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Figure 1. Synthesizing listeners. Given a speaker video, we extract the audio and motion of the speaker. From these multimodal speaker
inputs, our method synthesizes multiple realistic listener 3D motion sequences (top and bottom) in an autoregessive fashion. The output of
our approach can be optionally rendered as photorealistic video.

Abstract

We present a framework for modeling interactional com-
munication in dyadic conversations: given multimodal inputs
of a speaker, we autoregressively output multiple possibili-
ties of corresponding listener motion. We combine the mo-
tion and speech audio of the speaker using a motion-audio
cross attention transformer. Furthermore, we enable non-
deterministic prediction by learning a discrete latent repre-
sentation of realistic listener motion with a novel motion-
encoding VQ-VAE. Our method organically captures the mul-
timodal and non-deterministic nature of nonverbal dyadic
interactions. Moreover, it produces realistic 3D listener fa-
cial motion synchronous with the speaker (see video). We
demonstrate that our method outperforms baselines quali-
tatively and quantitatively via a rich suite of experiments.
To facilitate this line of research, we introduce a novel and
large in-the-wild dataset of dyadic conversations. Code, data,
and videos available at https://evonneng.github.io/
learning2listen/.

1. Introduction
“Thus the body of the speaker dances in time with his
speech. Further, the body of the listener dances in
rhythm with that of the speaker!”

— CONDON AND OGSTON, 1966

When we speak, it is rarely in a void — rather, there is
often a listener at the other end of the conversation. As a
speaker, we are acutely aware of what the listener is doing.
A slight off-sync motion or a diverted look may throw us
off, suggesting the listener is bored or otherwise preoccu-
pied, leaving us feeling misunderstood [36]. Indeed, success-
ful conversations rely on a coordinated dance between the
speaker and the listener in which the two signal to each other
that they are communicating with one another and not with
anyone else [36]. This chameleon effect [12] of nonverbal
mimicry during conversation results in smoother interactions,
increases the liking between interaction partners, establishes
rapport [38], and may even predict the long term outcome of
psychotherapy [49]. Interestingly, nonverbal feedback from
a listener, such as head movement is more central to keep-
ing a conversation flowing than content-based replies [11].
In this work, we propose a computational framework that
can similarly provide nonverbal feedback in response to a
speaker in a contextual and timely manner. Such an ability
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is critical for virtual agents to meaningfully interact with
humans, for whom nonverbal communication is central from
infancy [54].

Modeling nonverbal feedback during dyadic interaction is
a difficult problem, as listener responses are nondeterminis-
tic in nature. Moreover, speakers are inherently multimodal,
as they communicate both verbally via speech, and nonver-
bally via face and body motion. Capturing interaction in its
natural setting requires addressing both challenges. The task
of modeling human conversations has a long history. How-
ever, unlike traditional rule-based methods [5, 10, 22, 29] or
methods that rely on modeling hand-defined simple motion
characteristics such as smiles [51] or head nods [22, 29], we
wish to model the true complexity of the interaction. This is
hard to achieve and generalize using conventional database
methods that generate motion via a lookup into a database
of ground truth motion [35, 52, 58]. We, therefore, learn to
model these dyadic conversational dynamics implicitly in a
data-driven way by directly observing human conversations
in in-the-wild videos.

Given a video of a speaker, we extract their speech audio,
and facial motion (Figure 1(left)). We combine information
from both modalities using a motion-audio cross-attention
transformer. From this multimodal speaker input, we learn
to autoregressively synthesize multiple modes of motion
representing different possible responses of a listener who
moves synchronously with the speaker (Figure 1(right)).

Modeling the nondeterminism in listener responses is a
key element in capturing conversational dynamics. Previous
attempts to tackle this problem applied various techniques
but fell short of achieving realistic outputs [33]. We propose
to learn a realistic manifold of listener motion by quantizing
the space of listener motion with a novel sequence-encoding
VQ-VAE [56], which efficiently captures a wide range of
motion in a discrete format that is well-suited for learning.
To the best of our knowledge, we are the first to extend VQ-
VAE models to the domain of motion synthesis. The learned
discrete codebook of listener motion allows us to predict a
multinomial distribution of future motion. From this distribu-
tion we can sample a wide range of possible modes of motion
representing different perceptually-plausible listeners, cap-
turing their inherent non-deterministic nature. Furthermore,
we demonstrate our learned discrete latent codes can stay
on the manifold of realistic motion ensuring no motion drift
occurs even in long-horizon predictions. Meanwhile, the
autoregressive nature of our method allows us to consider
speaker sequences of any length.

