
Manifold Learning Benefits GANs

Yao Ni∗,†, Piotr Koniusz∗,§,†, Richard Hartley†,♦, Richard Nock♦,♣,†
†The Australian National University §Data61/CSIRO ♦Google Research

firstname.lastname@anu.edu.au

Abstract

In this paper1, we improve Generative Adversarial Net-
works by incorporating a manifold learning step into the
discriminator. We consider locality-constrained linear and
subspace-based manifolds2, and locality-constrained non-
linear manifolds. In our design, the manifold learning and
coding steps are intertwined with layers of the discrimina-
tor, with the goal of attracting intermediate feature repre-
sentations onto manifolds. We adaptively balance the dis-
crepancy between feature representations and their mani-
fold view, which is a trade-off between denoising on the
manifold and refining the manifold. We find that locality-
constrained non-linear manifolds outperform linear mani-
folds due to their non-uniform density and smoothness. We
also substantially outperform state-of-the-art baselines.

1. Introduction
Generative Adversarial Networks (GANs) [13] are pow-

erful models for image generation [5,19,22], sound genera-
tion [11], image stylization [32] and destylization [46–49],
super-resolution [62], feature generation [60, 65], etc. The
original GAN learns to generate images [5,19,21,22,56] by
performing the following min-max game:

min
θG

max
θD
J (D|θD , G|θG), (1)

where J (·)=Ex∼px(x)log(D(x;θD)) + Ez∼pz(z)log(1−
D(G(z))). Eq. (1) updates parameters θD of discriminator
D(x;θD) to discriminate between samples from the data
distribution px(x) and generative distributions pg(G). Si-
multaneously, parameters θG of generatorG(z;θG) are up-
dated to fool the discriminator D. Thus, the noise distribu-
tion pz(z) becomes mapped to px(x) via generator G.

However, GANs typically suffer from three problems: 1)
the training instability [25], 2) the so-called mode collapse
[44], and 3) overfitting of the discriminator [58].
∗Equal contribution. ♣ Brain team (richardnock@google.com).
1Code: https://github.com/MaxwellYaoNi/LCSAGAN.
2The coding spaces considered in this paper are loosely termed man-

ifolds. In most cases they are not manifolds in the strict mathematical
sense, but rather topological spaces such as varieties, or simplicial com-
plexes. The word will be used only in an informal sense.

Figure 1. Our GAN pipeline. We equip the discriminator with
residual blocksB1, · · · , BL, each containing standard CNN oper-
ations, e.g. convolutions, ReLU, downsampling, residual link etc.,
and the manifold learner Ml. Metaparameter β controls the de-
gree of mixing block conv. features with their view recovered from
the manifold. The ‘overfit?’ detector increases β when overfitting
to xreal is suspected, which boosts the impact of manifold learners.

The training instability is an imbalanced competition of
the generator and the discriminator due to non-overlapping
support between the model distribution and the data distri-
bution [6, 19, 25], leading to poor quality of generated data.
Mode collapse has to do with sharply rising gradient around
undesirable local equilibria [25, 44], resulting in generation
of the same image. Finally, discriminator overfitting leads
to excessive memorization and poor generalization.

Indeed, with an excessive number of parameters, the dis-
criminator may memorize the training data instead of learn-
ing a meaningful distribution, leading to a high real/fake
classification accuracy on the training dataset and a low ac-
curacy on the validation split [5, 20, 66]. Webster et al. [58]
argue such a phenomenon mainly affects the discriminator
and is undetectable in the generator, with the exception of
hybrid adversarial and non-adversarial methods [4] which
impose the so-called consistency loss on a generator.

We also observed discriminator overfitting in baseline
models e.g., doubling the number of parameters of discrim-
inator resulted in training and validation FID scores of base-
line GANs diverging at some intermediate training stage.

Thus, to reduce overfitting of the discriminator, we pro-
pose a data-driven feature manifold-learning step and inter-
twine it with layers of the discriminator. In this way, the
discriminator learns the feature manifold at different lev-
els of object abstraction, from fine to coarse, which limits

11265

the complexity of parameter space and separates the signal
from noise as both generated and real data are expressed on
a common manifold. As a result, the generator diversifies
the generated patterns according to their view on the man-
ifold, on which the discriminator operates. The min-max
game operates on a gradually learnt manifold (see Fig. 1).

Our contributions are threefold:

i. We intertwine locality-constrained and subspace-based
feature encoding and dictionary learning steps [29, 34]
with blocks of the GAN discriminator to exploit mani-
fold learning in an end-to-end scenario.

ii. We employ a balancing term to help blocks of the dis-
criminator learn the data-driven manifold from the en-
coder intertwined with them, while permitting some de-
gree of freedom in the vicinity of that manifold (§2).

iii. We show that locality-constrained soft assignment cod-
ing (the best coder in our experiments) acts as a lo-
cally flexible denoiser [1] due to its Lipschitz conti-
nuity which we control to vary its operating mode be-
tween the ordinary k-means quantization and locality-
constrained linear coding. This setting admits quanti-
zation of some feature space parts while approximately
preserving linearity of other feature space parts (§5).

For contribution (i), we investigate Sparse Coding (SC)
[31, 61], Non-negative Sparse Coding (SC+) [16], Orthog-
onal Matching Pursuit (OMP) [8, 42], Locality-constrained
Linear Coding (LLC) [55], Soft Assignment (SA) [3, 54],
and Locality-constrained Soft Assignment (LCSA) [26–29,
34], and Hard Assignment (HA) [7,51]. We provide formu-
lations and discussion on properties of each coder in §4.

2. Problem Formulation
Figure 1 shows our pipeline (we skip conditional cues for

brevity). We build on BigGAN [5], OmniGAN [69], MSG-
StyleGAN [18], StyleGAN2 [22] but we equip the discrim-
inator with the manifold learner which is metacontrolled to
reduce overfitting. In §C of the supplementary material, we
also study the combination of our method with DA [66],
ADA [20] and LeCamGAN [53] in limited data scenario.

The discriminator D(x;θD) of the GAN in Eq. (1) clas-
sifies input images as real or fake. Many architectures ex-
ist in the literature e.g., GAN [13] uses the discriminator
based on a convolutional network, whereas recent architec-
tures e.g., BigGAN [5], OmniGAN [69], MSG-StyleGAN
[18] and StyleGAN2 [22] use residual discriminators with
L residual blocks e.g., see BigGAN [5] (their Fig. 16).

Let3 f : Rd×N × R|θB | → Rd′×N ′ (where |θB | is the
size of the set of parameters θB) be a function realized by a
single discriminator block with parameters θB , where d and
d′ are the number of input/output channels, N =WH and

3Our notations are explained in §A of the supplementary material.

Figure 2. Blocks B1, · · · , BL of our discriminator contain a stan-
dard block denoted by f intertwined with the manifold learner.
Metaparameter β controls the mixing balance between f and h.

N ′=W ′H ′ are the number of input/output spatial locations
in feature maps of the block. Often, N ′ may equal N .

