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Abstract

Recently, significant progress has been made on image
denoising with strong supervision from large-scale datasets.
However, obtaining well-aligned noisy-clean training im-
age pairs for each specific scenario is complicated and
costly in practice. Consequently, applying a conventional
supervised denoising network on in-the-wild noisy inputs is
not straightforward. Although several studies have chal-
lenged this problem without strong supervision, they rely on
less practical assumptions and cannot be applied to practi-
cal situations directly. To address the aforementioned chal-
lenges, we propose a novel and powerful self-supervised de-
noising method called CVF-SID based on a Cyclic multi-
Variate Function (CVF) module and a self-supervised im-
age disentangling (SID) framework. The CVF module can
output multiple decomposed variables of the input and take
a combination of the outputs back as an input in a cyclic
manner. Our CVF-SID can disentangle a clean image
and noise maps from the input by leveraging various self-
supervised loss terms. Unlike several methods that only
consider the signal-independent noise models, we also deal
with signal-dependent noise components for real-world ap-
plications. Furthermore, we do not rely on any prior as-
sumptions about the underlying noise distribution, making
CVF-SID more generalizable toward realistic noise. Ex-
tensive experiments on real-world datasets show that CVF-
SID achieves state-of-the-art self-supervised image denois-
ing performance and is comparable to other existing ap-
proaches. The code is publicly available from this link.

1. Introduction
Image denoising is an active research topic and has at-

tracted increasing attention due to its practicality in com-
puter vision. The fundamental idea of image denoising is
to remove unwanted noise signals from a given input and
restore a noise-free clean image. Following the recent ad-

*equal contribution

Input Noisy Ground Truth N2V [18]: 24.00dB

N2S [4]: 25.34dB R2R [25]: 30.37dB CVF-SID (Ours): 32.99dB

Figure 1. Real-world image denoising results on the SIDD val-
idation dataset. In contrast to R2R, our CVF-SID is directly ap-
plicable to sRGB images. N2V and N2S fail to restore the clean
image, and R2R loses the details evidenced in the yellow patch.

vances in convolutional neural networks (CNN), the lat-
est denoising methods have achieved dramatic performance
compared to the traditional algorithms. Specifically, those
methods resort to supervised learning on the large-scale
synthetic dataset, where noise is simply modeled with ad-
ditive white Gaussian (AWGN) [9, 11, 20, 33, 35].

Nevertheless, recent studies [3, 12] have observed that
the denoising models learned on synthetic images do not
generalize well on practical examples. The primary rea-
son for this issue is that real-world noise distribution differs
from the synthetic AWGN. To deal with this limitation, few
attempts have been made to acquire realistic noisy-clean im-
age pairs [1] in the wild. Still, this process is challenging
and sometimes unavailable as it requires multiple shots un-
der the same static scene with several constraints.

Advanced methods overcome the lack of paired images
by adopting novel un-/self-supervised frameworks. The
generation-based approaches [13, 16] utilize unsupervised
adversarial training. They first generate noisy samples from
a set of clean images by imitating the noise distribution of
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the target dataset. Then, a denoising model can be trained
in a supervised manner with the generated noisy-clean im-
age pairs. Nevertheless, they require appropriate clean im-
ages that are not always available due to domain differences
between noisy and clean images. Rather than using clean
ground-truth data, Noise2Noise (N2N) [21] uses two noisy
images taken from the same scene and configuration. While
N2N shows comparable performance with the supervised
methods, it is less practical as multiple noisy images under
the same scene are required.

As an alternative solution, several strategies [4, 14, 18,
24, 25, 27] have been proposed to train their methods on
noisy images only. To generate feasible input-target pairs
from a single noisy image, these recent approaches try to
synthesize two independent noisy images from the input.
However, these methods are usually constructed by assum-
ing a specific distribution, e.g., AWGN, or less practical
configurations for the underlying noise. Such an assump-
tion limits their practical applications where the assump-
tion does not hold. For instance, recent Recorrupted-to-
Recorrupted (R2R) [25] is not applicable to sRGB inputs
directly, while digital images are usually stored using sRGB
color space. Also, this method requires additional prior
knowledge, e.g., a pre-trained model with provided noise
level function (NLF) [22] by Raw-RGB images, on real-
world noise, which is not trainable using sRGB images only.

