical images. If a spe-
cialist can see that model is uncertain in some specific re-
gions, he/she can evaluate whether to acquire more data
if the regions where the model is uncertain are anatomi-
cally important. In other cases, such information can guide
whether to request a biopsy. However, to decide, we need
a statistically sound scheme to generate “significant” uncer-
tain regions. Otherwise, interpreting the raw uncertainty is
entirely subjective. Similar applications appear in depth es-
timation for autonomous vehicles [27], Fig. 1.

Scenario 2. Uncertainty can be used to compare confi-
dences of models. Say a user is satisfied by the accuracy
profiles of two models Model 4 and Model g but the second
one has a higher latency. An upgrade to Model is only jus-
tified if one is 99% confident that it reduces uncertainty in a
statistically significant sense on a held-out test dataset. This
needs a “go/no-go” answer. Similarly, consider two systems
for tumor volume dynamics using segmentation, which will
drive treatment options (e.g., RECIST criteria [13] ). Both
systems offer similar accuracy and are FDA approved, but
one is more expensive. The investment may be justified if
the reduction in uncertainty is significant at a 99.9% level.
Alternatively, consider a model on a small form factor de-
vice. The choice is between low-precision and high preci-
sion operations, the latter will need a larger battery. If both
models satisfy client accuracy needs, is the reduction in un-
certainty of predictions statistically significant?

Despite the growing body of work on uncertainty, frame-
works that enable actionable information are limited. The
goal of this work is to close this gap.

Classical techniques from statistics. The problems
above can be tackled with classical statistical testing. Here,
we can set this up as pixel-wise statistical tests (although
not strictly necessary; we will discuss alternative forms
shortly). Scenario 1 will be a one sample test, while Sce-
nario 2 will be a two sample test: we ask whether the uncer-
tainty at a pixel is different across the two models.

Bottleneck. Deriving a scientifically valid conclusion
for the image based on pixel-wise statistical tests will re-
quire conducting many tests, equal to the number of pixels.
For example, an image of size 28 x 28 leads to 784 tests.
For a common 0.05 critical value (probability of Type-1 er-
ror), we expect to select 40 (= 784 x 0.05) pixels as sig-
nificant, purely by chance (number of false positives). This
issue escalates for higher resolution images, say 3D medi-
cal images. To control a family-wise error rate and avoid

inflating the number of false positives, a multiple testing
correction (e.g., Bonferroni, Benjamini-Hochberg) [52] is
used. However, for high-resolution images common in vi-
sion, this tends to over-correct making none of the tests sig-
nificant [2, 56], making the analysis less meaningful.

Many testing setups conservatively assume that the pix-
els are independent. The classical strategy to avoid this re-
strictive assumption leverages Random Field Theory (RFT),
as studied in seminal papers by Adler and Worsley [1,2,57].
However, many theoretical results based on RFT remain re-
stricted to the Gaussian Random Fields (GRF) and some
specific generalizations. It is not obvious to what extent
these assumptions are viable for uncertainty maps obtained
from deep neural networks popular in vision.

Contributions. We show how existing DNN tools when
instantiated with suitable results from Random Field the-
ory provide a mechanism to perform hypothesis tests on
uncertainty maps, generated by different probabilistic DNN
models common in vision. Specifically, we develop a prob-
abilistic framework, based on Neural ODE and Wasserstein
distance, which enables learning a diffeomorphism between
uncertainty maps and GRFs. We refer to it as Warping Neu-
ral ODE. Roughly, this allows performing hypothesis tests
on the resultant GRFs and mapping results back to the do-
main of uncertainty maps.

2. Background

In this section, we review several concepts we will use
throughout the paper, starting with hypothesis tests.

Hypothesis test is a statistical procedure, which con-
sists of four main parts: (1) Null hypothesis Hyp and an
Alternative hypothesis H 4, (2) test statistics F', (3) criti-
cal value «, which controls the probability of Type-1 error,
i.e., P (reject Hy|Hp is true) < « and (4) a threshold value
u = u(a), which defines the rejection region. While a test
statistics, hypotheses and critical value are design choices,
the threshold u has to be derived such that the p-value
P(F > u|Hp) = «.

