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Abstract

We present a method that can recognize new objects and
estimate their 3D pose in RGB images even under partial
occlusions. Our method requires neither a training phase
on these objects nor real images depicting them, only their
CAD models. It relies on a small set of training objects
to learn local object representations, which allow us to lo-
cally match the input image to a set of “templates”, ren-
dered images of the CAD models for the new objects. In
contrast with the state-of-the-art methods, the new objects
on which our method is applied can be very different from
the training objects. As a result, we are the first to show
generalization without retraining on the LINEMOD and
Occlusion-LINEMOD datasets. Our analysis of the failure
modes of previous template-based approaches further con-
firms the benefits of local features for template matching.
We outperform the state-of-the-art template matching meth-
ods on the LINEMOD, Occlusion-LINEMOD and T-LESS
datasets. Our source code and data are publicly available
at https://github.com/nv-nguyen/template-pose.

1. Introduction
3D object pose estimation has significantly improved

over the past decade in terms of both robustness and ac-
curacy [17, 29, 33, 19, 43]. In particular, the robustness
to partial occlusions has greatly increased [27, 16, 23], and
the need for large amounts of real annotated training images
has been relaxed thanks to domain transfer [1], domain ran-
domization [35, 18, 30], and self-supervised learning [32]
techniques that leverage synthetic images for training.

Nevertheless, the use of image-based 3D object pose es-
timation remains limited in the industry, despite its huge
potential for robotics and augmented reality. Scalable in-
dustrial applications would, for example, require the abil-
ity to handle arbitrary, previously-unseen objects with-
out retraining and with access only to the objects’ CAD
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Figure 1: Our method can estimate the 3D pose of new ob-
jects in query images by matching them with templates cre-
ated from their 3D models. These new objects can be very
different from the ones, and can be partially occluded in
the query images.

models, thus saving both training and data capture time.
While a few works have already tackled this challenging
task [30, 28, 38, 2], most of them impose some additional
constraints by assuming that the new objects belong to a
known category [37], remain similar to the training ones as
in the T-LESS dataset [30], or have prominent corners [28].

By contrast, template-based approaches [38, 2] offer the
promise of generalizing to arbitrary new objects by learning
an image embedding used to match the input image to a se-
ries of templates generated from their CAD models. Unfor-
tunately, their use with new objects has been demonstrated
only anecdotally, and we show in our experiments that these
methods struggle in this challenging scenario, particularly
in the presence of occlusions. We indeed notice that the

6771



global representations used in [38, 2] to compare the in-
put image to the CAD-generated templates have two limi-
tations. First, they generalize poorly to new objects in the
presence of a cluttered background, and result in inaccurate
pose estimation even for uniform background. Furthermore,
they are ill-suited to handle occlusions.

These observations motivate us to keep the 2D structure
of the images for a template-based approach. More pre-
cisely, given a small set of training objects, we learn local
features that can be used to reliably match real images and
synthetical templates. Relying on local features allows us
to discard the background: While the object’s mask in the
input image is not available at run-time, we can use the tem-
plate’s mask, thus solving the first limitation of global rep-
resentations. Note that using the template’s mask to instead
remove the background in the real image before computing
the image global representation requires us to recompute the
input image representation for each template, which would
result in very slow matching.

As will be shown by our experiments, using local fea-
tures also results in much more accurate poses. This can be
explained by the fact that we do not use pooling operations,
which remove critical information about the poses, espe-
cially for new objects. Finally, yet another advantage is that
our method can be robust to partial occlusions. To do so, we
introduce a measure to evaluate the similarity between two
images that explicitly takes into account the object’s mask
in the template and the possible occlusions in the query im-
age.

We demonstrate the benefits of our approach on
the LINEMOD [11], Occlusion-LINEMOD [3], and T-
LESS [13] datasets. It consistently outperforms previous
works [38, 2, 31, 30] on new objects by a large margin. In
summary, our contributions are:

• A failure-case analysis of previous template-based
methods when testing on new objects;

• A method that can predict the pose of new objects from
their CAD models, without training on these objects
nor restricting these objects to be similar to the training
ones;

• A method robust to occlusions even in the challenging
scenario when objects are both new and occluded.