To mitigate the limitations mentioned above, we present
a self-supervised denoising method for the real-world sRGB
images. To this end, we propose a novel cyclic multi-variate
function (CVF), which disentangles its input into several
sub-components and retakes a combination of its outputs
as an input. We utilize CVF to design our self-supervised
image disentangling model (CVF-SID) for sRGB image de-
noising. Under various self-supervised training objectives,
our CVF-SID can learn to disentangle the noise-free im-
age, signal-dependent and signal-independent noises from
a given noisy sRGB input. Furthermore, we propose a self-
supervised data augmentation strategy for CVF-SID to ef-
fectively increase the number of training samples. Our main
contributions can be summarized as follows:

• We introduce CVF-SID, a novel self-supervised
method for image denoising based on our defined
cyclic multi-variate function (CVF). CVF-SID disen-
tangles a given real-world noisy input to clean image,
signal-dependent, and signal-independent noises.

• For fully self-supervised CVF-SID, we propose vari-
ous training objectives and an augmentation strategy.

• Experimental results demonstrate that our CVF-SID
achieves superior denoising performance among sev-
eral un-/self-supervised methods on real-world sRGB
images as shown in Figure 1 and is comparable with
the other approaches.

Figure 2. The proposed Cyclic multi-Variate Function (CVF).
Our CVF f takes a combination g (s1X, s2Y, s3Z, . . .) of multi-
ple variables as an input and outputs the decomposed variables.

2. Related work
Traditional approaches on image denoising such as

NLM [5], BM3D [9], WNNM [11], NC [19], K-SVD [28],
or EPLL [15] adopt non-learning-based formulation. Re-
cently, deep learning has demonstrated impressive perfor-
mance on image denoising. In general, they can be catego-
rized based on the way how the network is trained.

2.1. Training on paired noisy-clean images

In general, supervised denoising networks are trained on
synthetic noisy-clean images, where the noise is assumed to
be additive white Gaussian (AWGN) of a certain level [6,8].
DnCNN [33] is the first CNN-based approach for image
denoising, which introduces residual learning and outper-
forms the traditional methods. FFDNet [34] further pro-
poses a fast and flexible solution to handle various noise
levels within a single model by taking a noise map as an
additional input. However, the conventional methods do
not generalize well on real-world applications due to do-
main discrepancy between realistic and synthetic noise. To
overcome this limitation, several approaches such as CBD-
Net [12], RIDNet [3], or DIDN [32] train their methods on
realistic noisy-clean pairs [1]. Nevertheless, gathering well-
aligned noisy-clean pairs from the real-world scenes is chal-
lenging and not very practical, as it requires huge human
labor under controlled environments [26].

2.2. Training on unpaired noisy-clean images

To overcome the limitations of the supervised ap-
proaches, generation-based methods aim to synthesize
noisy samples from clean images in an unsupervised man-
ner [10]. They first try to simulate realistic noise in the
adversarial training framework and then train a denois-
ing model on the generated noisy-clean pairs. GCBD [7]
is the first generation-based method for blind denoising.
However, it is not applicable to real-world scenarios since
the method considers additive noise only, while real-world
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Figure 3. Overview of our CVF-SID framework. (a) We employ the network fθ to disentangle the clean image, signal-dependent, and
signal-independent noises from a noisy input image. In our cyclic network, we feed the outputs of our network again to the network to
ensure that each output is pure and does not have the information of the other outputs. (b) We also feed some self-supervised augmented
images to our network to better estimate the distribution of each noise and improve the performance.

noise is not. Further, UIDNet [13] employs an image
sharpening technique to estimate arbitrary noise distribu-
tion in real-world cases. Recent C2N [16] tries to explic-
itly consider signal-independent, dependent, and spatially-
correlated noise in their generation framework. However,
such methods require clean images to generate the corre-
sponding noisy images, which is not applicable when the
scene distribution of the noisy images is not matched to the
existing clean samples.