Via hypothesis tests, we can assess whether there is an
evidence to reject the null Hy at a certain level of confidence
«. Usually, Hj states that there is no difference (say, from
zero or between two groups), while H 4 states that there is
a difference. The decision is based on checking whether
the observed test statistics F°P, falls in the rejection region,
defined by the threshold .

Family wise error rate (FWER). Recall that the re-
jection region is selected based on «, which controls
IP (Type-1 error) of a single test, i.e., P (reject Hy|Hp) < .
However, assume that we conduct N = 100 tests, e.g., the
same test for different pixels, with o = 0.05. Then the
PP (reject at least one Ho|Hpistrue) = 1 — (1 — )V =
0.994, and on average 5 tests would be rejected purely by
chance. For this reason, in multiple comparison testing,
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we do not want to control P (Type-1 error), but FWER:
P (reject at least one Hy|Hp). Note that the FWER for 1
test equals to IP (Type-1 error).

Gaussian Random Field (GRF). GRF is a family of
functions Z S — R, where for all finite £ > 1
and {s1,...,8x} C S, the collection of random variables
{Z(s1),...,Z(sk)} has a multivariate Gaussian distribu-
tion. GRFs are parameterized by a mean function u(s) =
E{f(s)} and covariance function C(s,t) = E{(f(s) —
w(s))(f(t)—p(t))}. A UGRF is a special Gaussian RF with

mean zero, variance 1, and Var ( Z (s)) = I. An Isotropic

GRF is a special case where the covariance function C'(s, t)
depends only on the Euclidean distances ||s — ¢||o.

Gaussian related RFs [2] or GRRF is another broad class
of random fields F' = f(Z), obtained as functions of GRF.
For example, a Chi-squared RF with d degrees of freedom
X3(t) = Y0_; Z2(t) is a GRRF,

3. Tests on uncertainty maps in vision

We start with an input image x and address Scenario 1
from §1. Leaving the specific task (depth estimation, seg-
mentation) aside for the moment, we assume that a trained
probabilistic model M provides an uncertainty map on the
input x, denoted as My where My (s) is the uncertainty for
pixel s € S. Our model will operate on these uncertainty
maps/images (and not on x). To infer which pixels of the
uncertainty map (if any) are significant (rather significantly
different from 0), we must conduct a hypothesis test.

A standard approach is a test for each pixel s, with Hy :
Mx(s) = 0and Hy : Mx(s) # 0. The test statistics F'(s),
for example, can be the student statistics

F(s) = (Mx() /o (Vx()),
where o is an estimate of standard deviation and 6 repre-
sents the sample mean. For Scenario 2 in §1, to check if
there is a difference between uncertainties of models A and
B, we replace My (s) by uncertainty Ax(s) — Bx($).

In the next subsection, we describe how to address the
multiple comparison issue. More specifically, we want a
procedure that derives a threshold u of the rejection region
{F(s) > wu} such that it (a) controls FWER and (b) ac-
counts for spatial correlation of the image.

3.1. Random Field theory to the rescue

We consider the pixel-wise (or voxel-wise for 3D vol-
umes) uncertainty map My as an RF over S with covari-
ance C'. Note that the pixel-wise uncertainties may not be
independent from each other. We would like to statistically
evaluate whether F'is different from 0 or not. We will even-
tually use this strategy to find pixels with significant uncer-
tainty (Scenario 1) and check the difference between uncer-

tainties from two models (Scenario 2). This leads to the
hypothesis setup, denoted as H:

Hy:Vs e S Mx(s)=0 0
Ha:3s €S, M(s) #0

To perform the hypothesis test, it is necessary to es-
tablish a test statistic, which ideally describes the nature
of the data and is a good indicator of whether to re-
ject the null hypothesis. For RFs, a common test statis-
tic for Hp is Fiuax = maxges Mx(s) [57]. Finally, for
the test Hy, we need to find the threshold u g, such that
P (Fiax > ur|Ho) = a. Then, if the observed statistics'
Fob > up, we may reject Hy in favor of H 4. However,

computing P (Fiax > up|Hg) is often nontrivial.