2. Related Work

Our goal is to develop a method able to estimate the 3D
pose of previously-unseen objects while having access only
to their 3D model. It should be noted that early approaches
to 3D pose estimation already targeted this goal [21]. How-
ever, these approaches, based on image edges and object
contours, proved to be very fragile. As discussed below,
with the use of deep learning, methods have become much
more robust but typically require many training images.

Pose estimation for known objects. Many 3D object
pose estimation methods use a deep model trained on real
images or synthetic renderings of these objects, [17, 29, 19,
33, 20, 43, 25, 15]. Some also show remarkable robustness
to partial occlusions of the objects [23, 27, 16]. Such an ap-
proach however requires long expensive training and data
acquisition/generation time, which we would like to avoid.
For example, the state-of-the-art method [18] on standard
benchmarks [14] requires almost a day on 32 GPUs for
training. While some works have attempted to reduce the
burden of registering real images by learning to generate
new images from real ones [26], their cost remains too cum-
bersome for many practical applications.

Category-level pose estimation. One way to avoid re-
training on new object instances is to consider object cat-
egories, and train a model on target categories that will gen-
eralize to new instances of these categories [44, 37]. While
such an approach can be useful in some applications, such
as scene understanding, in many others, the new objects do
not belong to a known category. By contrast, our approach
generalizes to new objects that bear no similarity in shape
with the known objects used to train the initial model.

Unseen object pose estimation. [38] proposed to learn
discriminative representations of templates, which are im-
ages of objects associated with the corresponding 3D poses.
Pose estimation could then be achieved by matching the
input image against these templates in an image-retrieval
manner. In this context, [2] then showed how to obtain
more discriminative representations. While the ability to
consider unseen objects by using their 3D models seems to
be the motivation for these works, this was only superfi-
cially demonstrated, and our experiments show that these
methods perform poorly on unseen objects.

More recently, [30] proposed an extension of [31] to gen-
eralize to unseen objects. This method introduces a novel
architecture with multiple decoders to adapt to different ob-
ject types. While their results indeed show generalization
to unseen objects, these objects must remain similar to the
training ones. As a consequence, this method has been
demonstrated only on the T-LESS dataset, which depicts
different kinds of electrical appliances that bear strong vi-
sual similarities.

In any event, as we will discuss in detail in Section 3.1,
these methods rely on a global representation of the tem-
plates. We will show that our local representation-based
framework has significant advantages in terms of general-
ization to new objects and of robustness to occlusions.

[28] also considers local representations but in a way that
is very different from us: [28] learns to detect specific 2D
object locations in the image together with a descriptor for
each such location to match them with 3D points on the ob-
ject’s 3D model. This matching, however, is done indepen-
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dently for each location, making it highly ambiguous, and
resulting in a combinatorial matching cost and frequent fail-
ures. By contrast, we extract local representations in a grid
structure and learn to match all local input and template rep-
resentations jointly. To achieve this, we rely on contrastive
learning, which we discuss below.

A different and interesting take was proposed in [42],
where the embedding of the object’s 3D model was used
as input in addition to the input image to predict the 3D
pose. However, this work considers only pose regression
and assumes the object is already known in order to use the
right 3D model.

Contrastive learning. Given a collection of images, con-
trastive learning aims to learn an embedding space where
similar images are close to each other while dissimilar ones
are far apart. [12, 39, 24, 34, 9, 5] leverage unlabeled im-
ages and strong data augmentation to learn powerful image
features that achieve results competitive with those of su-
pervised learning on various downstream tasks.