We introduce an encoding functionh :Rd′×N ′→Rd′×N ′

that maps Rd′×N ′ into a subset, usually nowhere dense or
of small volume in Rd′×N ′ , which we sometimes refer to
as the feature space. In the cases we consider this mapping
derives from a mapping Rd′ → Rd′ applied independently
and equally over the second dimension RN ′ . The encoding
introduces an error, measured by ‖h(X)−X‖F ≤ εwhere
ε is called the reconstruction error.

In dictionary-based encoding, the function h relies on
a dictionary M = [m1, · · · ,mk] ∈ Rd′×k containing k
column vectors, the so-called dictionary atoms (sometimes
called anchors), defining the underlying manifold M, and
k� d′ ensures the dictionary is overcomplete. Then, after
solving the optimization problem,

(α,M) = arg min
α′,M ′

‖X−M ′α′‖2F+κΩ(α′,M ′,X), (2)

where α ≡ [α1, · · · ,αN ′] ∈ Rk×N ′, the function h is de-
fined by h(X) = Mα. Since α depends on X , we shall
commonly write it asα(X). The mapping hmaps Rd′ into
a subsetM of Rd′ , that we will call the feature manifold (or
simply manifold).

The choice of Ω(α′,M ′,X) realizes some desired
constraints via regularization (with κ > 0) for exam-
ple, Ω(α′,M ′,X) = ‖α′‖1 encourages sparsity of α,
while Ω(α′,M ′,X) =

∑
n[‖xn − m1‖22, · · · , ‖xn −

mk‖22]T]αn| encourages locality to express each αn w.r.t.
Span(m1, · · · ,mk′), wherem1, · · · ,mk′ are the k′ near-
est neighbors of xn.

We intertwine the encoding step with blocks of the dis-
criminator as follows:

X l+1 =(1−β)X̃ l + β hl(X̃ l) (3)
where X̃ l = f(X l;θBl) and hl is the encoding func-
tion introduced just above, expressed in terms of a dictio-
nary M l, whereas {θBl}Ll=1 and {M l}Ll=1 are parameters
of blocks of the discriminator and dictionaries for layers
1, . . . , L respectively. Figure 2 illustrates Eq. (3) applied
to blocks B1, · · · , BL of the discriminator.

11266

Figure 3. Our manifold setting. Atoms m1, · · · ,mk (crosses
×) define the geometry of the manifold. Samples x1, · · · ,xN′
(blue ◦) are projected onto the manifold M via function α(x)
and then recovered via h(x), which produces recovered samples
x̃1, · · · , x̃N′ (black ◦). The grey circles indicateL2 balls imposed
by the proximity operator in Eq. (4) while green triangles 4 are
trade-off samples between f and h, controlled by β within L2

balls. We note that radii of L2 balls are controlled by γ but each
ball can be larger or smaller depending whether this benefits the
discrimination loss. Thus, where desired, trade-off samples are
refined by f w.r.t. h within L2 balls. Curly lines (sigmoid-like v)
indicate we use locally the sigmoid non-linearity.

At the same time, we prevent Eq. (3) from becoming a
residual link by adding a reconstruction loss to the GAN
objective:

Jprox =
γ

L

L∑
l=1

ε(X̃ l;M l), where

ε(X̃ l;M l)= ‖X̃ l − hl(X̃ l)‖2F .
(4)

Metaparameters (β, γ) control the mixing balance and the
proximity between f and h.
Meta-adaptation of (β, γ). Discriminator overfitting can
be detected with a hypothesis test on the expectation over
decisions r(xreal) =E[Sign(D(xreal))] w.r.t. samples xreal,
defined as Sign(r(xreal) > η) ∈ {−1, 0, 1}, where η = 0.5
is the threshold whose violation indicates potential overfit-
ting, as the discriminator becomes increasingly good at dis-
tinguishing real datapoints [20]. Thus, to update (β, γ), we
apply:

βt+1 =βt+∆β ·Sign (r(xreal)>η) , (5)
γt+1 =γ0+∆γ ·βt+1, (6)

where β0 = 0.1. ∆β = 0.001 ensures a gradual change
of β by increasing contributions from h(X̃ l) in Eq. (3)
when overfitting is detected, and increasing contributions
from X̃ l in Eq. (3) when overfitting vanishes. By setting
γ0 = 0.1, we ensure that the proximity loss in Eq. (4) is al-
ways enabled, and 0.01 ≤∆γ ≤ 3 controls the strength of
proximity.
Discussion. Figure 3 shows our manifold setting, which
exploits the interplay between Eq. (3) and Eq. (4). We al-
ternately learn encoding of samples X l on manifold Ml

and refine dictionaryM l. The proximity operator in Eq. (4)
encourages samples X̃ l to stay in the proximity of their re-
covered view h(X̃ l) by controlling L2 balls around h(X̃ l).
Eq. (3) interpolates betweenh(X̃ l) and X̃ l withinL2 balls.

We opt for such a design as (i) f may refine h if the dis-
criminator loss spotting real/fake inputs deems it useful, (ii)
h is preferred when overfitting is detected, whereas f in-
troduces refined patterns otherwise, (iii) f is encouraged to
learn from the piecewise-smooth h (see §5).

3. Related Works

Modern GANs. Recent GANs build on GAN [13] or DC-
GAN [43] by improving generator or discriminator. A
residual model [14] was improved by adding a self-attention
block [63]. Progressive GAN [19] uses several levels of lay-
ers for increasingly finer image resolution. StyleGAN [21]
maps the input to an intermediate latent space and con-
trols the generator through adaptive instance normalization
(so-called AdaIN). MSG-GAN passes multi-scale gradients
from the discriminator to the generator [18].
Improving GANs. To address training instability, mode
collapse and overfitting, researchers study (i) loss and
distance formulations, (ii) regularization mechanisms and
penalties, and (iii) architectural modifications.

Wasserstein GAN (Arjovsky et al. [2]) enjoys a good
training stability. It was further improved by Gulrajani et
al. [14] by penalizing the norm of gradient of the critic.
Mean & Covariance GAN [38] matches the generated and
real data distributions with first- and second-order statistics.
A Maximum Mean Discrepancy GAN [33] matches distri-
butions in the Reproducing Kernel Hilbert Space (RKHS).

Spectral Normalization GAN [36] applies normalization
on weights to stabilize the discriminator. Spectral Regular-
ization GAN [35] performs detection of so-called spectral
collapse. Disconnected Manifold GAN [23] assumes that
natural images lie on a union of disjoint manifolds. Feature
Quantization GAN (FQGAN) [67] quantizes features of dis-
criminator into a k-means based dictionary. The Denoising
Feature Matching GAN [57] encourages proximity between
the output of the generator and a denoising auto-encoder.

Our work differs from the Disconnected Manifold GAN
which models an entire image distribution as a union of non-
explicit manifolds (a collection of generators). FQGAN
imposes quantization on features of the discriminator and
Denoising Feature Matching GAN learns a denoising auto-
encoder on real images to apply it on generated images.