Typically, to obtain P (Finax > ur|Hp), we need to
know the theoretical distribution of the test statistics, de-
noted as Pr__ , which may not have a closed form in
general. Nevertheless, RF theory provides a way to esti-
mate P (Finax > up|Hp) indirectly, namely through the Eu-
ler Characteristic Heuristic (ECH) [53], one of the most
important (and fascinating) results in RF theory. Given a
u, we define an excursion set A, = {s € S : F(s) >
u}. ECH shows that, for sufficiently large values w,
P (Fmax = ur|Ho) =~ E{¢(A,.)}, where ¢(A,)is the
Euler Characteristic (EC), a well studied quantity in topol-
ogy that describes the shape of a topological space. Note
that hereafter, EEC stands for E{¢(A,)}.

How to compute E{¢(A,,,.)} ? A standard approach to
computing E{¢(A, )} is to use Monte Carlo (MC) approx-
imation given Empirical ECs &AZ";) over observed excur-
sion sets A?}’;. However, in addition to the MC approxima-
tion error, [ 1] shows that Empirical ECs at very high levels
of up are generally too noisy to directly estimate the thresh-
old up, such that P (Fhax > up|Hp) = 0.05. In practical
setups, it might lead to incorrect hypothesis tests. An alter-
native approach is to derive the theoretical closed form for

E{¢(A.,.)}, based on Thm. 3.1 below.

Theorem 3.1 (GKF: Gaussian Kinematic Formula [54]). If
Fis GRRF (isotropic or non-isotropic), EEC is given as,

D
]P(Fmax Z U|HO) ~ E{d)(Au)} = Z Ld(S, A(S))pd(u)v

d=0
()
where D is the dimension of domain S, p4(ur) is the Eu-
clidean density (ED), Lq(S, A(S)) is the Lipschitz-Killing

curvatures (LKC) [58], and A(s) = Var(Z(s)) is the vari-
ance of the spatial derivative of the underlying UGRF Z(s).

The problem in using (2): Even though (2) applies to
a wide range of RFs, it is limited to the availability of the

lmeaning the statistics Finax for an observed uncertainty map M,‘zbs (s)

408



@
q ".3 Forward GKF Backward Y "'
‘,:‘r-) Warping Theorem Warping “r“)’

Underlying RF  Corresponding  Significant pixels Significant pixels
repr. uncertainty Gaussian RF  on GRF domain on source domain

Figure 2. To understand the significant region of the uncertainty map we
learn the diffeomorphism warping from general non-isotropic RF to the
isotropic GRF. Then, given resulted GRF, we apply Thm. 3.1 to determine
the significant region, and warp it back to the source domain.

corresponding L4(S) and p4(up). For most RFs, these are
unknown. (a) While curvatures L,(S) are available for
isotropic RFs, when dealing with non-isotropic RFs, it is
often extremely difficult to evaluate L4(S) [1]. (b) Concur-
rently, the closed form solution for p,(ur) is available only
for a few distributions [&].

Observe that the statistics F'(s), representing pixel-wise
uncertainty, can in fact be considered as GRRF in several
situations. This is because it is a function of Gaussian latent
space in VAEs or the weights in BNNs. If so, we can apply
Thm. 3.1. However, (a) the assumption of a RF I being
isotropic on a domain S is unrealistic, which makes closed
form solutions L (.S) defined for isotropic RF inapplicable.
(b) The exact distribution of F' is unknown, and thus p, are
also unknown. Then, is there a way to apply Thm. 3.1 on
the observed uncertainty maps, generated by a DNN?