In our context, [41] exploits a form of contrastive learn-
ing, leveraging the pose labels to learn a pose-aware em-
bedding space for class-agnostic 3D object pose estimation.
One limitation of [41] is that different objects can be mixed
with each other in the embedding space, thus making it im-
possible to recognize the correct object instance from the
input image. Moreover, like [42], [41] does not attempt to
recognize the object.

By contrast, [38, 2] rely on contrastive learning to learn
an embedding space that is variant to both the object pose
and the object instance. To this end, they rely on a triplet
loss for learning object-discriminative features, together
with a pairwise loss for pose-discriminative features. Simi-
larly, we use contrastive learning to extract a discriminative
feature representation, but we show that the InfoNCE [24]
loss is the most simple and effective choice. Our ex-
periments also show that most of the performance of our
method in terms of generalization and robustness to occlu-
sions come from our use of local representations.

3. Method
Our goal is to recognize new objects in color images and

predict their 3D poses. We do this by matching the color
image of the object with a set of templates. A template is a
rendered image of a 3D model in some 3D pose. For each
new object, the template set contains many templates, ren-
dered from different views sampled around its 3D model.
As the templates are annotated with the object’s identity
and pose, the method returns the identity and pose of the
template most similar to the input image.

The challenge then is to measure the similarity between
templates and input images. This should be done reliably
despite that no real images of the new objects have been
seen beforehand, the objects can be partially occluded, the
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Figure 2: Understanding the influence of background
on different image representations, with T-SNE visual-
izations of the image representations learned by [2] (first
row) and by our method (second row) for real images of
LINEMOD objects. For a given column, all the plots have
the same scale for comparison.

lighting differs between the templates and the real images,
and the object’s background is cluttered in the real images.

In this work, motivated by the better repeatability and ro-
bustness to occlusions of local representations compared to
global ones, we measure the similarity between an input im-
age and a template based on local image features extracted
using a deep model. We train this model using pairs made
of a real image and a synthetic image from a small set of
training objects. Note that these training objects can be very
different in appearance from the new objects.

We start this section with an analysis of the limits of
global representations in Section 3.1. We then detail in
Section 3.2 our training procedure. It relies on a similar-
ity measure that compares the local features of real images
and synthetic templates. At run-time, we use an extended
version of this similarity function that explicitly estimates
which local features in the input image are occluded and
discards them. We discuss this in Section 3.3. Finally, we
detail how we generate the templates in Section 3.4.

3.1. Motivation and Analysis

Here, we present two experiments that point out the main
drawbacks of global representations in template matching
when working with unseen objects.

3.1.1 Cluttered Background

A first drawback of global representations is their poor abil-
ity to represent unseen objects on cluttered backgrounds. To
show this, we plot in Figure 2 the t-SNE visualization [36]
of the global representations learned by [2] and local repre-
sentations learned by our method for real images of training
and new objects of the LINEMOD dataset.
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Figure 3: At training time, we use pairs made of a real image and a synthetic template to train a network to compute local
features, from which the similarity between the two images can be predicted. At run-time, we apply this network to images
of objects not seen during training to compute their local features. We can then retrieve the object pose by matching the
image against the database of templates.

The first column of Figure 2 shows that both representa-
tions manage to cluster the images of each training object
together, despite the fact that the images of the objects are
captured with a cluttered background. The second column
shows that global representations of [2] cannot disentangle
the images of unseen objects, while our representations can.
To better understand the reason behind this, we remove the
background in the images by replacing it with a uniform
color using the ground-truth object masks. As shown in
the third column, the representations are now disentangled.
This shows the influence of the background on the global
representations for unseen objects, and that our representa-
tions are robust to cluttered backgrounds.
3.1.2 Pose Discrimination
A second drawback of global representations is their poor
reliability when matching the real image of an unseen ob-
ject with the synthetic template for the corresponding 3D
pose, even when the object identity is known and the back-
ground is uniform. This can be explained by the fact that
the pooling layers remove important information. This in-
formation loss appears to be compensated by the rest of the
architecture for the training objects, but this compensation
does not generalize to unseen objects.