In contrast, we model coarse-to-fine features extracted
from multiple blocks of the discriminator, which capture
different semantic levels of abstraction. We encourage these
features to lie on explicit locality-constrained non-linear
manifolds (each block of our discriminator has its own
learner). We adaptively control the mixing levels of features
and their views recovered from manifolds, and the smooth-
ness of manifolds to prevent overfitting.
Limiting Overfitting. Augmentations (rotations, clipping)
[17,52,64,66] can limit overfitting, however, augmentation

11267

artifacts leak into the generated images [20, 68]. Injecting
noises into the discriminator [39,59] via dropout [50] forms
an ensemble network, whereas we equip the discriminator
with a data-manifold learner whose smoothness we control.

4. Preliminaries
Below, we explain GAN pipelines on which we build,

and feature encoding and dictionary learning, our key tools.

4.1. Baseline GANs

BigGAN [5] combines a projection-based loss [37], spectral
normalization [36], and self-attention [63]. The projection-
based score is a trade-off between a class-wise cosine simi-
larity and a class independent term:

s(x,y) = yTV D(x;θD) + f ′(D(x;θD);θD′), (7)
where y ∈ {0, 1}C and ‖y‖1 = 1, V ∈ RC×d′ is a bi-
linear compatibility matrix that associates output features
Xout from D with the class label. As y is a one-hot vector,
V ≡ [v1, · · · ,vC]T contains linear projectors vc, one per
class c ∈ {0, · · · , C−1}. Function f ′ : Rd′ → 1 is real-
ized by an FC layer with parameters θD′ . Scores s(x,y)
are passed to a hinge-based loss with two components:
Jdiscr =E(x,y)∼preal

x×y(x,y) max(0, 1−s(x,y))+

E(z,yz)∼pz×yz (z,yz) max(0, 1+s(G(z,yz),yz)). (8)
Our manifold-based pipeline combines loss Jprox from
Eq. (4) with Jdiscr and the original Jgen from [5].
OmniGAN [69] uses a multi-label softmax loss (where a la-
bel vector y∈{0, 1}C+2, ‖y‖1 =2 is a concatenation of the
one-hot class label vector and one-hot real/fake vector):
Jdiscr =E(x,y)∼preal

x×y(x,y)s(x,y)+

E(z,yz)∼pz×yz (z,yz)s(G(z,yz),yz) where (9)

s(x,y)=

C+1∑
c=0

log
(

1+e− Sign(yc−0.5)φc(x)
)
. (10)

We note that Xout represents output features from D,
φ(x) = f ′(D(x;θD);θD′), where function f ′ : Rd′ →
C+2 is realized by an FC layer with parameters θD′ .

4.2. Feature Coding and Dictionary Learning on
Data-driven Manifolds

Below, we formalize feature encoding and dictionary
learning approaches listed in §1. In experiments, we sub-
stitute a chosen coding step into function h(x) from §2.
Moreover, M ≡ [m1, · · · ,mk] ∈ Rd′×k is a dictionary
whose learning step is detailed at the bottom of §4.2, and
α(x) represents the encoding/mapping on the simplex.
Hard Assignment (HA) [7, 51]. This encoder assigns each
x to its nearest m by solving the following optimisation
problem: α(x) = arg min

α′∈{0,1}k
‖x−Mα′‖22,

s.t. ‖α′‖1 = 1.
(11)

If M is formed by k-means clustering, HA becomes an
equivalent of the quantizer from FQGAN [67].
Sparse Coding (SC) [31,61] & Non-negative Sparse Cod-
ing (SC+) [16]. SC encodes x as a sparse linear combina-
tion of atomsM by optimising the following objective:

α(x) = arg min
α′

‖x−Mα′‖22 + κ‖α′‖1, (12)

whereas SC+ additionally imposes a constraint that α′ ≥
0. Both SC and SC+ encode x on a subset of M of size
controlled by the sparsity term.
Orthogonal Matching Pursuit (OMP) [8, 42]. This en-
coder expresses x as a sparse linear combination of atoms
M by optimising the following objective:

α(x) = arg min
α′

‖x−Mα′‖22,
s.t. ‖α′‖0≤τ,

(13)

where the pseudo-norm ‖α′‖0 ensures the count of non-
zero coefficients of α′ is at most τ . Unlike SC and SC+,
‖α′‖0, the penalty enforces a strict limit on the number of
non-zero elements in α′, but the problem itself is NP-hard.
Approximate Locality-constrained Linear Coding
(LLC) [55]. LLC expresses x as a linear combination of
k′ nearest neighbor atoms of x selected from M , forming
subspaces of size k′ on a piecewise-linear manifold:

α(x) = arg min
α′

‖x−Mα′‖22,
s.t. 1Tα′ = 1,

(14)

and α′ is further constrained by α′i = 0 unlessmi is one of
the k′ closest neighbors of x.
Soft Assignment (SA) [3,54] & Locality-constrained Soft
Assignment (LCSA) [26, 29, 34]. SA expresses x as the
membership probability (concept known from GMM [3])
of x belonging to each mi inM under equal mixing prob-
ability and equal variance σ of GMM. SA is given as:

α(x;M , σ) = Sσ(‖x−m1‖2, · · · , ‖x−mk‖2), (15)

where Sσ is the softmax function Sσ : Rk → ∆k−1, where
∆k−1 is the probability simplex and:

Sσ(d1, . . . , dk)j =
exp(−d2

j/2σ
2)∑

i exp(−d2
i /2σ

2)
. (16)

This model yields largest values of α′i for atoms mi in M
that are close Euclidean neighbors of x. However, αi(x) >
0 even formi that are far from x. For this reason, SA is not
strictly locality-constrained.

LCSA differs from SA by setting αi(x) = 0 unless mi

is among the k′ nearest-neighbor atoms for x. The denom-
inator of Eq. (16) performs normalization, that is the sum-
mation runs over the k′ nearest neighbors. Thus, LCSA
maps Rd onto a set of probability simplices ∆k′−1. As
LCSA was the best in our experiments, we analyze it in §5.
Dictionary Learning (DL). For the above coders, we em-
ploy a class-agnostic dictionary learning objective which

11268

follows Eq. (2). Let some α(X) ≡ [α1, · · · ,αN ′], then:

M = arg min
M ′

‖X −M ′α‖2F , (17)

where M ′ can be constrained to contain atoms ‖m′i‖2≤ 1
if codes α have non-restricted L2 norm e.g., for OMP.
Inverse ofα. To reprojectα(X) from the manifoldM into
the Euclidean space, we simply compute X̃=Mα(X).
Implementation Remarks. Coding methods, dictionary
learning, and their implementations are detailed in §J of the
supplementary material. For dictionary learning, we detach
X and α, and run 1 iteration of gradient descent per mini-
batch w.r.t. each M (no big gain for ≥ 2 iterations). For
SC and SC+, we detach X and all M , and let 5 iterations
of gradient descent (no gain for ≥ 6 iterations). LLC has a
closed-form solver [55]. Our efficient OMP solves the sys-
tem of linear equations (no matrix inversion). SA/LCSA
enjoy a fast closed-form recipe. LLC and LCSA use the
partial sort algorithm for selecting k′ nearest neighbors. We
detachMα to compute the proximity loss in Eq. (4).