3.2. Let us warp to GRFs!

For the development of our proposal, we first (infor-
mally) state the following simple result, which describes
how the warping of the domain (coordinate system) can
help, proofs are in the supplement.

Theorem 3.2. The domain S of the GRRF F can be warped
via a one-to-one smooth transformation I' to a domain
S’ without fundamentally changing the problem, namely:
P (maxyecs F(s') > t) = P(maxses F(s) > t).

Theorem 3.3. Consider the GRRF F(S) on the domain
S with Euler densities {pf (u)}, and the GRF Z(5%) on
the domain SZ with Euler densities {p% (u)}. Assume that
both Euler densities {p (u)} and {p% (u)} are defined on
the same domain v € U and maxq{p} (u)/p7 (u)} < 1.
Then, by finding a one-to-one transformation I, such that
S =T8% and S% = T'~1S, and selecting a threshold u*,
such that P (max,cgz Z(s) > u*) = 0.05, guarantees that
P (maxses F(s) > u*) < 0.05.

Remark 1. For the isotropic GRF Z(s), all components
of Thm. (3.1), Lq and pg are known in a closed form
and thus, the corresponding threshold u can be computed:
P (Fnax > ulHp) < 0.05.

Based on Thm. 3.3, we could warp the uncertainty map
to the isotropic GRF (Fig. 2, Ist arrow). Then based on
Remark 1, we apply Thm. 3.1 and derive the significant

Identical
transformation
Neural Network
@tn parameterizing trajectory

- - -

Figure 3. Neural Warping ODE: we model diffeomorphism ® as a solu-
tion of ODE (3), where the RHS is modelled by NN. The resulted transfor-
mation ®¢,, is applied to the coordinate system of input image to generate
warped domain.

region (Fig. 2, 2nd arrow), and warp the significant re-
gion back (Fig. 2, 3rd arrow). This approach is like [55],
which warps a domain of non-isotropic GRF to achieve lo-
cal isotropy. But in contrast to [55], we seek to find a warp-
ing of non-isotropic GRRF to isotropic GRF. To achieve
this, we should satisfy two properties: (a) the learned
warping has to be a diffeomorphism, (b) the warped ver-
sion of GRRF should be an isotropic GRF. That is, given
a general (isotropic or non-isotropic) GRRF F(S) in the
source domain S and the isotropic GRF Z(S%) on the GRF
domain SZ, we must find a transformation (warping) ®(.S),
such that F(®(S)) ~ Z(S%), ie., equal in distribution.
Here, we can use recent developments in machine learning.

3.2.1 Learning diffeomorphisms

Learning the warp ®(5) as a diffeomorphism guarantees
invertibility of the transformations, which conserves topo-
logical features [49]. For us, this means that we can recover
significant regions from the Gaussian domain SZ, but back
in the source domain S, Fig. 2 (3rd arrow). A specific class
of diffeomorphisms, which define a subgroup structure in
the underlying Lie group [28], can be parameterized by an
ordinary differential equation (ODE) [6,49]:

a,

i V(2y), 3)

where @, is the diffeomorphism at time ¢, and V' the sta-
tionary velocity vector field. Forward warping: by start-
ing from the initial point (identity transformation) ®,, we
are able to integrate (3) in time (¢t : 0 — 1) to obtain
®1, such that F(®1(S)) ~ Z(S%). Backward warping:
in general with learning warping transformations, integrat-
ing backward in time (¢ : 1 — 0) does not result in a reverse
warping [0]. However, (3) defines a member of a Lie group,
which provides a definition of the exponential operator. So,
the correct way to define a backward warping ®_; is by
integrating (3) over time (¢t : 0 — —1). To account for the
richness of transformations, we parameterize the velocity V'
as a neural network, which gives a Warping Neural ODE,
see Fig. 3.
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3.2.2 Mechanisms for generating a GRF