To show this, we visualize in the supplementary mate-
rial the correlation between pose distances and representa-
tion distances for unseen objects, as done in [38, 2]. While
both representations result in a strong correlation for train-
ing objects, this correlation is lost when considering un-
seen objects for the global representations but not for ours.
Even without background, the correlation is still very low
for global representations [2].

3.2. Framework

In each training iteration, we sample N positive pairs,
where pair i is composed of a real image qi depicting a

training object and of a synthetic template ti of the same ob-
ject in a similar 3D pose. Following [38], we deem the two
viewpoints similar if the angle between them is less than 5
degrees. All the pairs composed by a real image and a syn-
thetic image of different objects or dissimilar poses (larger
than 5 degrees) are defined as negative pairs.

Triplet loss. [38] proposed a metric learning approach
based on the intuition that the distance between feature de-
scriptors for positive pairs should be closer in the learnt em-
bedding space than negative pairs. To learn this property,
[38] used a training loss L = Ltriplet + Lpair where:

• Ltriplet is the triplet term, which allows the network
to learn features such that the distance in the learned
embedding space between the positive pairs ∆

(i)
+ is

lower than the distance between the negative pairs ∆(i)
−

within the limits of the margin m. This triplet term is
defined as

Ltriplet =

N∑
i=1

max

(
0, 1−

∆
(i)
+

∆
(i)
− +m

)
(1)

• Lpair =
∑N

i=1 ∆
(i)
+ is the pairwise term, to minimise

distances between two images of identical poses but
different viewing conditions.

[2] made an extension of this work by proposing a triplet
loss which focuses only on learning object-discriminative
features while using a pairwise loss to learn an embedding
space analogous to the pose differences.

While these two losses work well, we experimentally
show that the recent standard contrast loss InfoNCE [24]
is the most simple and effective choice.

InfoNCE loss. For each real image qi, we also create
N − 1 negative pairs by combining it with synthetic tem-
plates tk of other pairs in the current batch, with 1 ≤ k ≤
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N, k ̸= i. Altogether, this yields N positive pairs and
(N − 1) × N negative pairs for each batch. We train our
model to maximize the agreement between the representa-
tions of samples in positive pairs, while minimizing that of
negative pairs with the InfoNCE loss function [24]:

L = −
N∑
i=1

log
exp (sim(qi, ti)/τ)∑N

k=1 1[k ̸=i] exp (sim(qi, tk)/τ)
, (2)

where sim(q, t) measures the similarity between the local
image features q and t computed by the deep model for
real image q and template t, and τ = 0.1, is a temperature
parameter. As shown in Figure 3, q and t retain a grid struc-
ture and are 3-tensors. In practice, their dimensions depend
on the size of the input image, ranging from 25× 25×C to
28× 28× C, with C = 16.

Local feature similarity. While previous works on con-
trastive learning [24, 34, 22, 4, 9, 7, 5, 6] focused mostly
on image classification and define the similarity metric
sim(., .) using a global representation of the two images,
we found such a representation to only classify well either
known objects or images with a clean background, as dis-
cussed in Section 3.1.1. To effectively handle new objects
and complex backgrounds, we use a metric based on a pair-
wise comparison of the local features in q and t. Specifi-
cally, we define

sim(q, t) =
1

|M|
∑
l

M(l)S
(
q(l), t

(l)
)
, (3)

where S is a local similarity metric, M is a 2D binary vis-
ibility mask for template t, and index l indicates a 2D grid
location. q(l) and t

(l) are thus local features of dimension
C. Considering the template mask allows us to discard the
background in the real image. Note that the mask does not
account for possible occlusions in the real image as it corre-
sponds to the object’s silhouette in the template. Occlusions
will be considered in the next subsection. As a local simi-
larity metric S, we use the cosine similarity

S
(
q(l), t

(l)
)
=

q(l)

||q(l)||
· t

(l)

||t(l)||
, (4)

We empirically observed that measuring the similarity as
the opposite of the L1 and L2 norms of the differences
yields the same performance as the cosine similarity.