To support our data-driven approach to modeling hu-
man conversation, data is needed in the form of video-
taped dyadic interactions where both parties are ideally
filmed from a head-on frontal view. This kind of data is
hard to come by. While the first investigation of interac-
tional synchrony in conversation dates back to Condon and

Ogston in 1966 [15], current studies still mostly rely on in-
lab footage [13, 19, 24, 29] or small-scale motion-capture
datasets [7, 33]. Notable exceptions are [17, 44], yet the
footage has not been made publicly available. We collect a
large-scale source of data in the form of split-screen recorded
online interviews where the speaker and listener are captured
in frontal view. Our dataset, which consists of 72 hours of in-
the-wild conversations, enables the investigation of dyadic
communication using the latest machine learning methods.

We evaluate the synthesized listener motion compared to
ground truth as well as baseline methods and ablations via
an extensive quantitative study. We employ a wide array of
metrics to test the realism and diversity of the synthesized
motion, and the synchronization of the listener’s motion
with that of the speaker. While measuring realism and di-
versity centers on the generated motion of the listener in
isolation, synchrony captures aspects of the dyad as a whole.
We further corroborate our qualitative findings by inviting
human observers to evaluate our results. While we assess
our method using the raw 3D mesh output, we additionally
illustrate our results by translating the 3D output to pixels
for viewing purposes only, as synthesized video provides a
richer perceptual context. Under both quantitative and qual-
itative measures, our method significantly outperforms all
baselines. Our synthesized listeners were deemed plausible
by human observers when compared to ground-truth motion.
This highlights our method’s ability to produce realistic-
looking motion that is synchronous with a given speaker.

Our main contribution is in our learning-based approach
towards understanding human interactional communication
in conversation. We combine multimodal speaker inputs via
motion-audio cross-attention. We extend vector quantiza-
tion to the domain of motion synthesis and learn a quan-
tized space of motion in which we autoregressively predict
multiple modes of perceptually realistic listener motion. To
support future endeavors in this direction we publicly re-
lease a novel dataset of 72 hours of in-the-wild dyadic con-
versational videos with detailed 3D annotations capturing
subtleties in expression and fine-grain head motion.

2. Related Work
We discuss related works concerned with conversational

agents and motion synthesis. For a review of interactional
motion in human communication, see supplementary.
Interactional Motion in Conversational Agents. Prior
works on conversational avatars manually incorporated dif-
ferent aspects of interactional motion [5,10,22,29,53]. These
approaches designed rule-based methods to generate agents
that can interact via appropriate facial gestures [22, 29, 53],
speech [10], or a combination of modalities [5]. All these
methods use lab-recorded motion capture sequences. These
either limit the variety of captured gestures, or rely on sim-
plifying assumptions for motion generation which do not
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hold for in-the-wild data.
Prior data-driven methods predict the 2D motion of one

person in a conversation as a function of the other’s mo-
tion [17,44]. These require a pre-defined dictionary achieved
by clustering motion frequencies or 2D facial keypoints
from the training set. Rather, we reason in 3D and learn a
discretized latent space that captures the manifold of facial
motion. Other methods using 3D investigate interactional
dynamics while focusing on full 3D body motion and turn
taking [2, 34]. Others tackle the problem of facial gestures
in conversation by simplifying the task to predicting head
nods [2], estimating head pose [23], or generating a sin-
gle image of a facial expression that summarizes the entire
speaker sequence [30, 44]. In contrast, our method captures
the natural complexity of interactions by considering the full
range of facial expressions and head rotations.

Recent methods began generating 3D facial motion with
additional inputs from the listener such as text [14] or
speech [32, 33]. Most similar to our approach is that of
Jonel et al. [33], who propose a Glow-based method [25,37].
However, their method takes as input the full temporal con-
text of listener audio and is reported to perform better with-
out any audio input. In contrast, our method does not use
any listener audio as additional input. Additionally, we quan-
titatively demonstrate that each of the input modalities is
essential to its performance.