5. Theoretical Analysis of LCSA

As LCSA is the best encoder in our experiments, we fo-
cus on its theoretical properties below. All proofs for theo-
ries listed below are in §L of the supplementary material.

In this section, we use the following notation. Suppose
a dictionary of atoms M = [mi] in Rd is given, and 2Mk′
denotes the set of all subsets of size k′ ofM . We define by
NNk′ : Rd → 2Mk′ to be the set-valued function that takes
a point x to its set of k′ nearest neighbor atoms. A max-
imal subset of Rd on which NNk′(x) is constant is called
a Voronoi cell. For a given set U in 2Mk′ , then, a Voronoi
cell (NNk′)−1(U) is a subset of Rd consisting of the all the
points for which U is the set of k′ nearest neighbors. The
collection of all Voronoi cells constitutes a decomposition
of Rd into disjoint polyhedral regions.

In the case where the set of k′ nearest elements of M
is not unique, we leave the set NNk′(x) undefined. Thus,
the Voronoi cells are disjoint open polyhedral regions such
that NNk′(x) is constant on each cell. The complement in
Rd of the set of Voronoi cells is a subset of a finite set of
hyperplanes in Rd.
SA and LCSA encoding. Given a dictionary M =[mi] in
Rd consisting of k′ elements, with k′ ≤ d+1, we consider
the function Mα(x) where α(x) = Sσ(x) is the softmax
mapping Eq. (15). (The dictionary may be the dictionary of
k′ nearest neighbors of some point x.)

Proposition 1 If σ > 0, the mapping x 7→ Mα(x) is a
smooth fibration from Rd onto the interior of the simplex ∆
with vertices mi. The fibre of this mapping is equal to the
linear subspace of Rd normal to the affine space spanned
by themi.

A fibre is the set of points that map to the same point in
∆k′−1 under this mapping.
Proposition 2 The following properties of LCSA hold true:
1. If σ → 0 or k′ = 1, the α codes converge to the HA

solution (quantization).
2. α(x) is an approximately linear coding of x in the

proximity of µ(x)= 1
k′

∑
m′∈NNk′ (x)m

′ .

3. For x with nearest neighbor atoms {mi} = NNk′(x)
with mean µ(x), and nearest neighbor atom n(x) =
NN1(x), the reconstruction error satisfies

‖Mα(x)−x‖2 ≤ max
(
‖x−n(x)‖2, ‖x−µ(x)‖2

)
.

4. The reconstruction error varies smoothly on each
Voronoi cell. For x and x′ in the same Voronoi cell
and ∆ the simplex with vertices NNk′(x), we have

• Local Lipschitz continuity: if σ > 0, then

‖Mα(x)−Mα(x′)‖≤K‖x−x′‖

where K=D2/σ2 and D is diameter of simplex ∆ (the
maximum distance between its vertices). The Lipschitz
condition holds for ‖ · ‖1 and ‖ · ‖2 norms.

• The biggest change of the reconstruction error on a
Voronoi cell for HA (σ=0) is less than or equal to D.

5. The LCSA encoding Mα(x) is non-continuous at the
boundaries of the Voronoi regions.

Proposition 3 Our design fulfils the principles of GAN with
Denoising Auto-Encoder (DAE) [1] with loss:

Ldae =
1

N

N∑
n=1

(∥∥∥r(xn)−xn
∥∥∥2

2
+ σ′2

∥∥∥∂r(x)

∂x

∣∣∣
x=xn

∥∥∥2

2

)
,

(18)
where r(xn) is the reconstruction of xn akin to our h(xn)
in Eq. (4). More importantly, σ′2 specifies the noise vari-
ance. Specifically, we note the following:

6. Not surprisingly, the proximity loss in Eq. (4) fulfils
somewhat similar role to ‖r(xn)− xn‖22 in Eq. (18).

7. LCSA implicitly fulfils the denoising role (apart
from locality-constrained non-linear coding) of

σ′2
∥∥∥∂r(x)

∂x

∥∥∥2

F
, with σ of LCSA and σ′ of DAE related

i.e., σ′2 is proportional to our σ2. To this end, we notice
that DAE penalises the Frobenius norm of the Jacobian
matrix

∥∥∥∂r(x)
∂x

∥∥∥
F

by increasing σ′2. We penalise the

spectral norm of Jacobian matrix
∥∥∥∂Mα(x)

∂x

∥∥∥
2

=K via

de facto controlling the Lipschitz constant K=D2/σ2.

Discussion. The blue box below explains how properties of
LCSA contribute to discriminator training, and how they let
LCSA inherit the best properties of other coding methods.

11269

LCSA as a trade-off between HA, LLC, SA, DAE.
Prop. 2 and 3 show that LCSA balances extremes of other
coders and inherits their best properties. Prop. 2.1 shows
LCSA may act as HA (extreme way to guide f). HA is a
localized coder with big reconstruction error. In FQGAN,
HA stabilized GAN. Prop. 2.2 shows that LCSA may act
as LLC (localized linear coder with very low reconstruc-
tion error) in the central parts of Voronoi cells (weak way
to guide f). Prop. 2.3 shows that large dictionary is bad,
making LCSA a ‘free learner’ as f (easy to overfit).
LCSA is locally-adaptive denoiser. Prop. 2.4 shows
each Voronoi cell specialises in how much it denoises f
based on the Lipschitz constant K=D2/σ2 (diameter D
varies in each cell due to the dictionary). Denoising limits
high frequencies of signal and its complexity. Prop. 3.7
shows LCSA denoises by DAE-like mechanism.

6. Experiments
We evaluate our method on CIFAR-10 & CIFAR-100

[30] & ImageNet [9] (conditional GAN) and Oxford-102
Flowers [40] and FFHQ [21] (unconditional setting). We
show our LCSA harmonizes with BigGAN [5], OmniGAN
[69], MSG-StyleGAN [18] and StyleGAN2 [22].
Datasets. CIFAR-10 has 50K and 10K training and test-
ing images (32×32) from 10 classes, whereas CIFAR-100
has 100 categories. ImageNet has 1.2M and 50K training
and validation images with 1K classes. We center-crop and
downscale its images to 64×64 and 128×128 pixels. Oxford-
102 Flowers contains 8K images of 102 fine-grained flower
species. We center-crop its images and resize to 256×256.
FFHQ dataset provides 70K human face images at multi-
ple resolutions (we opt for 256×256). Following [20], we
augmented the 70K dataset to 140K with x-flips.
Evaluation Metrics. We generate 50K images per dataset
to compute the commonly used Inception Score [45] and
Fréchet Inception Distance (FID) [15]. Mean/standard dev.
are computed over 5 runs, where both reported. We re-
port tFID, computed between 50K generated images and
all training images. For CIFAR-10/CIFAR-100/ImageNet,
we also compute vFID between 10K/10K/50K generated
images and 10K/10K/50K real testing (val. on ImageNet)
images. For Oxford-102 Flowers/FFHQ, we calculate FID
between 10K/50K fake images and the entire training set.