2.3. Training on paired noisy-noisy images

To alleviate the issues of generation-based approaches,
some researchers tried to train their network on paired
noisy-noisy images instead of paired noisy-clean or un-
paired noisy-noisy images in an un-/self-supervised man-
ner. Noise2Noise (N2N) [21], as a weakly supervised learn-
ing on image denoising, proposes to use several noisy im-
ages instead of ground truth images. While it can achieve
comparable results with supervised methods, taking sev-
eral independent noisy images from the same scene is also
very difficult in real-world cases. Noise2Void (N2V) [18]
and Noise2Self (N2S) [4] use a blind-spot learning to avoid
learning the identity function without availability of paired
images. These approaches remove the center pixel of each
receptive field and predict it with other neighboring pixels.
However, ignoring some pixels leads to the loss of some
useful information and reduces the performance [1].

Noisier2Noise [24] is designed to handle spatially cor-
related noises by learning on noisy-noisy pairs. Neverthe-
less, it requires additional information, e.g., the underlying
noise distribution, which is a less practical assumption to be
applied to real-world inputs. Self2Self (S2S) [27] is pro-
posed on blind denoising to generate paired data from a
single noisy image by applying Bernoulli dropout. Later,

Neighbor2Neighbor [14] proposes to create sub-sampled
paired images based on pixel-wise independent noise as-
sumption. Recorrupted-to-Recorrupted (R2R) [25] expands
the concept of Noisier2Noise [24] toward real-world scenar-
ios. However, R2R resorts to the Gaussian noise assumption
when no raw information is provided for a given noisy input
image, which prevents its practical applications on digital
noisy sRGB images. In contrast, our CVF-SID method can
be trained on noisy sRGB images directly without generat-
ing pseudo noisy-noisy pairs.

3. Method

We introduce the concept of our CVF and construct our
self-supervised denoising model, CVF-SID, on the formu-
lation. For convenience, we denote clean and noisy images
as Ic, In ∈ RH×W , respectively, where the image has a
spatial resolution of H×W . Color channels, i.e., RGB, are
omitted for simplicity. We represent signal-dependent and
independent noise maps as Nd and Ni, respectively, where
they have the same dimension to In.

3.1. Cyclic multi-Variate Function

We define a cyclic multi-variate function (CVF) f as a
mapping from g (X,Y, Z, . . .) to [X,Y, Z, . . .], where X ,
Y , Z, . . . are vectors and g is a combination function.
Therefore, the function can take its outputs as an input again
by combining the output values, as shown in Figure 2. Also,
for a set of scalar values [s1, s2, s3, . . .], a decomposition of
g (s1X, s2Y, s3Z, . . .) should be [s1X, s2Y, s3Z, . . .]. By
utilizing the aforementioned attributes of CVF, we aim to
learn a denoising model in a self-supervised manner.
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b)  Noise Generator

Subtraction

Figure 4. Overview of our network architecture fθ .

3.2. Self-supervised image denoising using CVF

In general, a noisy image In can be expressed as a func-
tion of the clean image Ic, signal-dependent noise map Nd,
and the signal-independent noise map Ni [29] as follows:

In = Ic + Iγc Nd +Ni, (1)

where γ is a parameter regarding the correlation between
the signal and the corresponding noise term. Previous meth-
ods [27,33] have designed their model to take a single noisy
image and reconstruct its clean counterpart, i.e., f (In) =
Ic. In contrast, we utilize the concept of CVF to design our
network fθ with learnable parameters θ for disentangling
the given noisy image In into the aforementioned three
components Ic, Nd, and Ni as shown in Figure 3a. Follow-
ing the notation in Section 3.1, we denote the noisy image
In as g (s1Ic, s2Nd, s3Ni), where s1 = s2 = s3 = 1.