Given the warping ®(S), we need to make sure that
F(®(S)) is an isotropic GRF. While various divergences
can be used, e.g., Jensen-Shannon [15] or KL [25], we sim-
ply minimize the Wasserstein (EM) distance [50] between
distribution of warped images F'(®(5)) and GRF:

W (P,,Py) = inf )~z =yl “)

~€EI(P,.,P,)
where IT (P,,IP;) denotes the set of all joint distributions
v(x,y) whose marginals are respectively P, and ;. To
achieve this, we minimize an efficient approximation of the
Wasserstein distance similar to [5,21]. However, in contrast
to GAN, in our setup the generator (Neural ODE compo-
nent) does not generate images based on random samples,
but is only used to create a warping ® with no randomness.

3.3. Summary of the procedure (with final loss)

Algorithm 1 Learning diffeomorphism ® : ' — Z

Input: General RF F' = {Fl}f\fjl and GRF Z = {Zl}iizl
Output: Diffeomorphism ®(.S)

Require: parameterized by Neural Networks: V' in (3), critic D (to min-
imize Wasserstein Distance), np number of critic’s updates

while V has not converged do
Set ®¢ as identical transformation (vector field).
Using Neural ODE(V, ®¢) find a solution ®;.
Given @1, warp F' to F
Run MinWasDist(F, Z) to minimize the Wasserstein distance
end while
procedure MINWASDIST(ﬁ, Z)
fori =0,...,np do
update D by minimizing Crific’s loss:
—D(Z)+ D(F) + A\GP(D)
> where GP(D) is gradient penalty for Critic D [21]
10: end for
11: update V' by minimizing ODE loss:
—D(F) +1D +0G
12: end procedure

PRI PRE

> JD, OG defined below

Remark 2. While theoretically, it is guaranteed that there
is a unique solution to the system (3) given @, see [43] (pp.
8), to accelerate convergence, we add constraints (penal-
ties) to the ODE loss in Alg. 1, JD and OG respectively.
Namely, we require (a) the Jacobian Determinant of each
D, to be non-negative [34], to avoid collapsing several pix-
els into one, and (b) prevent generating warping ®;, with
vectors going outside the grid (image frame).

1= 3 521D (9)] - ID(@:())
t s
0G=3 %" ((grid(s) + ®(s) — Fue) + (grid(s) + CI)t(s)))
t s
Note that computation of OG term is motivated by our

implementation of the warping ®; as a vector field, com-
mon in vision [6,29], and considering the ‘grid’ as a mesh

Learning

Diffeomorphism

Hy Hy

Figure 4. Top: Distribution of theoretical statistics Pz . and
P, . under corresponding null hypotheses Hp and thresholds uzand
up, such that P (Zmax > uz|Ho) = aand P (Fmax > up|Ho) = a.

coordinate system from O to size of image Fy;,.. Then, pix-
els in the ‘grid(s)’ will be sampled from (or move to) loca-
tion grid(s) + ®;(s). The OG term prevents learning vector
fields ®;, which map to outside of the grid. Alg. 2 describes
the second part of the framework to select significant pixels
on the source domain, given a learned warping ®;.

Algorithm 2 Selecting significant region M p

Input: RF F = {FZ}iV:Fl, learned diffeomorphism &
Output: Significant region M g

1: Apply forw. warping ®1 to F' to generate F from the GRF.
2: Select significant pixels Mz, of F’ according to Thm. 3.1.
3: Apply rev. warping _; to M , to generate My on domain of F'.

3.4. Applications

So far, we have discussed how to get a significant re-
gion for a general RF F', which corresponds to the rejection
region of GRF, see Fig. 4. Our discussion was for a gen-
eral case, without specifying how to obtain the RF F'. De-
pending on how the RF F'is obtained, this idea can be used
for the two scenarios in §1: (1) to understand for which
parts of the generated image, a model is the most uncer-
tain and (2) to compare uncertainty between two models
with different architectures. While (1) is important in sci-
entific/healthcare settings, where we want to check whether
we can trust a model in the region of interest, (2) helps eval-
uate whether users need to invest more in deploying a new
model to decrease the uncertainty of their predictions.