Conditional Motion Synthesis. Gestural motion synthesis
has previously relied on convolutional auto-encoders to learn
a representation of human motion [17, 20, 33, 34, 43]. Some
methods incorporated an adversarial loss [20, 43] or exper-
imented with flow models [33] and other sampling-based
methods [17] to generate more diverse and realistic motion.
Recent works demonstrated the success of using transform-
ers in generating diverse motion with long-range dependen-
cies [9, 39,40, 48]. These generate possible motion segments
conditioned on action [48], 3D human motion trajectory in
a scene conditioned on a goal [9], or dance motion from
audio [39, 40]. Similarly, we employ a transformer-based
predictor for conditional motion synthesis. Additionally, to
the best of our knowledge, we are the first to demonstrate
the benefits of using vector quantization (VQ-VAE [56]) to
achieve improved motion synthesis results. In essence, rather
than relying on the addition of Perlin noise [47] for improved
realism, we learn the fine details of realistic motion in a data-
driven way.

3. Method
Our goal is to model the conversational dynamics between

a speaker and a listener. To test whether our model captures
the subtleties of face-to-face communication, we synthesize
the interactional motion responses of the listener, which are
known to be essential to the flow of conversation [12,36,38].
We define the following task: given the 3D facial motion
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Figure 2. Overview: We predict a distribution over future listener
motion conditioned on multimodal inputs from a speaker. We use
cross-modal attention to fuse the speaker audio and motion input,
and a novel sequence-encoding VQ-VAE to discretize past listener
motion. Our autoregressive Predictor outputs a distribution over the
K discrete codebook indices, from which we sample a code for the
next timestep. We obtain the continuous future listener motion by
decoding the sampled codebook index.

and audio of the speaker, we autoregressively predict the
corresponding facial motion of the listener.

To represent the ongoing flow of conversation, we define
a transformer-based predictor, P , that learns to model tem-
porally long-range patterns in the input sequence (Sec. 3.4).
The predictor takes two inputs: one corresponding to the
speaker and the other to the listener (Figure 2). To model the
speaker’s audio and facial motion, we introduce a motion-
audio cross-modal transformer that learns to fuse the two
modalities (Sec. 3.3). To represent the manifold of realistic
listener facial motion, we extend VQ-VAE [56] to the domain
of motion synthesis and learn a codebook of a discrete latent
space (Sec. 3.2). This discrete representation enables us to
predict a multinomial distribution over the next timestep of
motion. Thus, the output of the autoregressive predictor is a
distribution over possible synchronous and realistic listener
responses, from which we can sample multiple trajectories.

3.1. Problem Definition

Let F = {fi}Ti=1 be a temporal sequence of facial motions
fi. We use FS and FL to denote the motion of the speaker
and listener respectively. For each timestep t ∈ [1, T ], we
take as input a speaker’s facial motion FS

1:t = (fS1 , · · · , fSt )
and their corresponding speaker audio sequence AS

1:t, along
with any previously predicted past listener motion F̂L

1:t−1, if
available. Our predictor, P , then autoregressively predicts
the corresponding listener facial motion one time-step at a
time:

f̂Lt = P(FS
1:t,A

S
1:t, F̂

L
1:t−1), (1)

where P learns to model the distribution over the next
timestep of listener motion

p(f̂Lt |FS
1:t,A

S
1:t,F

L
1:t−1). (2)

To obtain speaker-only audio, we filter out all listener
audio back-channels using sound source separation [45]. To

20397



represent the motion, we estimate the 3D facial expressions
and orientations from video frames of human conversations
using a 3D Morphable Face Model (3DMM) [4, 8, 41, 46].
3DMMs are parametric facial models that allow us to directly
regress disentangled coefficients corresponding to facial ex-
pression, head orientation, and identity-specific shape from
a single image [60]. This process results in facial expres-
sion coefficients βt ∈ Rdm , where dm is the dimension
of the expression coefficient, a normalized 3D head pose
Rt ∈ SO(3), and shape coefficents that we discard to obtain
an identity-agnostic representation. Our facial representation
at time t, ft ∈ Rdm+3, is a concatenation of expression and
orientation (in Euler angles):

ft = [βt, Rt]. (3)

We normalize facial orientation by computing the mean
frontal face direction per video (i.e., orientation at rest pose)
and align all head poses in the sequence with respect to this
rest pose. This allows us to achieve a camera-view agnostic
representation. In contrast to the 2D representations used in
some prior works [17, 44], our 3D representation is invariant
to changes in facial shape, scale, and camera pose, allowing
us to generalize across new faces and camera viewpoints.