After decomposing the given noisy image into the clean
image and the noise components, we exploit their statistical
properties to construct a self-supervised cycle. For practi-
cal reasons, we assume that the noise maps Nd and Ni are
zero-mean [23] and spatially invariant with unknown distri-
butions. Moreover, we suppose that two elements in each
pairs of (Ic, Nd), (Ic, Ni), and (Nd, Ni) are independent.
In other words, Ic, Nd, and Ni do not contain the infor-
mation of each other. We note that Nd is a spatially in-
variant noise map that acts as a scaling factor in the signal-
dependent noise term Iγc Nd.

Under such assumptions, fθ decomposes a given noisy
image In as follows:

fθ (In) =
[
f clean
θ (In) , f

dep
θ (In) , f

indep
θ (In)

]
=

[
Îc, N̂d, N̂i

]
,

(2)

where Îc, N̂d, and N̂i denotes predicted clean image, signal-
dependent noise, and signal-independent noise terms, re-
spectively. Since we do not use any noisy-clean image pairs,
it is not possible to apply direct supervisions to the outputs
of the function, and it is not guaranteed that fθ disentangle
these components perfectly.

Therefore, to train our model in a self-supervised man-
ner, we feed the outputs Îc, N̂d, and N̂i again to the same
network fθ with shared parameters θ. Then, we constrain
the second outputs, e.g., fθ(Îc), based on their desired prop-
erties. Since a predicted noise-free image Îc should not
contain any noise, regardless of the signal dependency, it
can be modeled as Îc = g(Îc,0,0), where s1 = 1 and
s2 = s3 = 0. Here, we use 0 to represent an H ×W array
of zeros. Therefore, given a predicted clean image Îc as an
input, our fθ has to generate the following outputs:

fθ(Îc) =
[
Îc, 0̂, 0̂

]
, (3)

where the predicted output noise maps N̂d and N̂i should
be zeros which are denoted as 0̂.

Our another assumption is derived from the observa-
tion that an image corrupted by the signal-dependent noise
only should be decomposed to Îc and N̂d or equivalently
Îc + Îγc N̂d = g(Îc, N̂d,0), where s1 = s2 = 1 and
s3 = 0. Then, the network fθ should predict zero as a
signal-independent term as follows:

fθ(Îc + Îγc N̂d) = fθ(Î
dep
n ) =

[
Îc, N̂d, 0̂

]
, (4)

where Îdep
n is a predicted signal-dependent noisy image.

For a given pure signal-independent part N̂i, we can re-
gard that the corresponding clean image part is zero. In
other word, we can rewrite N̂i = g(0, ∗, N̂i), where s1 = 0
and s3 = 1. Here, (∗) denotes that we do not care about
the signal-dependent part. Therefore, our fθ should predict
the same noise N̂i for the signal-independent path, and also
zero for the clean image branch as follows:

fθ(N̂i) =
[
0̂, ∗, N̂i

]
, (5)

where we cannot identify the signal-dependent part (∗) as
the predicted clean image should be zero.

Lastly, we simulate virtual synthetic noisy images by
combination of predicted outputs Îc, N̂d, and N̂i with the
various scalar factors (s1, s2, s3) as shown in Figure 3b.
Therefore, we generate the augmented inputs by setting
s1 = 1 and selecting s2 and s3 from {−1, 0, 1} and apply
the fθ as follows:

fθ(Î
aug
n ) =

[
Îc, s2N̂d, s3N̂i

]
, (6)

where Îaug
n = Îc + s2Î

γ
c N̂d + s3N̂i. This approach oper-

ates like self-supervised data augmentation, where no extra
samples are required.
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3.3. Network architecture

We employ a CNN model with sequential layers as the
learnable fθ as shown in Figure 4. Our model consists of
two parts: the clean image generator and the noise gener-
ator. Given a noisy image, we employ DnCNN [33] with-
out the skip connection and batch normalization layers (BN)
as the clean generator which aims to reconstruct the corre-
sponding noise-free output Îc. Then, we subtract the output
from the noisy input image and feed this noise signal, i.e.,
In−Îc, to sequential convolutional layers with two branches
to estimate Nd and Ni, respectively. We provide more de-
tails in the supplementary material.