6.1. Network Architecture and Hyper-parameters

We build on OmniGAN/BigGAN/StyleGAN2 for
CIFAR-10. For CIFAR-100/ImageNet (64×64), we experi-
ment with OmniGAN/BigGAN. For ImageNet (128×128),
we build upon OmniGAN given OmniGAN consistently
outperforms BigGAN. We employ MSG-StyleGAN as our
baseline for Oxford-102 Flowers. For FFHQ, we build
upon StyleGAN2 (see §I of the supplementary material).

Model d′ IS ↑ tFID↓ vFID ↓
BigGAN†

256

9.14 7.05 −
FQGAN† 9.16 6.16 −
OmniGAN† 9.63 5.52 −
CR-GAN − − 11.48
ContraGAN − − 10.32
ICR-GAN − − 9.21
OmniGAN+LCSA 9.88±0.02 4.09±0.10 8.16±0.07
BigGAN

512

9.36 8.16 12.16
FQGAN 9.38 7.65 11.72
OmniGAN 9.70 6.88 10.65
OmniGAN+LCSA 10.02±0.05 3.36±0.06 7.40±0.06
StyleGAN2+ADA 10.14±0.09 2.42±0.04 6.54±0.06
StyleGAN2+ADA+LCSA 10.18±0.06 2.32±0.05 6.36±0.10
OmniGAN+LCSA 1024 10.21±0.03 2.94±0.02 6.98±0.04

Table 1. Results on CIFAR-10. We combine OmniGAN and Style-
GAN2+ADA with LCSA. † are results collected from [69].

Model d′ IS ↑ tFID ↓ vFID ↓
BigGAN†

256

10.89 10.18 −
FQGAN† 10.62 8.23 −
OmniGAN† 13.51 8.14 −
TAC-GAN 9.34 7.22 −
OmniGAN+LCSA 13.60±0.11 6.24±0.09 11.02±0.13
BigGAN

512

11.44 10.16 15.24
FQGAN 11.05 7.76 12.70
OmniGAN 12.78 9.13 13.82
OmniGAN+LCSA 13.71±0.03 5.22±0.10 9.98±0.08
OmniGAN+LCSA 1024 13.88±0.12 4.97±0.09 9.72±0.08

Table 2. Comparison of OmniGAN+LCSA with others on CIFAR-
100. † are results collected from [69].

6.2. Results of Image Generation

The generated images for each dataset are given in §K of
the supplementary material.
CIFAR-10. Table 1 shows results on OminGAN+LCSA,
which outperforms the baseline OmniGAN by 0.25 and
1.43 on the IS and tFID metrics (d′= 256). With d′= 512,
we outperform OmniGAN by 0.32 and 3.52. We obtain fur-
ther improvements with d′ = 1024 while baselines strug-
gle to converge. Comparisons of different models with
d′=1024 are in the §B of the supplementary material.
CIFAR-100. Table 2 shows results on OmniGAN+LCSA
against the state of the art. For d′= 256, our method gains
0.09 and 1.9 on the IS and tFID metrics over the baseline
OmniGAN. For d′ = 512, we outperform OmniGAN by
0.93 and 3.91 (IS and tFID). Further gains are achieved for
d′ = 1024 while other methods struggle to converge. We
include TAC-GAN [12] for comparison.
ImageNet (64× 64). Table 3 shows that BiGAN+LCSA
outperforms BigGAN by 2.97 and 3.01 (tFID & vFID). Om-
niGAN+LCSA improves OmniGAN by 6.86 and 2.72 (IS &
tFID), which is the state of the art in GANs.
ImageNet (128× 128). Table 4 shows OmniGAN+LCSA
improves OmniGAN by 23.32 and 2.28 (IS & tFID).
Oxford-102 Flowers. Figure 4(a) shows that MSG-
StyleGAN+LCSA improves MSG-StyleGAN by 5.46 on
FID. Moreover, Figure 4(b) shows that at around iteration

11270

Model IS ↑ tFID ↓ vFID ↓
Inst. Sel. GAN [10] 43.30 9.07 −
BigGAN 34.50 8.96 8.80
FQGAN 33.14 8.27 8.15
BigGAN+LCSA 33.29 5.99 5.79
OmniGAN 70.59 7.09 7.66
OmniGAN+LCSA 77.45 4.26 4.94

Table 3. Results on ImageNet (64× 64). We combine OmniGAN
and BigGAN with LCSA. We set d′=384.

Model IS ↑ tFID ↓ vFID ↓
BigGAN† 104.57 9.19 9.18
OmniGAN† 190.94 8.30 8.93
OmniGAN‡ 169.13 7.11 7.30
OmniGAN+LCSA 192.45 4.83 5.24

Table 4. Results on ImageNet (128×128) with d′=384. † stands
for quoting from [69], ‡ are results reproduced by us.

Model Iters FID ↓
MSG-ProGAN† 53K 28.27
MSG-StyleGAN† 50K 19.60
MSG-StyleGAN 125K 18.59
Ours 125K 13.13

(a) FID of different models.
35k 55k 75k 100k 125kiter=

15
20
25
30
35
FID

MSG-StyleGAN
MSG-StyleGAN+LCSA

(b) Training progress.
Figure 4. Results on Oxford-102 Flowers. (a) FID of different
models († are results collected from [18]). (b) FID w.r.t. the itera-
tion number for MSG-StyleGAN and MSG-StyleGAN+LCSA on
Oxford-102 Flowers. Black dots indicate the minimum FID.

Data StyleGAN2 +ADA +LeCam +bCR +LCSA +LCSA+bCR
70k 5.28 4.30 - 3.79 3.83 3.47
140k 3.71 3.81 3.66 3.53 3.32 3.20

Table 5. The FID ↓ results on FFHQ (256×256) dataset.

number 75K, MSG-StyleGAN starts diverging while MSG-
StyleGAN+LCSA (Ours) continues to decrease FID.
FFHQ (256× 256). Table 5 shows that StyleGAN2 with
LCSA improves the FID of StyleGAN2 by 1.55/0.39 on
70K/140K dataset. Moreover, our LCSA can also be com-
bined with bCR [68] to improve the performance.
Data-limited Generation on CIFAR-10/100. We provide
comprehensive experiments (10% and 20% data) in §C of
the supplementary material. We summarize our findings as:
1) the augmentation-based ADA [20] and DA [66] leak aug-
mentation artifacts to the generator, while ADA+LCSA and
DA+LCSA alleviate this issue (see Figure 24 in the sup-
plementary material). 2) LCSA harmonizes with ADA, DA
and LeCam loss [53]. 3) we achieve the state of the art on
this limited data setting.