3.3. Run-time and Robustness to Occlusions

At run-time, given a real query image q, we retrieve the
most similar template in a template set. To be robust to
occlusions that can occur in the query image, we modify
sim(q, t) as:

sim∗(q, t) =
1

|M|
∑
l

M(l)O(l)S
(
q(l), t

(l)
)
, (5)
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Figure 4: Illustration of feature similarity when not using
the occlusion mask O (second row) and when using it. As
discussed in Section 3.3, using O allows “turning off” the
possible occluded local features in the similarity score.

where O(l) = 1S(q(l),t
(l)

)>δ
with δ a threshold applied to

the cosine similarity to “turn off” the occluded local fea-
tures as shown in Figure 4. In practice, we set this threshold
δ = 0.2 through ablation study. Note that Eq. (5) can be
written as the element-wise product ⊙ and can be computed
efficiently with:

sim∗(q, t) =
1

|M|
(M⊙O⊙ S) . (6)

3.4. Template Creation

On LINEMOD [11] and Occlusion-LINEMOD [3]
datasets, we follow the protocol of [38] to sample the syn-
thetic templates. More precisely, the viewpoints are defined
by starting with a regular icosahedron and recursively sub-
dividing each triangle into 4 smaller triangles. After ap-
plying this subdivision two times and removing the lower
half-sphere, we end up with 301 templates per object.

On T-LESS [13], we follow the protocol of [30] by us-
ing a dense regular icosahedron with 2’536 viewpoints and
36 in-plane rotations for each rendered image. Altogether,
this yields 92’232 templates per object. Besides, we also
show our results with a coarser regular icosahedron with
602 viewpoints, which results 21’672 templates per object.

We use BlenderProc [8] to generate templates with real-
istic rendering for both settings.

4. Experiments
In this section, we first describe the experimental

setup (Section 4.1). Then, we compare quantitatively and
qualitatively our method with previous works [38, 2, 31,
30] on both training (or seen) and unseen objects of the
LINEMOD (LM) [11], Occlusion-LINEMOD (O-LM) [3]
and T-LESS [13] datasets (Section 4.2). Finally, we provide
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Split Training Seen LM Seen O-LM Unseen LM Unseen O-LM
#1 9’954 981 6’832 4’848 2’377
#2 9’928 981 4’490 4’874 4’719
#3 8’850 872 7’096 6’061 2’113

Table 1: Dataset splits for LM and O-LM. For each split,
we provide the numbers of real images in the training set
and in four test sets.

an ablation study for investigating the effectiveness of our
method with different parameters and failure cases of our
method (Sections 4.3 and 4.4).

4.1. Experimental Setup

Data processing. For the LM and O-LM datasets, as there
are no standard splits to evaluate the robustness of RGB-
based methods on unseen objects, we propose three differ-
ent splits created from the order of the object ids. The new,
or unseen objects for each of these splits are:

• Split #1: Ape, Benchvise, Camera, Can;
• Split #2: Cat, Driller, Duck, Eggbox;
• Split #3: Glue, Holepuncher, Iron, Lamp, Phone.

The other objects from LM are used for training the model.
The objects with names in bold in the lists above often are
occluded in O-LM. Note that O-LM is only used for test-
ing, as we do not need to see occlusions during the train-
ing time. Moreover, to understand the performance gap be-
tween objects that are seen or unseen during the training,
we also evaluate the methods on seen objects. To do so, we
keep 10% of the real images of training objects under un-
seen poses for testing purposes. Table 1 details the different
splits.

On T-LESS [13], we follow the evaluation protocol of
[30] by training only on objects 1-18 under randomized
backgrounds of SUN397 [40] and testing on the complete
T-LESS primesense test set. More details about training set
of T-LESS can be found in the supplementary material.