3.2. Quantized Listener Motion Codebooks

We extend the use of VQ-VAE [56] to produce multiple
realistic modes of different listener responses. VQ-VAE was
originally proposed as a method to learn a quantized code-
book of image elements from which images could be syn-
thesized autoregressively. Convolutional architectures were
used both for learning the codebook and for recombining the
discrete elements into images [56]. While the synthesis step
was later replaced by transformer architectures that can learn
long-range connections [16], image-generation approaches
employ a convolutional encoder-decoder pair. This is well-
suited for images but not for temporal sequences where con-
volving over the temporal domain may lose high-frequency
information. We design a novel sequence-encoding VQ-VAE
where we utilize transformers for the encoder-decoder pair.
To the best of our knowledge, we are the first to apply a
VQ-VAE to the domain of motion generation.

The advantages of this method are three-fold: (1) it allows
us to predict a multinomial distribution over future motion
from which we can sample many possible output modes, (2)
using the learned discrete latent codes allows us to stay on
the manifold of realistic motion ensuring no drift occurs (a
problem for methods that directly regress continuous out-
puts [3]), and (3) it produces realistic motion that captures
high-frequency movements.

Specifically, we train a VQ-VAE transformer encoder E
and decoder D. To handle the temporal nature of the input,
we learn to model longer listener motion sequences in terms
of shorter temporal components. Rather than considering

static expressions/rotations independently, the latent embed-
ding covers multiple frames, allowing it to learn motion dy-
namics. The latent embedding represents motion segments
of temporal window size w ≪ T from a discrete codebook
Z = {zk}Kk=1, where zk ∈ Rdz , that we jointly learn with
E and D. Z maps each of the K codebook entries to a dis-
crete code element of dimension dz . As shown in Figure 3,
we can then approximate any raw listener motion segment
x = FL

1:T ∈ RT×(dm+3) of length T in three steps. First,
we encode the sequence ẑ = E(x) ∈ Rτ×dz , where τ = T

w
is the length of the patch-wise encoded sequence. Second,
we obtain the quantized sequence, zq, via an element-wise
quantization function q(·) that maps each element of the
encoded sequence ẑ to its closest codebook entry:

zq = q(ẑ) :=
(
argmin
zk∈Z

∥ẑt − zk∥
)
∈ Rτ×dz . (4)

Finally, the reconstruction x̂ ≈ x is given by:

x̂ = D(zq) = D(q(E(x))). (5)

We train E,D and the codebook with the loss function [56],

LVQ(E,D,Z) = ∥x− x̂∥
+ ∥sg[E(x)]− zq∥
+ ∥sg[zq]− E(x)∥,

(6)

where ∥x − x̂∥2 is a reconstruction loss, sg[·] is a stop-
gradient operation, and ∥sg[zq]−E(x)∥22 is a “commitment
loss” [56]. After learning the codebook of listener motion,
we use the pretrained encoder to quantize the listener motion
input to the predictor (Figure 2).

3.3. Cross-Modal Attention for Speaker Input

From the speaker, we take as input both audio a =
AS

1:t+w, and facial motion m = FS
1:t+w. Here, w is the

amount of additional future context we see from the speaker.
This context acts as a feedback delay that is beneficial in
improving learned synchrony for robotics [57]. In contrast
to the listener motion, we do not quantize the speaker inputs.
While we experimented with both options, we found that
speaker motion quantization did not improve results, and
quantizing the audio deteriorated the results significantly.
We conclude that while quantization is beneficial for pre-
dicted motion, for the quality of results as well as sampling
capabilities, it is not advantageous for input modalities.

We learn to fuse the audio and motion modalities together
using cross-modal attention. Cross-model attention of text
and audio [1] or language and vision [31, 42, 55] has been
shown to outperform early or late fusion. We extend its use
to successfully fuse information from motion and audio, a
task that proved difficult to previous approaches [33]. We
additionally experimented with a naive method of concate-
nating audio and motion, but this resulted in empirically
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Figure 3. Motion VQ-VAE that learns a discrete listener motion codebook. The input is a T length sequence of raw listener facial motion
(expression coefficients and 3D head rotations). The transformer sequence-encoder E compresses the input into an embedding that gets
mapped to its closest quantized codebook element in Z . The transformer decoder D decodes the quantized embedding into an approximate
reconstruction of the input. We train on a reconstruction loss and commitment loss (Eq. 6). Not only does the VQ-VAE allow us to learn a
representation robust to drift from autoregressive inference, it also enables non-deterministic motion synthesis.

worse results due to overly-long conditioning sequences.
Applying cross-modal attention along a temporal sequence
also allows different modalities to discover some tempo-
ral re-alignment [1]. This is especially helpful for encoding
speaker inputs since a speaker’s motion may not always align
with their speech (e.g. delay for dramatic effect).