6.3. Impact of Hyperparameters

Below, we conduct ablations on CIFAR-100 for d′=512.
Nearest neighbors k′, σ and k. Figure 5(a) shows re-
sults on OmniGAN+LCSA w.r.t. k′ on CIFAR-100, which
verifies that the locality-constrained manifold can be con-
structed with 8 ≤ k′ ≤ 32 � k with a sufficiently small
reconstruction error below the worst case (Prop. 2.3). For

ImageNet, k′ = 8 also led to best results. Figure 5(b) ver-
ifies that 1 ≤ σ ≤ 1.5 provides the best trade-off in terms
of smoothness (quantization vs. linearization) (Prop. 2.1,
2.2 and 2.4). Figure 5(c) verifies the benefit of dictionary
overcompleteness d′�k as k=1024.
Blocks l∈{1, · · · , L} and LCSA. Figure 5(d) shows the
results for various combinations of injection of LCSA into
blocks of discriminator. It appears that injecting LCSA into
all blocks yields the lowest tFID/vFID, which verifies that
constructing multiple manifolds at coarse-to-fine semantic
level controls the complexity of the discriminator.
Metaparameter β and impact of η. β in Eq. (5) controls
the mixing of conv. features obtained by f and their view
h recovered from the manifold, as in Eq. (3). Figure 6(a)
shows that in early iterations, blocks of discriminator learn
conv. features. Around 25K iterations, the model starts
oscillating between prevention of overfitting and refining
conv. features, as indicated by the green curve that contin-
ues to gradually grow for η=0.5 (c.f . flat curve for η=0.3).
Figure 6(b) also shows that η = 0.5 is a universally good
threshold.

6.4. Analysis and Ablation studies

We analyse our method on CIFAR-10/100 (d′=512).
Preventing Discriminator Overfitting. Figure 7 verifies
that the discriminator of standard methods yields high re-
al/fake accuracy on training images but low accuracy on
testing images. Thus, they overfit to the training set (see
the large discrepancy between real and fake images). Thus,
standard methods diverge early (see FID) but our method
continues learning, as shown in Figure 8 and Figure 4(b).
Impact of Different Components. In Table 6, we ablate
(i) dictionary learning (Eq. (17)), (ii) the adaptive mixing
input Eq. (3) and (iii) proximity loss Eq. (4). We conduct
experiments with settings: (1) ACM: removing our main-
fold learner and the proximity loss, and changing Eq. (3)
to be X l+1 = (1−β)X̃ l to adaptively control the magni-
tude of X̃ l; (2) LCSA(γ= 0): removing the proximity loss
but keeping the adaptive mixing input; (3) LCSA(β = 0):
removing the adaptive mixing input but keeping the adap-
tive proximity loss; (4) LCSA(EMA): replacing our dic-
tionary learning with the exponential moving average; (5)
LCSA(fixed (β, γ)): fixed meta-controller (β, γ) (differ-
ent combination of (β and γ) is given in §G of the supple-
mentary material). Table 6 shows that (i) LCSA(γ = 0) is
better than ACM and OmniGAN which verifies the benefit
of adaptive mixing input. (ii) LCSA(β = 0) is better than
OmniGAN which verifies the importance of controlling the
complexity of learning. (iii) EMA performs worse than our
dictionary learning. (iv) As fixed (β, γ) scores lower thus
the adaptive meta-controller is useful. In §H (supplemen-
tary material), LCSA yields larger errors at foregrounds and
smaller at backgrounds, thus intertwining step (mixing in-

11271

13.6
13.8
14.0
14.2

IS

5.1
5.3
5.5
5.7

tF
ID

22 23 24 25 26 27 28 29 210k′
9.9

10.1
10.3
10.5

vF
ID

(a) k′

13.6
13.8
14.0
14.2

IS

5.1
5.3
5.5
5.7

tF
ID

0.2 0.5 0.8 1.0 1.2 1.5 2.0σ
9.9

10.1
10.3
10.5

vF
ID

(b) σ

13.6
13.8
14.0
14.2

IS

5.1
5.3
5.5
5.7

tF
ID

25 26 27 28 29 210 211k
9.9

10.1
10.3
10.5

vF
ID

(c) k

13.0
13.5
14.0
14.5

IS

5.0
5.8
6.6
7.4

tF
ID

1 2 3 4 12 23 34 123 234 1234
9.6

10.4
11.2
12.0

vF
ID

(d) l∈{1, · · · , L}
Figure 5. Ablation studies on CIFAR-100 w.r.t. k′ (nearest neighbors), σ (controls the Lipschitz constant of LCSA), k (dictionary size),
and blocks l which use LCSA. We indicate metrics such as the IS ↑, tFID ↓ and vFID ↓.

0 25 50 75 100 125 150 175 195
iterations (×1000)

0.1

0.2

0.3

0.4

0.5

β
η = 0.3
η = 0.4
η = 0.5
η = 0.6

η = 0.7
η = 0.8
η = 0.9

(a) β w.r.t. iteration.

13.4
13.6
13.8
14.0
14.2

IS

5.1
5.4
5.7
6.0
6.3

tF
ID

0.3 0.4 0.5 0.6 0.7 0.8 0.9
η

9.9
10.2
10.5
10.8
11.1

vF
ID

(b) η w.r.t. iteration.

Figure 6. Evolution of metaparameter β and the impact of η which
controls the behavior of the detector of overfitting.

−2
−1
0
1
2

D
(x
)

−10
−5
0
5
10

0 25 50 75 100 125 150 175 195
iterations (×1000)

0.2
0.4
0.6
0.8
1.0

R
ea
l/F

ak
e
A
cc

0 25 50 75 100 125 150 175 195
iterations (×1000)

0.2
0.4
0.6
0.8
1.0

BigGAN FQGAN OmniGAN BigGAN+LCSA OmniGAN+LCSA

Training images Fake images Testing images

Figure 7. Discriminator predictions on CIFAR-10. We plot the
output of discriminator on training images and generated fake im-
ages. We test Acc (real/fake accuracy predicted by the discrimi-
nator) on the training images and testing images. We use different
colors to represent different models. Solid/dash/dot lines indicate
training/fake/testing images.