Evaluation metrics. For the LM and O-LM datasets, the
pose error is measured by the angle between the two posi-
tions on the viewing half-sphere. We also treat the “Egg-
box” and “Glue” objects as symmetric around the z-axis as
done in [38, 2].

In the case of known object pose estimation, the recog-
nition score is almost 100% on LM and O-LM. Previous
works [38, 2] that focused on known objects thus only
evaluate the pose error without considering whether the re-
trieved object is actually correct. In the case of unseen ob-
jects, we found that retrieving correctly both pose and class
is important as the model can still get correct poses but from
another object. Therefore, we propose using the Acc15 met-
ric, which measures how often the pose error is less than 15
degrees and the predicted object class is correct. We also
report the pose error in the supplementary material.

As most objects in T-LESS [13] are symmetric, we report
the recall under the Visible Surface Discrepancy (errvsd)
metric at errvsd < 0.3 with tolerance τ = 20mm and
> 10% object visibility as done in [31, 30]. Unless oth-
erwise stated in previous works [31, 30], only templates of
the same object are used at testing time (in other words, the
class of the object is assumed to be known before testing).
Please note that for the evaluation on the T-LESS dataset,
we also predict the translation by using the same formula
“projective distance estimation” of SSD-6D [17] as done
in [31, 30]. This translation is deduced from the retrieved
template and the input bounding box of query image. More
details can be found in the supplementary material.

Implementation details. For a fair comparison, in the
evaluation on LM and O-LM, we consider two different
backbones: (i) “Base” – the simple backbone used in
[38, 2]; (ii) ResNet50 – the standard backbone used in re-
cent contrastive learning methods [9]. We reimplemented
[38, 2] to get quantitative results in both seen and unseen
objects. Our implementations get very similar performance
when evaluated on the same data as the original papers on
seen objects (see Table 2), validating our reimplementation.

We also follow [38, 2] when testing with the “Base”
backbone by using the same input image of size 64×64.
While testing with ResNet50, we use a larger input size of
224×224. In both settings, we slightly change the archi-
tecture by removing all the pooling, FC layers and then re-
place them by two 1 × 1 convolution layers to output the
desired local feature of size 16. As done in [38, 2], we use
the ground-truth pose to crop the input image at the cen-
ter of objects and do not consider in-plane rotation (more
details can be found in the supplementary material). On
the T-LESS dataset, we use the same backbone ResNet50
and crop the input image with ground-truth bounding box
as done in [31, 30].

For both evaluations, we train our networks using Adam
with an initial learning rate of 1e-2 for the “Base” backbone
and of 1e-4 for ResNet50. Training takes less than 5h for
all splits on a single V100 GPU when training on LM [11]
and around 12h when training on T-LESS [13].

4.2. Comparison with the State of the Art

4.2.1 LINEMOD and Occluded-LINEMOD Results
Table 2 presents the results of our method compared with
previous work [38, 2]. With either the “Base” or ResNet50
backbones, our method based on local feature similarities
achieves the best overall performance in almost all set-
tings compared to previous methods that compute the fea-
ture similarity between global image representations. While
[38, 2] explored carefully designed pairwise and triplet
losses for learning an embedding space that is both object-
discriminative and pose-discriminative, we find that using
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Method Backbone Features Loss Seen LM Seen O-LM Unseen LM Unseen O-LM

#1 #2 #3 Avg. #1 #2 #3 Avg. #1 #2 #3 Avg. #1 #2 #3 Avg.