We compute the Queries Qa for the cross-modal attention
operation from the audio input, and the Keys Km and Values
Vm from the motion. We then apply a series of cross-modal
attention blocks on the motion modality, where the audio
queries are always computed from the raw audio:

attentionm→a = softmax
(QaK

⊤
m√

dk

)
Vm. (7)

Here, dk is the transformer hidden dimension. The cross-
modal transformer outputs an intermediate embedding that
incorporates information from both the audio and motion
of the speaker. Additional convolutional layers temporally
downsample the sequence to match the size of the quantized
listener sequence. The final speaker encoding is an embed-
ding m′ ∈ R(τ+1)×dk . We experimentally verify that this
method of fusion outperforms others (Table. 1).

3.4. Listener Motion Predictor

We design a transformer-based predictor module, P , to
capture long-range correlations in the input data. Building
off [40], we employ full-attention masking on the inputs,
which has shown promising results in generating long-range
motion in an auto-regressive manner. However, with our
discrete latent code representation, our model is additionally
able to capture multiple modes of outputs by predicting
the distribution of possible next motions. Furthermore, we
enable multi-modal inputs by means of cross-attention.

P takes as input the multimodal speaker embedding m′

as well as the sequence of previously predicted listener mo-
tion. Rather than representing the listener quantized motion
as a sequence of codebook vectors zq, for the purpose of
prediction we use the parallel representation of a sequence
of corresponding codebook indices, s = s1:τ ∈ {1, ...,K}τ .
Specifically, we discretize past continuous listener motion

x = FL
1:t by encoding it via the pre-trained encoder E and

quantization q (Section 3.2). We then obtain the sequence
of indices of the nearest codebook entry per element, via
I(·), an element-wise inverse-lookup function that returns
the index of a given codebook element

s1:τ = I(q(E(x))). (8)

Given speaker input m′ and listener input s1:τ , the pre-
dictor outputs p(sτ+1) ∈ RK , the multinomial distribution
of the next listener codebook index across the K entries:

p(sτ+1) = P(m′, s1:τ ). (9)

We can then sample from p(sτ+1) to obtain an index
k into the codebook Z . We perform a codebook lookup
to retrieve the corresponding quantized element zk of lis-
tener motion, which we pass through the decoder D. The
output is the predicted continuous future listener motion
ŷ = F̂L

t+1:t+1+w of length w. We train our network with a
cross entropy loss on the codebook index sτ+1:

LP = Ey∼p(y)[− log(p(sτ+1)], (10)

where the target codebook index at τ + 1 is computed from
ground truth future facial motion y = FL

t+1:t+1+w.
At train time, we follow teacher-forcing and use ground

truth listener motion y as past listener input. We randomly
mask prior timesteps ∈ [1, τ ] to facilitate autoregressive
learning. At test time we input zeros for timesteps without
prior listener predictions, and adjust the masking to ignore
these timesteps. This allows us to autoregressively predict
future listener motion for arbitrary length input. No ground
truth past listener motion is seen by the network at test time.

4. In-the-wild Conversational Dataset
Due to the recent COVID-19 pandemic, videotaped inter-

views have migrated towards teleconferencing platforms that
feature a split-screen panel with the host on one side of the
screen and interviewee on the other. This setup is especially
advantageous for studying face-to-face communication since
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Figure 4. Synchrony of expressions between speaker and listener measured by PCC across a sequence. We convert the expression sequence
to a 1D lip curvature time-series according to [21]. Ours best matches the synchrony seen in ground truth. NN produces sequences that are
too synchronous with the speaker. a+m and m fail to follow the major trends seen in ground truth, such as periods of (a) high synchrony
when both the listener and speaker are laughing, and (b) low/no synchrony when the speaker speaks and the listener continues smiling.

both individuals directly face the camera. To cover a broad
range of expressions from diverse settings and people, we
extract the facial motion and audio for 72 hours of videos
from 6 YouTube channels. Each channel features a plethora
of interviewees and hosts from a variety of backgrounds.

We leverage a state-of-the-art facial expression extraction
method, DECA [18], to recover the 3D head pose and expres-
sion coefficients from in-the-wild videos. DECA estimates
the pose, expression, and shape parameters according to the
FLAME 3DMM [41]. The 3DMM defines 50 expression
coefficients along with a 3D jaw rotation (dm = 53), and
3D head rotation in Euler angles as described in Sec. 3.1.
For audio, we use sound-source separation [45] to isolate
the speaker’s voice. We use these expressions, poses, and
speaker-only audio as pseudo ground-truth to train our code-
book (Eq. 6) and prediction model (Eq. 10). See Supp. for
details. We release this large-scale, novel dataset.