3.4. Loss functions for self-supervised learning

To train our network fθ, we define a set of loss functions
based on statistical behaviors of general noise. First, we de-
fine the consistency loss Lcon to ensure the combination g of
outputs Îc, N̂d and N̂i converges to noisy input as follows:

Lcon = ∥In − g (fθ (In))∥ . (7)

For simplicity, we use ∥·∥ to represent the L2 norm.
Moreover, we construct the identity loss Lid based on our

inter-dependency assumption as follows:

Lid =
∥∥∥Îc − f clean

θ (Îc)
∥∥∥+

∥∥∥Îc − f clean
θ (Îdep

n )
∥∥∥

+
∥∥∥N̂d − f dep

θ (Îdep
n )

∥∥∥+
∥∥∥N̂i − f indep

θ (N̂i)
∥∥∥ . (8)

When our network takes a denoised image Îc as an input,
we expect the model to predict the same image as output
without any noise terms. We also define similar loss training
objectives for images corrupted with pure signal-dependent
noise Îdep

n and the predicted signal-independent noise N̂i to
construct our identity loss Lid.

On the other hand, we design the zero loss Lzero to satisfy
the constraints in Eq. 3, Eq. 4, and Eq. 5 as follows:

Lzero =
∥∥∥f dep

θ (Îc)
∥∥∥+

∥∥∥f indep
θ (Îc)

∥∥∥
+
∥∥∥f clean

θ (N̂i)
∥∥∥+

∥∥∥f indep
θ (Îdep

n )
∥∥∥ . (9)

While Eq. 7, Eq. 8, and Eq. 9 provide several constraints
for our self-supervised framework, we further introduce a
regularization term to avoid trivial solutions, e.g., zero-
valued noise. Our assumption is that the variance of the
predicted noise should be positive. Inspired by the patch-
based local estimation [23], we first approximate the noise
variance from the given image by averaging the variances
of M small patches Ijn as follows:

Var(Ijn) ≈ Var(Îjc + Îjγc N̂ j
d) + Var(N̂ j

i )

= C2γ
j σ̂2

j,d + σ̂2
j,i = C2γ

j σ̂2
d + σ̂2

i ,
(10)

where σ̂2
j,∗ = Var(N̂ j

∗ ) for ∗ = d or i. We assume that
an ideal clean image is approximately constant for a j-th
patch, i.e., Ijc ≈ Cj and Var(Ijc ) ≈ 0, for a small local
region. Also, we assume that Nd and Ni are spatially un-
correlated, which means that σ̂2

j,∗ = σ̂2
∗ is a constant in the

image space. Accordingly, we define the regularization loss
Lreg to prevent the estimated noise map from having zero-
variance, i.e., trivial solution, as follows:

Lreg =
1

M

∥∥∥∥∥∥
M∑
j=1

Var(Ijn)−
M∑
j=1

C2γ
j σ̂2

d −Mσ̂2
i

∥∥∥∥∥∥. (11)

Our regularization loss Lreg in Eq. 11 is constructed based
on an assumption that outputs of the network fθ are inde-
pendent to each other.

Finally, we define the augmentation loss Laug for each of
the augmented data in Eq. 6 as follows:

Laug =
∥∥∥f clean

θ (Îaug
n )− Îc

∥∥∥+
∥∥∥f dep

θ (Îaug
n )− s2N̂d

∥∥∥
+

∥∥∥f indep
θ (Îaug

n )− s3N̂i

∥∥∥ , (12)

where we calculate Eq. 12 for all possible combinations of
s2 and s3 in the augmented sample Îaug

N . Our total training
objective Ltotal is defined by the summation of all aforemen-
tioned loss functions as follows:

Ltotal = Lcon + Lid + Lzero + Lreg + λaugLaug. (13)

4. Experiments
In this section, we first discuss the datasets as well as de-

tailed configurations used to train our CVF-SID framework.
We then describe comprehensive experimental results and
extensive comparisons with the other methods.