[38] Base [38] Global [38] 87.0 83.1 85.1 85.0 19.2 23.1 15.0 19.1 13.2 15.5 18.2 15.2 9.3 5.1 5.1 6.5
[38] Base [38] Global Eq. (2) 95.2 95.3 95.4 95.3 19.6 25.3 16.1 20.3 13.3 17.0 20.5 16.9 8.2 6.4 6.7 7.1
[2] Base [38] Global [2] 89.2 85.4 83.3 86.3 18.3 21.9 17.6 19.5 14.1 16.3 19.7 16.7 8.2 7.5 7.6 7.8
[2] Base [38] Global Eq. (2) 96.3 95.2 96.5 96.0 18.3 23.1 15.8 19.1 11.5 17.7 17.2 15.5 7.1 6.5 6.5 6.7
Ours Base [38] Local [38] 84.8 85.5 86.3 85.5 50.1 51.3 42.2 47.9 69.6 63.2 46.2 59.7 35.3 34.3 44.2 37.9
Ours Base [38] Local Eq. (2) 95.6 96.9 92.0 94.8 68.9 71.0 57.7 65.8 78.8 82.5 64.1 75.1 42.2 57.1 59.8 53.0

[38] ResNet50 [10] Global Eq. (2) 98.8 96.9 98.8 98.1 66.7 73.2 62.7 67.5 42.2 43.7 49.4 45.1 22.3 22.5 45.9 29.9
[2] ResNet50 [10] Global Eq. (2) 96.9 97.1 94.5 96.1 63.6 71.8 58.9 64.7 39.9 44.9 48.3 44.3 15.5 21.8 50.2 29.1
Ours ResNet50 [10] Local Eq. (2) 99.3 99.0 99.2 99.1 77.3 84.1 76.8 79.4 94.4 97.4 88.7 93.5 71.4 72.7 85.3 76.3

Table 2: Comparison of our method with [38] and [2] on seen and unseen objects of LM and O-LM under the three
different splits detailed at the beginning of Section 4.1. We report Acc15 ↑, the accuracy of predicting correctly the object
identity and its pose with an error less than 15 degrees. We are on par on the “easy” case and outperform them by a large
margin on the 3 other configurations. Using the InfoNCE loss rather than the loss from [2] brings some improvement, but the
main improvement comes from our approach based on local features.
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Figure 5: Qualitative results on unseen objects of Occlusion-LINEMOD (left) and T-LESS (right). Our method retrieves
the correct template and pose while [2, 30] fails on unseen objects, particularly in the presence of occlusion.

Method Number
templates

Recall VSD

Obj. 1-18 Obj. 19-30 Avg

Implicit [31] 92K 35.60 42.45 38.34
MPL [30] 92K 35.25 33.17 34.42
Ours 92K 59.62 57.75 58.87

Ours 21K 59.14 56.91 58.25

Table 3: Comparison with [31, 30] on seen objects (obj.
1-18) and unseen objects (obj. 19-31) of T-LESS using the
protocol from [30]. Our method significantly outperforms
[31, 30] in the same setting.

the InfoNCE loss as defined in Eq. (2) boosts the perfor-
mance of all methods, in particular for our method based on
local feature similarities.

When the objects are occluded, the accuracy of [38, 2]
drops to below 70% for training objects, while our method
can still maintain a relatively high accuracy. This shows the
robustness of local image features rather than global im-
age representations that are much more strongly affected by
the occlusions. Furthermore, the prediction accuracy of our

method on unseen objects is clearly higher than that of pre-
vious methods, regardless of the objects being occluded or
not. This indicates that matching based on local features
is not only robust to occlusions, but also generalizes better
to unseen objects. More importantly, this improvement on
unseen objects holds still in the presence of occlusions.

4.2.2 T-Less Results

In Table 3, we shown that our proposed approach outper-
forms the state-of-the-art methods [31, 30] on the T-LESS
dataset by a large margin on both seen and unseen ob-
jects. While [30] carefully designed single-encoder-multi-
decoder network that allows sharing a latent space for all
objects and having each decoder only reconstructs views of
a single object, we find that using our method and Info-
NCE loss is much more simple but also boosts significantly
the performance in the same setting.