5. Experiments
We evaluate our model’s ability to effectively translate

the speaker’s audio and motion into corresponding listener
motion. We employ an extensive set of quantitative metrics
to measure the realism, diversity, and synchrony of the lis-
tener’s facial motion. Further, we perform a perceptual study
to corroborate quantitative results. All evaluations are done
against the raw ground truth listener motion y. We discuss
person-agnostic listener models in Supp.

Implementation Details. We use w = 8, T = 64, K = 200,
dz = 256, t = 32. We add random masking of input past lis-
tener motion. While we train on many different input speaker
identities, each codebook and predictor model is trained on
a specific listener (e.g. person-specific listener behavior for
any speaker input). For all, we use a train/val/test split of
70%/20%/10%. Quantitative results are aggregated over all
listener models. At test-time, we use nucleus sampling [28].

To improve the visual perceptibility of our results, we also
train a person-specific mesh-to-pixel visualization module

to directly translate 3DMM predictions to a picture of the
listener (Figure 1). See Supp. and video. However, since
photorealistic generation is not the main focus of our work,
all evaluations are done on the 3D mesh reconstructions,
which are the direct outputs of our model.

5.1. Experimental Setup

Evaluation Metrics. Quantifying motion realism is a diffi-
cult problem that cannot be reduced to a single metric. We
thus evaluate our predictions along multiple axes based on
a composition of metrics from prior work. Our evaluation
suite is based on the notion that good listeners should display
(1) realistic and (2) diverse motion that is (3) synchronous
with the motion of the speaker. We assess expression and
rotation separately according to these three pillars:
• L2: Distance to ground truth expression coefficients/pose.
• Frechet distance for realism: Motion realism measured by
distribution distance between generated and ground-truth
motion sequences following [40]. We directly calculate the
Frechet distance (FD) [27] in the expression space RT×dm

or the head pose space RT×3 on the full motion sequence.
• Variation for diversity: Variance in motion across a se-
quence. We calculate the variance across the time series
sequence of expression coefficents or 3D rotations.
• SI for diversity: Diverseness of predictions. As in [59],
we empirically run k-means to cluster all listener expres-
sions/rotations from training set. We compute avg. entropy
(Shannon index) of the cluster id histogram of predicted
sequences. k = 15, 9 for expression, rotation, respectively.
• Paired FD for synchrony: Quality of listener-speaker
dynamics measured by distribution distances on listener-
speaker pairs (P-FD). Calculated FD [27] on concatenated
listener-speaker expression RT×(dm+dm)/ pose RT×(3+3).
• PCC for synchrony: Pearson correlation coefficient (PCC),
popular metric used to quantify global synchrony in psychol-
ogy [6, 50]. Measures how a listener covaries with a speaker
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Expression Rotation

L2 ↓ FD ↓ variation SI P-FD ↓ PCC L2 ↓ FD ↓ variation SI P-FD ↓ PCC
(103) (103) ( 102) (102)

GT 2.90 2.61 0.09 0.81 1.96 0.008
NN motion 45.76 20.66 2.79 2.36 21.94 0.02 6.44 2.78 0.90 1.91 4.06 0.006
NN audio 52.67 31.98 2.70 2.41 33.81 0.02 7.61 5.54 0.93 2.01 6.87 0.007
Random 54.58 43.53 2.76 2.49 45.25 0.01 8.14 6.51 0.90 1.94 7.83 0.005
Median 43.18 64.48 0.00 0.00 64.77 - 6.35 15.50 0.00 0.00 15.50 -
Mirror 53.90 43.56 3.73 2.99 75.30 1.00 7.80 6.01 1.22 1.99 16.88 1.000
Delayed Mirror 53.95 43.79 3.78 2.88 76.72 0.98 7.82 5.99 1.31 1.93 16.96 0.999
LFI [33] 50.07 43.63 1.15 1.33 54.34 0.89 9.00 9.80 0.17 1.07 12.36 0.034
Random Expression 129.34 524.69 62.23 1.17 526.46 0.00 27.67 257.06 62.39 1.06 257.16 0.002
Ours Random Walk 52.68 40.45 1.99 2.26 42.55 0.01 7.14 5.74 0.60 1.37 7.79 0.001
Ours 33.16 3.55 2.01 2.48 5.15 0.07 4.75 0.81 0.62 1.82 0.87 0.008