Uncertainty within a model. To understand which part
of the output image is the most uncertain, we generate F/,
given N outputs of the model, and using the variance per
pixel. Thus, we have F', with F'(s) showing uncertainty per
pixel. Since our goal is to decide which pixels are the most
uncertain, we apply the Alg. (1) on the F' and Z, generated
under H 4. That is, all generated RF Z; have some uncertain
pixels, and on Fig. 4 we map only « regions between F' and
Z. Then, we find M as in Alg. 2.

Deriving ‘significant regions’ of uncertainty may appear
similar to strong/weak class activations map methods [60].
However, our method is complimentary — it can be used
downstream if the heat maps also include pixel-wise confi-
dence intervals and satisfy GRRF assumptions.
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Figure 5. Rows: lst — ResNet-18, 2nd — ResNet-34, 3d — ResNet50. Columns (by 3): 1) uncertainty map, generated by the VAE model with the ResNet
base corresponding to the row, 2) significant uncertainty, derived by our method, 3) top 5% of uncertainty, typically used as significant uncertainty in vision.

SIS H 5

Figure 6. Continuous warping of ‘3’ to ‘4’ using our Warping NODE

Uncertainty between the models. Given two sets of
images, we compute test statistics F°°* as mentioned be-
fore. Then, we use a bootstrap technique to construct a set
of statistics {F;}Y, (see supplement). We follow Alg. 1
to map the distribution F' to Z completely, i.e., not just the
« like in Scenario 1. Finally, we obtain significant region
M pos on F°% If M pa contains at least a 1, then we re-
ject null hypothesis that there are no improvements in un-
certainty of the model in favor of H 4. While we provide a
way to test the uncertainty between models, here, we will
restrict our presentation to the uncertainty within a model.

Limitations: In the current form, our method cannot
be used directly to prioritize deep uncertainty quantification
approaches, e.g., BNNs [42], deep ensembles [35], and so
on. Similar to hypothesis tests, we do not obtain a model
ranking. But if we know, say the model/software cost, then
the cheaper model is better if the H, is not rejected.

4. Experiments

We seek to demonstrate the ability of our model to pro-
vide estimates of statistical significance for the uncertainty
generated by different probabilistic models, e.g., Variational
Autoencoders [31], Neural Networks with MC Dropout
[18], and Bayesian Neural Networks [22,30,42]. In our ex-
periments, we use a broad range of common vision datasets,
e.g. CelebA [37], AFHQ [!1], KITTY [19], MS-COCO
[36], and MR image data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (three time-points, repre-
senting disease progression).

We construct significant regions according to
P (Fax > ur|Hyp) = 0.05, a commonly used thresh-
old [51]. For the baseline, we consider a typically used
5% quantile [30]. The appendix provides description of
the DNN architectures as well as a simple experiment for

different RFs with ground truth for significant regions.

Proof of concept: We start the experimental section by
introducing Warping Neural ODE as a generative model, we
train our model to warp samples from a distribution in the
shape of handwritten digits ‘3’ to digits ‘4’. Since we can
evaluate the solution of ODE in (3) at arbitrary time ¢, in
Fig. 6, we visualize the evolution of ®,. It is evident that
our model can indeed learn a smooth diffeomorphism.

VAE: Given the generation mechanism of VAE [48,59],
the estimation of the epistemic uncertainty, i.e., uncertainty
of the model, is direct. For each input image x, we run the
inference M times generating M samples x1,...,Zps, On
which we compute pixel-wise and channel-wise variance.
Since the latent space of a VAE follows a Gaussian distri-
bution, the resultant uncertainty F' satisfies our assumptions
(regarding GRRF), and so, we can apply our method di-
rectly to understand the significant regions.

For these experiments we consider different variations of
VAE models (based on ResNet-18, ResNet-34 and ResNet-
50 [24]) and four different datasets: CelebA [37], AFHQ
[11]: closeups of 3 types of animals: Cat, Dog and Wild.