4.1. Dataset

We train and evaluate our method on two datasets, in-
cluding real-world noisy images: SIDD [1] and DND [26].
Smartphone Image Denoising Dataset (SIDD) [1] is one
of the representative real-world datasets which contains
well-aligned noisy-clean image pairs for training. We use
sRGB images from the SIDD-Medium dataset for training,
including 320 noisy-clean image pairs. For evaluation, val-
idation and benchmark splits are used that each contains 32
patches of size 256×256 from 40 images where no ground-
truth clean images are provided for the benchmark track.
Darmstadt Noise Dataset (DND) [26] benchmark consists
of 50 noisy images captured with consumer-grade cameras
of various sensor sizes. Each image is cropped into 20
patches of size 512 × 512, where total 50 × 20 = 1, 000
samples are provided for evaluation. Compared to the SIDD
dataset, images in the DND dataset are captured under nor-
mal lighting conditions and therefore contain weaker noise.
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Type of supervision Training data Method SIDD DND
PSNR SSIM PSNR SSIM

Supervised
Paired noisy/clean

MLP [6] 24.71 0.641 34.23 0.833
TNRD [8] 24.73 0.643 33.65 0.830
DnCNN [33] 23.66 0.583 32.43 0.790
DnCNN+ [33] 32.59 0.861 37.90 0.943
CBDNet [12] 33.28 0.868 38.05 0.942
RIDNet [3] 38.70 0.950 39.25 0.952
DIDN [32] 39.82 0.973 39.62 0.954

Unsupervised
Unpaired noisy/clean

GCBD [7] - - 35.58 0.922
UIDNet [13] 32.48 0.897 - -
C2N [16] 35.35 0.937 36.38 0.887

Paired noisy/noisy R2R [25] 34.78 0.844 - -

Self-supervised
Paired noisy/noisy

N2V [18] 27.68 0.668 - -
N2S [4] 29.56 0.808 - -
NAC [30] - - 36.20 0.925

Single noisy
CVF-SID (T) (Ours) 34.43 0.912 36.31 0.923
CVF-SID (S) (Ours) 34.51 0.916 36.49 0.924
CVF-SID (S2) (Ours) 34.71 0.917 36.50 0.924

Table 1. Quantitative comparison of real-world sRGB image denoising on SIDD and DND benchmark datasets. We compare CVF-
SID with other denoising methods in terms of PSNR and SSIM. T, S, and S2 refer to different training strategies discussed in Section 4.3.

Input Noisy BM3D [9] NC [19] N2V [18] N2S [4] DnCNN [33] R2R [25] CVF-SID (Ours)

Figure 5. Qualitative comparison of different denoising methods on SIDD benchmark.

4.2. Training details

During the training, we construct a mini-batch of size
64, which contains 40 × 40 random crops of training im-
ages. Random flip and rotation augmentation is applied
to increase the number of effective training samples. The
learning rate is set to 10−4, where ADAM [17] optimizer
is used to update the learnable parameters. For all of our
experiments, we fix γ = 1 in Eq. 1. To apply the regres-

sion loss Lreg in Eq. 11, we densely extract 6 × 6 patches
for each pixel in input images to calculate the approximated
variance. In Eq. 13, we set λaug = 0.1 to calculate the to-
tal loss Ltotal. We adopt peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM) as evaluation metrics for
quantitative comparison. All experiments are done using
PyTorch 1.7.1 and Quadro RTX 8000 GPUs. We note that
the inference time is about 10ms on average for a given
256×256 input image with only the clean image generator.
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Input Noisy

DnCNN+ [33]
31.34dB / 0.834

C2N [16]
28.37dB / 0.629

NAC [30]
31.23dB / 0.853

CVF-SID (Ours)
31.84dB / 0.832

Input Noisy

DnCNN+ [33]
34.51dB / 0.946

C2N [16]
33.67dB / 0.927

NAC [30]
34.21dB / 0.934

CVF-SID (Ours)
34.74dB / 0.951

Figure 6. Visual comparison of different denoising methods on DND benchmark. DnCNN+ [33], C2N [16], and NAC [30] are
supervised, unsupervised, and self-supervised methods, respectively. We report PSNR/SSIM of each result w.r.t. clean ground-truth image.