Table 1. Baselines. Comparison against ground truth annotations (GT) on in-the-wild data. ↓ indicates lower is better; for no arrow, closer to
GT is better. We bold best performances that are statistically significant. For FD and P-FD, results shown in units indicated above.

over a 1D time series. We calculate lip curvature [21] to
measure smile synchrony (Fig. 4). For rotation, we measure
synchrony in up/down head motion (nods).
• TLCC for synchrony: We further analyze the leader-
follower relationship between our generated listeners and
the input speakers by calculating the time lagged cross corre-
lation (TLCC) [6]. For x ∈ [0, 60] frames (up to 2s) we shift
the speaker forward by x frames and calculate the correla-
tion on the delayed speaker and corresponding listener. The
peak correlation indicates when the two time series are most
synchronized. We also use this analysis to find the optimal
delay for Mirror Delay baseline below.

Baselines. We compare to the following baselines:
• NN motion: A segment-search method commonly used for
synthesis in graphics. Given an input speaker motion, we
find its nearest neighbor from the training set and use its
corresponding listener segment as the prediction. We found
NN on the full 64-frame sequence to work better than NN
on smaller subsequences that are then interpolated together.
• NN audio: Same as above, but we find NN via audio
embeddings obtained from a pretrained VGGish [26] model.
• Random: Return a randomly-chosen 64-frame motion se-
quence of a listener from the training set.
• Median: Simple yet strong baseline exploiting prior that
listener is often still. Median expression/pose from train set.
• Mirror: Return the speaker’s motion smoothed.
• Delayed Mirror: Here we mirror the speaker’s smoothed
motion delayed by 17 frames (≈ 0.5 s). While [17] delayed
by 90 frames, we analytically found the optimal lag accord-
ing to time lagged cross correlation as discussed above.
• Let’s Face It (LFI) [33]: SOTA interlocutor-aware 3D
avatar generation re-trained on our data. Details in Supp.
• Random Expression: Walk over 3DMM space; returns a
random face at each timestep.
• Ours Random Walk: Walk over codebook indices.

5.2. Quantitative Results

Table 1 shows our proposed method outperforms all other
competing methods across a variety of metrics. Overall,
Ours achieves the best balance of performance across the
various metrics. Rather than evaluating on L2 performance
alone, our full suite of metrics provides a well-rounded view
of the qualities of good listeners. For instance, while Me-
dian performs competitively against Ours on L2, it suffers
in terms of motion diversity (variation, SI). As a result, this
baseline produces less realistic listeners, as noted by our
realism metrics (FD, P-FD). However, more variation in the
facial gestures is not necessarily better. While NN motion,
NN audio, and Random produce diversity similar to real
motion, the expression synchrony (PCC) for these baselines
is severely lacking. The incongruous listeners hinder the re-
alism of the dyad as a whole (P-FD). That said, a mime that
mirrors the speaker like Mirror and Mirror Delay looks
uncanny due to excessive variation and synchrony. Ours
delicately balances realism, diversity, and synchrony.

The weaker performance of LFI [33] demonstrates the
advantages of our approach. LFI [33] was far less robust
when re-trained on our in-the-wild data. Unable to learn
realistic listener motion, LFI [33] defaulted to mirroring
the speaker, resulting in excessively high synchrony (PCC)
and worse realism (FD, P-FD). Even when evaluated on the
LFI [33] dataset, ours outperforms. These results and visual
comparisons in Supp.

Additionally, we quantitatively demonstrate a major ad-
vantage of our method’s VQ-VAE in learning a robust and
realistic manifold of listener motion. Ours Random Walk
is competitive against Random, where we sample full se-
quences of real motion. It significantly outperforms Random
Expression, where we randomly sample static expressions
and rotations at each timestep. This demonstrates that ran-
dom walks along the codebook still produce realistic motion,
though it may not be in sync with the speaker.