0 25 50 75 100 125 150 175 195
iterations (×1000)

5

10

15

20

tF
ID

0 25 50 75 100 125 150 175 195
iterations (×1000)

5

10

15

20

vF
ID

BigGAN FQGAN OmniGAN BigGAN+LCSA OmniGAN+LCSA

Figure 8. Evolution of tFID and vFID for different models on
CIFAR-10. Black dots indicate the minimum FID.

put) helps refine/denoise features before input to next layer.
Different Encoders. Table 6 compares coding methods,
each applied to all l = 1, · · · , 4 blocks of discriminator.
LCSA is the best performer followed by SA and LLC or
SC, which validates that using locality-constrained soft as-

Method CIFAR-10 CIFAR-100
IS ↑ tFID ↓ vFID ↓ IS ↑ tFID ↓ vFID ↓

OmniGAN 9.70 6.88 10.65 12.78 9.13 13.82
+ACM 9.79 6.03 9.99 12.82 10.61 15.51
+LCSA(γ = 0) 9.80 5.15 8.35 13.42 8.12 12.78
+LCSA(β = 0) 9.73 4.77 8.77 13.64 5.54 10.37
+LCSA(EMA) 9.91 3.83 7.89 13.71 5.63 10.40
+LCSA(fixed(β, γ)) 10.01 4.06 8.03 13.64 5.46 10.29
+LCSA 10.09 3.29 7.31 13.73 5.12 9.91
+HA 9.88 4.52 8.49 13.68 5.52 10.33
+SC+ 10.09 3.53 7.65 13.82 5.49 10.31
+SC 10.14 3.48 7.46 13.68 5.40 10.20
+OMP 10.02 3.83 7.83 13.58 5.52 10.40
+LLC 10.04 3.77 7.75 13.61 5.35 10.14
+SA 10.00 3.46 7.45 13.76 5.31 10.19
+DAE 10.08 3.89 7.91 13.65 5.41 10.22

Table 6. Results for ablation studies on CIFAR-10 & CIFAR-100.

signment whose continuity is controlled via the Lipschitz
constant (Prop. 2.4) inverse-proportional to σ2 is more ro-
bust than locally-linear coding, due to the quantization vs.
linear reconstruction trade-off and the role of σ2 in denois-
ing (Prop. 3). We also tried replacing the LCSA coder with
Denoising Auto-Encoder (DAE) [1] (the setup is in §F of
the supplementary material). LCSA achieves better tFID
and vFID than locality-constrained linear coding, subspace
learning, and DAE. Figure 25 of the supplementary material
shows the variance computed over LCSA codes for indivi-
sual images. While visually mundane regions have low vari-
ance (i.e., single code of α encodes it), the visually diverse
regions have variance that is somewhat higher for LCSA
than other coders, preventing overfitting where it matters.

7. Conclusions
We have applied data-manifold learning (LCSA) in the

coarse-to-fine manner to conv. features of discriminator
to prevent its overfitting by adaptively balancing the trade-
off between denoising on the mainfold and refining the
mainfold (intertwining and dictionary learning steps), con-
trolling the complexity of learning (the proximity loss).
Locality-constrained soft assignment is controlled via the
Lipschitz constant, resulting in a trade-off between quanti-
zation and linear coding, yielding state-of-the-art results.
Acknowledgements. We thank CSIRO’s Machine Learning
and Artificial Intelligence Future Science Platform (MLAI
FSP) and China Scholarship Council (CSC) for the support.

11272

References
[1] Guillaume Alain and Yoshua Bengio. What regularized auto-

encoders learn from the data-generating distribution. JMLR,
15(110):3743–3773, 2014. 2, 5, 8, 11, 13

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein generative adversarial networks. In ICML, pages
214–223, 2017. 3

[3] Jeff A Bilmes. A Gentle Tutorial of the EM Algorithm and its
Application to Parameter Estimation for Gaussian Mixture
and Hidden Markov Models. Technical report, 1998. 2, 4

[4] Piotr Bojanowski, Armand Joulin, David Lopez-Pas, and
Arthur Szlam. Optimizing the latent space of generative net-
works. In ICML, volume 80, pages 600–609, 2018. 1

[5] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale GAN training for high fidelity natural image synthesis.
In ICLR, 2019. 1, 2, 4, 6, 14

[6] Casey Chu, Kentaro Minami, and Kenji Fukumizu. Smooth-
ness and stability in gans. In ICLR, 2020. 1

[7] Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta
Willamowski, and Cédric Bray. Visual categorization with
bags of keypoints. In Workshop on statistical learning in
computer vision, ECCV, 2004. 2, 4

[8] Geoffrey Davis, Stéphane Mallat, and Zhifeng Zhang. Adap-
tive time-frequency decompositions with matching pursuits.
Optical Engineering, 33, 1994. 2, 4

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255, 2009. 6, 11

[10] Terrance DeVries, Michal Drozdzal, and Graham W Taylor.
Instance selection for gans. NeurIPS, 2020. 7

[11] Chris Donahue, Julian McAuley, and Miller Puckette. Ad-
versarial audio synthesis. In ICLR, 2019. 1

[12] Mingming Gong, Yanwu Xu, Chunyuan Li, Kun Zhang, and
Kayhan Batmanghelich. Twin auxilary classifiers gan. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc,
E. Fox, and R. Garnett, editors, NeurIPS, pages 1330–1339.
2019. 6

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NeurIPS,
2014. 1, 2, 3

[14] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron Courville. Improved training of
wasserstein gans. In NeurIPS, pages 5769–5779, 2017. 3

[15] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In NeurIPS, volume 30, pages 6626–6637, 2017. 6

[16] Patrik O Hoyer. Non-negative sparse coding. In Proceedings
of the 12th IEEE workshop on neural networks for signal
processing, pages 557–565. IEEE, 2002. 2, 4

[17] Jongheon Jeong and Jinwoo Shin. Training {gan}s with
stronger augmentations via contrastive discriminator. In
ICLR, 2021. 3

[18] Animesh Karnewar and Oliver Wang. Msg-gan: Multi-scale
gradients for generative adversarial networks. In CVPR,
pages 7799–7808, 2020. 2, 3, 6, 7, 14

[19] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of GANs for improved quality, stability,
and variation. In ICLR, 2018. 1, 3

[20] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative adver-
sarial networks with limited data. NeurIPS, 33, 2020. 1, 2,
3, 4, 6, 7, 11, 12, 14

[21] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, 2019. 1, 3, 6, 22

[22] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of stylegan. In CVPR, pages 8110–8119,
2020. 1, 2, 6

[23] Mahyar Khayatkhoei, Ahmed Elgammal, and Maneesh
Singh. Disconnected manifold learning for generative ad-
versarial networks. In NeurIPS, pages 7354–7364, 2018. 3

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv:1412.6980, 2014. 14

[25] Naveen Kodali, Jacob Abernethy, James Hays, and
Zsolt Kira. On convergence and stability of gans.
arXiv:1705.07215, 2017. 1

[26] Piotr Koniusz and Krystian Mikolajczyk. Soft Assignment of
Visual Words as Linear Coordinate Coding and Optimisation
of its Reconstruction Error. ICIP, 2011. 2, 4

[27] Piotr Koniusz, Fei Yan, Philippe-Henri Gosselin, and Krys-
tian Mikolajczyk. Higher-order Occurrence Pooling on Mid-
and Low-level Features: Visual Concept Detection. Techni-
cal report, INRIA, Sept. 2013. 2

[28] Piotr Koniusz, Fei Yan, Philippe-Henri Gosselin, and Krys-
tian Mikolajczyk. Higher-order occurrence pooling for bags-
of-words: Visual concept detection. TPAMI, 2016. 2

[29] Piotr Koniusz, Fei Yan, and Krystian Mikolajczyk. Compar-
ison of Mid-Level Feature Coding Approaches And Pooling
Strategies in Visual Concept Detection. CVIU, 2012. 2, 4