4.3. Evaluation on real-world sRGB datasets

We evaluate our CVF-SID on real-world sRGB noisy im-
ages from SIDD validation, SIDD benchmark, and DND
benchmark datasets. For the SIDD and DND benchmarks,
we submit the denoising results to websites for server-side
evaluation. To evaluate our model on the three different
datasets, we leverage three different training strategies. We
refer each of them to T, S, and S2, respectively.
Training on SIDD-Medium dataset (T). In the first sce-
nario, we train our CVF-SID on noisy images from the
SIDD-Medium dataset. The learned model is then evalu-
ated on three datasets.
Training on test dataset (S). Since CVF-SID is fully self-
supervised, we can train our model on the same dataset used
for evaluation. Therefore, we train our method on three
evaluation datasets, respectively, and test each of them us-
ing the same dataset. Since the noise distribution of training
and test samples are matched, such a strategy leads to better
adaptation to the evaluation datasets.
Double-denoising on test dataset (S2). After training on
the test dataset (S), we apply our learned CVF-SID to the
test images to acquire denoised images. Then, we use the
denoised images as a new dataset to double-train the second
CVF-SID. The final denoised results are restored by two
successive CVF-SID models on the original noisy images.

Table 1 shows extensive comparisons between sev-
eral supervised, un-/self-supervised denoising methods on
SIDD and DND benchmarks. We note that (T), (S), and (S2)
denote our different training strategies described above, re-
spectively. Interestingly, CVF-SID (S) slightly outperforms
CVF-SID (T), which is trained on a large SIDD-Medium
dataset. This observation validates the advantage of our
method, which can be directly trained on test sRGB im-
ages without requiring Raw-RGB data or a large number
of training samples. Moreover, evaluation of CVF-SID (T)
on DND (trained on SIDD, tested on DND) shows the gen-
eralization ability of CVF-SID for out-of-domain (or cross-
domain) image denoising. Furthermore, we show that CVF-

SID can be trained in a recursive fashion (S2) on the actual
test dataset to achieve better denoising performance. With-
out using any clean images, CVF-SID (S2) outperforms sev-
eral un-/self-supervised methods on both SIDD and DND
benchmarks. Figure 5 and 6 show qualitative comparisons
between different denoising methods on these datasets.

The first row of Figure 5 shows that N2S and DnCNN
cannot reconstruct characters, while BM3D and N2V can-
not perfectly remove noise. In contrast, our CVF-SID can
remove unpleasant noise while preserving text details. In
the fourth row, we can see that NC and R2R cannot pre-
serve detailed textures while ours can. On the left side of
Figure 6, the proposed CVF-SID can reconstruct detailed
textures while removing the noise. We note that NAC can-
not preserve the original colors compared to the other meth-
ods. On the right side, our CVF-SID can preserve edges
while suppressing noise from the input.

We also evaluate CVF-SID on SIDD validation dataset
using three different training strategies as shown in Table 2.
Our approach performs much better than the existing self-
supervised methods and unsupervised method C2N [16]
and even achieves comparable performance to recent unsu-
pervised R2R [25]. A major merit of CVF-SID compared to
R2R [25] and other self-supervised approaches is that we do
not generate any paired auxiliary noisy images. Also, we do
not assume any specific distribution regarding the unknown
noise signals, making our method more generalizable.