Finally, the average TLCC calculated for GT and Ours
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Expression Rotation

audio motion VQ CA L2 ↓ FD ↓ variation SI P-FD ↓ PCC L2 ↓ FD ↓ variation SI P-FD ↓ PCC
(103) (103) ( 102) (102)

GT 2.90 2.61 0.09 0.81 1.96 0.008
NoVQ a+m ✓ ✓ ✗ ✓ 36.06 16.60 0.55 1.69 18.49 0.05 4.99 3.64 0.17 1.21 3.78 0.006
m ✗ ✓ ✓ - 38.32 4.10 1.91 2.46 5.69 0.12 5.47 0.96 0.57 1.80 1.02 0.009
a ✓ ✗ ✓ - 39.37 4.11 1.93 2.47 5.86 0.06 5.80 0.91 0.61 1.78 0.98 0.007
a+m ✓ ✓ ✓ ✗ 38.05 4.01 1.93 2.45 5.67 0.11 5.50 0.87 0.58 1.84 0.93 0.009
Full ✓ ✓ ✓ ✓ 33.16 3.55 2.01 2.48 5.15 0.07 4.75 0.81 0.62 1.82 0.87 0.008

Table 2. Ablations. Effect of ablating key components of our method. ↓ indicates lower is better; for no arrow, closer to GT is better. CA
denotes cross-attention. We bold best performances that are statistically significant. For FD and P-FD, results shown in units indicated above.

were both ≈ 17 frames, both reflecting an average listener
response time of ≈ 0.5s. As mentioned above, we use this re-
sponse time as the optimal delay for Mirror Delay baseline.
See Supp. for full analysis.

Model Ablations. Table 2 quantifies the contributions of
each component of our method. In NoVQ a+m, we remove
the VQ-VAE and use raw listener motion as the input and
output representations. NoVQ a+m produces unrealistic,
overly smoothed sequences. Adding the VQ-VAE gives a
significant performance boost, which further confirms the
importance of the codebook in generating realistic motion.
Furthermore, we demonstrate that utilizing both audio and
motion as input a+m via concatenation slightly improves
performance over using just one or the other (a and m).
However, Ours achieves a more substantial improvement
when combining both modalities via cross-attention (CA).
See Supp. for details of ablation architectures.

5.3. Qualitative Results

To corroborate our quantitative results and gain insight
into how our synthesized listeners perceptually compare to
real motion, we conducted an A/B test on Amazon Mechani-
cal Turk. Since all quantitative trends were consistent across
all listener identities, we randomly chose a single identity for
the evaluation. We visualized listener motion using videos
of grayscale 3D facial meshes.

Participants watched a series of video pairs. In each pair,
one video was generated from our model; the other was
produced by an ablation or a baseline. Participants were
then asked to identify the video containing the listener that
looks like they are listening and paying more attention to the
speaker. Videos of 8 seconds each of resolution 849× 450
(downsampled from 1132 × 600 in order to fit two videos
vertically stacked on different screen sizes) were shown,
and after each pair, participants were given unlimited time to
respond. Since the most tell-tale moments for when a listener
is truly listening are during defining moments (speaker tells
a joke, shares a sad story, etc.) that illicit strong responses,
we manually curated such notable moment sequences from
our held-out test data. We then randomly sampled 50 from
these sequences and predicted a corresponding listener 3D
facial motion sequence using each method. For every test

sequence, each A/B comparison was made by 3 evaluators.
We compared our strongest baseline NN motion and abla-

tion a+m to our proposed model and recorded the percentage
of times our method was preferred over the baseline mod-
els or vice versa. Ours significantly outperformed. 75.3%
of the total 150 evaluators preferred Ours over NN, and
71.1% preferred Ours over a+m. These statistics reflect the
quantitative trends in Table 2. Furthermore, in a comparison
against avatars rendered from ground truth listeners, evalua-
tors preferred Ours 50.1% of the time. This highlights the
perceptual realism of our predicted listener motion.

6. Discussion

In this work, we explored the synchronicity of motion
between a speaker and a listener. To this end, we employ a
motion-audio cross-attention transformer to handle the mul-
tiple modalities of speaker inputs. Furthermore, we enable
non-deterministic motion synthesis with a VQ-VAE. Trained
on a novel, in-the-wild dataset of dyadic conversations, our
method autoregressively outputs convincing 3D listener fa-
cial motion that correlate with a given speaker.

While videotaped teleconferencing data lends itself to
data collection, it has inherent limitations (e.g. no eye con-
tact, time delays introduced by remote connections, etc.). A
future direction would be to apply this study to in-person
conversations, which would allow us to incorporate gaze.
Furthermore, as we only model listener motion in response
to a speaker, modeling the full dyadic cycle of back-and-
forth effect remains for future work. While our goal is to
understand conversational dynamics, we discuss concerns
for misuse of this technology in Supp. Please see Supp. for
result video, per-listener results, implementation details, ab-
lation architectures, multiple mode output evaluation, etc.
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