(a) CelebA. In Fig. 5, we show the uncertainty map and
compare significant pixels derived from our method with
the usual 5% quantile. First, we see that our approach picks
up regions of clustered uncertainty, which indicates that
our model is aware of spatial correlation in uncertainties.

Figure 7. Rows: cats, dogs, wild. Columns: significant uncertainty, de-
rived by our method for different samples.
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Figure 8. For each of the tree types of uncertainties along the rows (aleastoric, epistemic, and predictive) we demonstrate (left) the uncertainty of the depth
estimation, (center) significant uncertainty region derived by our method, and (right) typically used as significant 5% quantile.

But, a standard 5% quantile picks up boundary points and
stray/disperse points. It is especially obvious on the third
row, for the most expressive network ResNet-50, where the
generated uncertainty of the entire region is small. Our
method picks up only the maximum and sensible regions
(like teeth), while the 5% quantile picks up the boundary
of the generated object — not a very meaningful region for
calibration. Second, using the more expressive model (from
top to bottom), our method picks up less significant uncer-
tainty regions. In contrast, the 5% quantile picks up about
the same number of pixels regardless of model confidence.

Observations: While we expect to have smaller signifi-
cantly uncertain regions with an increase in complexity of
the model, we do not expect models to be the most uncer-
tain in the same exact regions. Moreover, we expect that
with an increase in the complexity of the model, regions of
significant uncertainty will be removed first. This can be
seen by comparing uncertainty maps and significant pixels
of our method in Fig. 5 across models. This behavior is
harder to observe using the 5% quantile. We find that the
process of elimination we observe is similar to ‘backward’
feature selection method in statistics [12], when we remove
significant features based on p-values after each pass.

Computation/storage complexity: For CelebA, our
model (14M parameters) occupies about 1934MiB. Run-
time is 0.3s with a batch size of 1. On a standard system
with four 2080TIs, 1 epoch of 10000 images needs 120s
and full training (for warping) takes 7 hours. At test time,
the hypothesis test (on PyTorch) is negligible (< 1 ms).

(b) AFHQ. Since we showed the benefits of our method
compared to the 5% quantile for selecting the significant un-
certainty regions generated by VAE, for the AFHQ dataset,

Uncertainty on edges

Figure 9. Zoomed region of predictive uncertainty, to show that in con-
trast to 5% qunatile (right), our method (left) does not pick up seldom (and
meaningless) points on the edge of the tree.

we only provide results of our method for a single network
ResNet-18 in Fig. 7. The goal is to show that significant un-
certain regions are sensible. We see that the most uncertain
regions are areas around eyes and ears.

MC dropout: In [18], the authors showed that when ap-
plying dropout on every layer, the dropout objective mini-
mizes the Kullback—Leibler divergence between an approx-
imate distribution and the posterior of a deep Gaussian pro-
cess. Thus, uncertainty obtained from MC dropout satisfies
our assumption of GRRF. Given a trained deterministic net-
work, we can inject MC dropout layers to estimate uncer-
tainty. We evaluate our method on uncertainty derived from
MC dropout applied to two large scale datasets on different
tasks: depth estimation and segmentation.

(@) Depth estimation on Virtual KITTI dataset: The
virtual KITTI dataset [16] is a photo-realistic synthetic
video dataset, which consists of high resolution scenes and
is usually used for vision tasks such as object detection,
multi-object tracking, scene-level and instance-level seman-
tic segmentation, and depth estimation. We evaluate the
ability of our model to pickup significantly uncertain pix-
els in high-resolution uncertainty maps. We follow the ex-
periment setup of [22] to evaluate the depth of objects in
images. Using MC-dropout, we generate uncertainty maps
of size 320 x 1216 [18] and evaluate our model on three
different types of uncertainties: epistemic, aleastoric and
predictive (sum of both: epistemic and aleastoric). The re-
sults are shown in Fig. 8. Clearly, for all types of uncer-
tainty (rows), our method (middle column) picks up regions
of clustered uncertainty making the significance mask more
smooth, indicating that our model is aware of spatial corre-
lation in images, compared to the usual 5% quantile (right
column). This is quite noticeable for epistemic uncertainty
— uncertainty of the model (middle row). Further, Fig. 9
shows the predictive uncertainty of zoomed-in regions, for
objects with strong edges, like a light pole or a tree. Our
method does not pick up the edges as significant, making
significant regions more meaningful and avoiding noise.