[30] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, 2009. 6, 11

[31] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Ng.
Efficient sparse coding algorithms. NeurIPS, pages 801–808,
2006. 2, 4

[32] Chuan Li and Michael Wand. Precomputed real-time texture
synthesis with markovian generative adversarial networks. In
ECCV, 2016. 1

[33] Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang,
and Barnabas Poczos. Mmd gan: Towards deeper under-
standing of moment matching network. In NeurIPS, vol-
ume 30, pages 2203–2213, 2017. 3

[34] Liu Lingqiao, Lei Wang, and Xinwang Liu. In Defence of
Soft-assignment Coding. ICCV, 2011. 2, 4

[35] Kanglin Liu, Wenming Tang, Fei Zhou, and Guoping Qiu.
Spectral regularization for combating mode collapse in gans.
In ICCV, pages 6382–6390, 2019. 3

[36] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. In ICLR, 2018. 3, 4

[37] Takeru Miyato and Masanori Koyama. cgans with projection
discriminator. In ICLR, 2018. 4

11273

[38] Youssef Mroueh, Tom Sercu, and Vaibhava Goel. Mcgan:
Mean and covariance feature matching gan. In ICML, pages
2527–2535, 2017. 3

[39] Yao Ni, Dandan Song, Xi Zhang, Hao Wu, and Lejian Liao.
Cagan: Consistent adversarial training enhanced gans. In
IJCAI, pages 2588–2594, 2018. 4

[40] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In
ICVGIP, pages 722–729. IEEE, 2008. 6

[41] Dylan M. Paiton, David Schultheiss, Matthias Kuemmerer,
Zac Cranko, and Matthias Bethge. The geometry of adver-
sarial subspaces, 2022. 26

[42] Yagyensh Chandra Pati, Ramin Rezaiifar, and Perinku-
lam Sambamurthy Krishnaprasad. Orthogonal matching pur-
suit: Recursive function approximation with applications to
wavelet decomposition. In ACSSC, pages 40–44, 1993. 2, 4

[43] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-
vised representation learning with deep convolutional gener-
ative adversarial networks. arXiv:1511.06434, 2015. 3

[44] Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and
Thomas Hofmann. Stabilizing training of generative adver-
sarial networks through regularization. arXiv:1705.09367,
2017. 1

[45] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, Xi Chen, and Xi Chen. Improved
techniques for training gans. In NeurIPS, pages 2234–2242.
2016. 6

[46] Fatemeh Shiri, Xin Yu, Piotr Koniusz, and Fatih Porikli. Face
destylization. In DICTA, pages 1–8. IEEE, 2017. 1

[47] Fatemeh Shiri, Xin Yu, Fatih Porikli, Richard Hartley, and
Piotr Koniusz. Identity-preserving face recovery from por-
traits. In WACV, 2018. 1

[48] Fatemeh Shiri, Xin Yu, Fatih Porikli, Richard Hartley, and
Piotr Koniusz. Identity-preserving face recovery from styl-
ized portraits. IJCV, 127(6-7):863–883, 2019. 1

[49] Fatemeh Shiri, Xin Yu, Fatih Porikli, Richard Hartley, and
Piotr Koniusz. Recovering faces from portraits with auxiliary
facial attributes. In WACV, pages 406–415, 2019. 1

[50] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple
way to prevent neural networks from overfitting. JMLR,
15(1):1929–1958, 2014. 4

[51] Hugo Steinhaus. Sur la division des corps matériels en par-
ties. Bull. Acad. Pol. Sci., Cl. III, 4:801–804, 1957. 2, 4

[52] Ngoc-Trung Tran, Viet-Hung Tran, Ngoc-Bao Nguyen,
Trung-Kien Nguyen, and Ngai-Man Cheung. On data aug-
mentation for gan training. TIP, 30:1882–1897, 2021. 3

[53] Hung-Yu Tseng, Lu Jiang, Ce Liu, Ming-Hsuan Yang, and
Weilong Yang. Regularing generative adversarial networks
under limited data. In CVPR, 2021. 2, 7, 11, 12

[54] Jan van Gemert, Jan-Mark Geusebroek, Cor Veenman, and
Arnold Smeulders. Kernel Codebooks for Scene Categoriza-
tion. ECCV, 5304:696–709, 2008. 2, 4

[55] Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv, Thomas
Huang, and Yihong Gong. Locality-constrained linear cod-
ing for image classification. In CVPR, pages 3360–3367,
2010. 2, 4, 5

[56] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In
CVPR, pages 8798–8807, 2018. 1

[57] David Warde-Farley and Yoshua Bengio. Improving gener-
ative adversarial networks with denoising feature matching.
2016. 3

[58] Ryan Webster, Julien Rabin, Loic Simon, and Frederic Jurie.
Detecting overfitting of deep generative networks via latent
recovery. In CVPR, 2019. 1

[59] Xiang Wei, Zixia Liu, Liqiang Wang, and Boqing Gong. Im-
proving the improved training of wasserstein gans. ICLR,
2018. 4

[60] Yongqin Xian, Tobias Lorenz, Bernt Schiele, and Zeynep
Akata. Feature generating networks for zero-shot learning.
In CVPR, 2018. 1

[61] Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang.
Linear spatial pyramid matching using sparse coding for im-
age classification. In CVPR, pages 1794–1801, 2009. 2, 4

[62] Xin Yu, Basura Fernando, Bernard Ghanem, Fatih Porikli,
and Richard Hartley. Face super-resolution guided by facial
component heatmaps. In ECCV, pages 217–233, 2018. 1

[63] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-
tus Odena. Self-attention generative adversarial networks. In
ICML, pages 7354–7363, 2019. 3, 4

[64] Han Zhang, Zizhao Zhang, Augustus Odena, and Honglak
Lee. Consistency regularization for generative adversarial
networks. In ICLR, 2020. 3

[65] Ruixiang Zhang, Tong Che, Zoubin Ghahramani, Yoshua
Bengio, and Yangqiu Song. Metagan: An adversarial ap-
proach to few-shot learning. In NeurIPS, volume 31, pages
2365–2374, 2018. 1

[66] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song
Han. Differentiable augmentation for data-efficient gan
training. NeurIPS, 33, 2020. 1, 2, 3, 7, 11, 12

[67] Yang Zhao, Chunyuan Li, Ping Yu, Jianfeng Gao, and
Changyou Chen. Feature quantization improves gan train-
ing. In ICML, pages 11376–11386, 2020. 3, 4, 14

[68] Zhengli Zhao, Sameer Singh, Honglak Lee, Zizhao Zhang,
Augustus Odena, and Han Zhang. Improved consistency
regularization for gans. In AAAI, volume 35, pages 11033–
11041, 2021. 4, 7

[69] Peng Zhou, Lingxi Xie, Bingbing Ni, Cong Geng, and Qi
Tian. Omni-gan: On the secrets of cgans and beyond. In
ICCV, pages 14061–14071, 2021. 2, 4, 6, 7, 14

11274