4.3. Ablation Study

We present several ablation evaluations on LINEMOD
and Occlusion-LINEMOD.
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Ape Can Cat Driller Duck Egg∗ Glue∗ Hole. Avg

[38] 16.6 28.0 1.5 8.2 11.5 68.8 67.7 22.1 29.9
[2] 12.6 18.4 9.0 16.7 7.8 53.7 60.3 40.1 29.1
Ours 53.8 89.7 45.1 84.4 87.2 76.9 89.9 83.3 76.3
w/o M 13.3 1.0 10.0 1.0 80.1 7.0 80.0 1.0 24.1

Table 4: Effectiveness of M. Comparison of [38, 2] and
our method with and without using the template mask M
in the computation of the similarity. Using M allows dis-
carding the cluttered background and brings significant im-
provement on occluded unseen objects.

Threshold δ -0.3 -0.2 -0.1 0 0.1 0.2 0.3 w/o O
Ape 54.1 53.7 54.6 54.7 54.0 53.8 53.6 53.3
Can 82.2 89.2 89.1 89.7 89.4 89.7 89.8 84.9

Cat 46.7 47.5 46.1 45.5 46.1 45.1 46.5 45.1
Driller 83.6 84.5 84.5 83.8 84.4 84.4 84.5 81.5
Duck 87.1 87.1 87.8 86.7 87.3 87.2 87.0 87.3
Egg∗ 76.3 75.2 74.1 75.3 75.1 76.9 76.2 72.6

Glue∗ 89.3 83.5 83.9 90.1 89.5 89.9 89.6 90.2
Holep. 83.9 85.9 83.6 82.9 83.4 83.3 82.5 81.8

Avg 75.4 75.8 75.4 76.0 76.1 76.3 76.2 74.5

Table 5: Influence of threshold δ of Eq. (5). Predicting
occlusion mask O with threshold δ = 0.2 results on the best
performance, particularly on large objects.

Dataset Number
templates

Features
creation

Memory Run-time

CPU GPU

LINEMOD 1.204 0.5 min 28 MB 0.15 s 7.8×10−3 s
T-LESS 21.672 6 min 544 MB 0.84 s 8.2×10−3 s

Table 6: Average run-time of our method on a single GPU
V100 and CPU Intel Xeon.

Effectiveness of feature masking. Table 4 shows the ef-
fectiveness of using the template masks M in Eq. (6) for
unseen objects. Removing M results in a dramatic degra-
dation for our method on all the three splits.

Influence of the threshold δ. Table 5 shows the influ-
ence of the threshold δ in Eq. (5) for estimating the oc-
clusion mask O. Using O brings improvements on large
objects (“Can”, “Driller”, and “Eggbox”). This can be ex-
plained by the fact that the occlusions can be very large in
O-LM, especially on small objects, as shown in Figure 7.

Influence of the local feature dimensions. Figure 6
shows the pose error as a function of the dimension C of the
local features and of the resolution of the feature maps and
masks M. While C is not a critical value, the resolution is
more important, as higher resolution allows discarding the
background more precisely. Furthermore, this hyperparam-
eter has a much stronger influence on the performance on
the unseen objects compared to the seen objects.

Run-time. Table 6 provides run-times on CPU and GPU.

Figure 6: Influence of the local feature dimension C and
of the resolution of the local features and masks. Using
a good resolution is much more important than using high-
dimensional local features as this allows discarding back-
ground more precisely when computing the similarity score.

Figure 7: The “Cat” object is often barely visible in the test
images of Occluded-LINEMOD, resulting in large errors.

4.4. Failure Cases

When evaluated on O-LM, both our method and [38, 2]
fail on the “Cat” object. As shown in Figure 7, this object
is small and particularly heavily occluded in this dataset.

5. Conclusion
We have presented an efficient approach to 3D object

recognition and pose estimation that can generalize to new
objects without the need for retraining and that is robust to
occlusions. Our analysis has shown that a global represen-
tation, which discards the grid structure of images, is not
robust to clutter and results in inaccurate pose predictions.
Our method, based on local representations, has much bet-
ter properties and can be made robust to occlusions. We
hope that our analysis and our new approach will guide the
development of more practical systems.
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