(b) Segmentation on MS-COCO: Common Objects in
Context (COCO) [36] is a large-scale vision dataset that
provides a rich set of visual descriptors and is widely
used for baseline evaluations of semantic segmentation al-
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Figure 10. For each value of dropout probability p along the rows (0.01, 0.03, 0.04) we demonstrate by triplets: (left) the uncertainty of the pxiel-wise
segmentation, (center) significant uncertainty region derived by our method, and (right) typically used as significant 5% quantile.

gorithms [9, 23]. To evaluate the effectiveness of our
method, we generate segmentation uncertainty by applying
MC Dropout to each layer of the DeepLab V3 [10] with the
pre-trained checkpoint in PyTorch [44]. We measure un-
certainties by summing over the individual variances of the
model’s predictions in softmax-normalized scores for each
segmentation class and pixel-wise. To evaluate the effect of
probability of dropout p on the generated uncertainty, we
consider 3 variations: p = 0.01, p = 0.03 and p = 0.04.
We noticed that using dropout with probability p > 0.05
leads to a very high uncertainty and no meaningful seg-
mentations. Based on results in Fig. 10 for all 3 values of
dropout probability p, there are 2 interesting observations.
(1) As noted previously, the 5% quantile shows that signifi-
cant uncertainty on one image is located in a lot of different
classes and difficult to interpret. In contrast, our method is
consistent when providing significant uncertainty within the
class. (2) While the 5% quantile significant region changes
through different values of p (across the rows in Fig. 10), the
significant region based on our method is consistent across
p. It means that ranging p does not change the significant
uncertain region, which is reassuring.

Bayesian Neural Networks: The final method we use
is Bayesian Neural Networks (BNN) [17,39,42]. We apply
Temporal BNN to longitudinal (3 time point) brain imaging
data obtained from Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI), see supplement. The goal is to predict the
brain image at the third time point, given that the first two
steps are observed. To generate the uncertainty map, we
collect predictions from 100 feed-forward runs of a trained
BNN and compute voxel-wise standard deviations. Then
we take a 2d slice as a final uncertainty map. We note that
the application of a 5% quantile as a threshold for signif-
icance does not yield very meaningful results, completely
covering two big regions of the brain: corpus callosum and

caudate nucleus, and some stray pixels all around. In con-
trast, our method highlights small clustered regions. Since
the data contains two clinically disparate groups, we should
expect that samples from different groups have different
significantly uncertain regions, generated by the predictive
model. The 5% quantile threshold shows the same sig-
nificant pixels, independent of diseased or control subjects
(group difference testing). In contrast, our method nicely
differentiates between CON and AD groups. In summary,
we find that identifying statistically significant pixels shows
that longitudinal progression in AD is quite different from
CON, captured using our method (see supplement).

5. Conclusions

This paper provides a strategy for using existing deep
neural network tools in conjunction with known results in
Random Field Theory (RFT) to perform hypothesis tests on
uncertainty maps from DNN models. Such a capability al-
lows moving from subjective interpretation of uncertainties
or the evaluation of deciles/quantiles to answering precisely
stated hypotheses in a rigorous way. We believe that this ca-
pability is essential but currently missing and can further en-
able the use of DNN models from vision in mission-critical
applications and for informing business/policy decisions.

Societal impacts. We provide a meaningful step to-
wards interpreting/understanding uncertainty results from
deep models in vision, a positive development from the
standpoint of trustworthy Al models.
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