As a result, our approach can be applied to sRGB im-
ages directly while R2R requires Raw-RGB images for pre-
training. We note that Raw-RGB color space contains more
information than sRGB, and thus using Raw-RGB samples
usually yields better performance than the pure sRGB con-
figuration [1, 2, 26]. Since most digital images are stored in
the sRGB format, our CVF-SID can handle more general
inputs than R2R. In Figure 7, we visualize how CVF-SID
decomposes the given noisy image into the clean image,
signal-dependent, and signal-independent noises. We attach
more visual comparisons in the supplementary material.
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Method PSNR SSIM

Non-learning based

BM3D [9] 25.65 0.475
WNNM [11] 26.20 0.693
NC [19] 31.31 0.725
MCWNNM [31] 33.40 0.815

Unsupervised
C2N [16] 34.08 -
R2R [25] 35.04 0.844

Self-supervised

N2V [18] 29.35 0.651
N2S [4] 30.72 0.787
CVF-SID (T) 34.51 0.941
CVF-SID (S) 34.67 0.943
CVF-SID (S2) 34.81 0.944

Table 2. Quantitative comparison of real-world denoising on
sRGB images in SIDD validation dataset.

In Ic Îc N̂d N̂i

Figure 7. Decomposition results of our CVF-SID (S) on the
SIDD validation dataset. For better visualization, the noise maps
N̂d and N̂i are normalized to [0, 1].

4.4. Ablation study

In this section, we conduct some ablation studies to eval-
uate the performance of our proposed method better.
Ablation on the loss function. As we have discussed in
Section 3.4, we use various types of self-supervised loss
terms to train our self-supervised CVF-SID. Table 3 iden-
tifies the effect of each loss function for the training. While
the consistency term Lcon is necessary to train our model,
the identity loss Lid brings a significant performance gain
and stabilize the learning process.
Effect of the augmentation. To validate the effect of the
proposed self-supervised augmentation strategies in Eq. 12,
we also train our CVF-SID without and with the augmen-
tation sets A and B in Figure 3b. Table 4a shows the effect
of each augmentation set, where set B brings about 0.2dB
improvements in the denoising performance.
Ablation on γ correlation. Following Torricelli et al. [29],
we set the correlation parameter γ in Eq. 1 to 1 to represent

Loss PSNR SSIMLcon Lid Lzero Lreg

✓ − − − 33.10 0.923
✓ ✓ − − 34.24 0.942
✓ ✓ ✓ − 34.29 0.940
✓ ✓ ✓ ✓ 34.43 0.942

Table 3. Effect of loss terms for our CVF-SID (S) on the SIDD
validation dataset. We note that Laug in Eq. 13 is not used. Please
refer to Section 3.4 for more details about each training objective.

Aug. PSNR SSIMA B

− − 34.43 0.942
✓ − 34.48 0.943
✓ ✓ 34.67 0.943

(a) Effect of the augmentations.

γ PSNR SSIM

0.25 34.45 0.942
0.50 34.46 0.942
1.00 34.67 0.943
1.50 34.66 0.943

(b) Effect of the correlation γ.

Table 4. Effects of different hyperparameters for CVF-SID (S)
on the SIDD validation dataset. (a) An overview of the augmen-
tation sets A and B is illustrated in Figure 3b. (b) We find the best
correlation parameter γ by grid search.

pure multiplicative noise. Since real-world noise may ex-
hibit more complex behavior, we conduct an ablation study
regarding appropriate value for γ. Table 4b shows that
CVF-SID achieves the best under the pure multiplicative
assumption, i.e., γ = 1, while increasing the value does not
change the performance much.

5. Conclusion

We propose CVF, a novel cyclic multi-variate function
that decomposes an input under the cyclic procedure. Then,
we utilize CVF to design our self-supervised CVF-SID de-
noising framework, which aims to learn a CNN to disen-
tangle the signal-dependent, signal-independent noises and
clean image from a real-world noisy sRGB input. The pro-
posed approach does not rely on any prior information about
the noise distribution, thus more generalizable than previ-
ous self-supervised denoising methods. Extensive studies
demonstrate several strengths and superiority of our for-
mulation compared to the others. One remaining limita-
tion is that we resort to a fixed correlation parameter γ in
our framework, while the correlation may vary for different
images in real-world applications. This results in a sub-
optimal decomposition, as shown in some examples of Fig-
ure 7, where there exists little correlation between the im-
age and signal-dependent noise term. In our future work,
we will also aim to learn the correlation parameter in a self-
supervised manner while extending the concept of CVF to-
ward various computer vision tasks.
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