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Figure 1: Our method learns to render novel views of an articulated, moving object by “watching” it move in a multi-view video sequence
with associated foreground masks. Simultaneously, it discovers the object’s parts and joints with no additional supervision. The learned
structure allows us to explicitly re-pose the object, by roto-translating each part around its joint. In (c) and (d) we re-pose objects from
multiple categories to configurations never seen in training, which is possible thanks to the structure we discover from the input videos.

Abstract

Rendering articulated objects while controlling their
poses is critical to applications such as virtual reality or
animation for movies. Manipulating the pose of an object,
however, requires the understanding of its underlying struc-
ture, that is, its joints and how they interact with each other.
Unfortunately, assuming the structure to be known, as exist-
ing methods do, precludes the ability to work on new object
categories. We propose to learn both the appearance and
the structure of previously unseen articulated objects by ob-
serving them move from multiple views, with no joints anno-
tation supervision, or information about the structure. We
observe that 3D points that are static relative to one another
should belong to the same part, and that adjacent parts that
move relative to each other must be connected by a joint.
To leverage this insight, we model the object parts in 3D as
ellipsoids, which allows us to identify joints. We combine
this explicit representation with an implicit one that com-
pensates for the approximation introduced. We show that
our method works for different structures, from quadrupeds,
to single-arm robots, to humans. The code is available at
https://github.com/NVlabs/watch-it-move
and a version of this manuscript that uses animations is at
https://arxiv.org/abs/2112.11347.

1. Introduction
Using images to infer both the appearance and the func-

tional structure of generic, real-world objects is a funda-
mental goal of computer vision. From a practical stand-

*Work partially done when Atsuhiro Noguchi was an intern at NVIDIA.

point, it would allow us to render and manipulate physical
objects in the metaverse. But its appeal goes further, as it
requires pushing the boundaries of our ability to learn from
data with no direct supervision.

Our community made dramatic progress towards ap-
pearance capture and novel view synthesis, particularly for
static scenes [1, 6, 29, 35, 45, 65, 68]. Several recent meth-
ods can also capture dynamic scenes and reenact their mo-
tion [28, 39, 43, 54, 56]. We use the term “reenacting” to
highlight that these methods cannot explicitly control the
pose of the dynamic objects. Rather, they replay through
the poses that were observed. Re-posing an articulated
object—i.e., the explicit manipulation of its pose—requires
knowing the location of the joints and how the different
parts of the object interact with each other1. Learning
to predict the location of joints in 3D is a well-studied
task, at least for humans, and it is generally tackled using
2D [17,18,22,44,55,63] or 3D [16,20,25–27,50,70] ground
truth information. When not using joints supervision, exist-
ing pose manipulation methods rely on a predefined model,
that is, a template structure [23, 48]. However, annotations
are expensive and object-specific, which is why they are
only available for limited classes of objects, such as peo-
ple or faces [15, 41, 47].

We aim at re-posing an articulated object from a category
not seen before, using only a multi-view video and corre-
sponding foreground mask, as shown in Figure 1. Our ap-
proach requires no additional supervision, no prior knowl-
edge about the structure, nor networks pre-trained on aux-

1Image-to-image translation methods (e.g., [34]) can also re-pose, but
we focus on methods that allow for the explicit definition of the target pose.

3677



iliary tasks: we learn the appearance and the structure of
the object by just watching it move. Like existing meth-
ods [8, 36], to express explicit pose changes, we treat the
articulated object as a set of posed parts, each connected to
other parts through joints. However, rather than relying on
direct supervision, we note that a joint is a 3D point around
which a part must rotate to produce the piece-wise, rigid de-
formation observed in the input images. This allows us to
get indirect supervision for the locations of the joints from
the image reconstruction loss.

Our approach, inspired by neural implicit representa-
tions, is scene-specific and predicts the color and the signed-
distance function (SDF) of any 3D point, allowing us to
generate any desired frame by volumetric rendering [57].
We also learn certain properties of the object explicitly.
Specifically, we model the object as a set of ellipsoids. A
functional part of the object can be represented by one or
more ellipsoids, as shown in Figure 2. We optimize the ge-
ometric properties of the ellipsoids, i.e., their size and pose,
for each frame of the input sequence. The color and density
of a 3D point, then, can be predicted from the combined
contribution of the ellipsoids. Because these ellipsoids only
afford a coarse approximation of the object, we also esti-
mate a residual with respect to this explicit part-based repre-
sentation. In addition to regularizing the optimization land-
scape, this representation provides a key advantage: the rel-
ative motion of the parts can be explicitly observed over
time, which offers clues on the locations of the joints. Note
that this applies to unobserved categories, and requires no
prior knowledge on the number of parts that compose it.
Because we do not use any prior on the structure of the ob-
ject or supervision annotations, our method can re-pose any
articulated object from a single multi-view video sequence
and the corresponding foreground masks. The pose of the
object can be manipulated by applying the appropriate roto-
translation to the different joints. Figures 1(c) and (d) show
examples of object re-posing for different categories, struc-
tures, and number of parts—all of which were unknown at
training time. Our method
• is the first to learn a re-poseable shape representation

from multi-view videos and foreground masks, without
additional supervision or prior knowledge of the underly-
ing structure,

• it discovers the number and location of physically mean-
ingful joints—also learned with no annotations, and

• it is structure agnostic and can thus be learned for previ-
ously unseen articulated object categories.

• Our reconstruction and re-posing results are on par or bet-
ter than those of category-specific methods that use prior
knowledge.

2. Related Work

RGB Ellipsoids Refined partsCenter ti
Cand. ξniJoint

Ri

Figure 2: We explicitly represent each object’s part as an ellipsoid
centered at ti and oriented with Ri (magenta arrow). We identify
the part’s joints from a pool of candidates, ξn

i . The final recon-
struction is obtained by estimating a residual w.r.t. the ellipsoids.

2.1. Object Re-Posing and Novel-View synthesis

Synthesizing images of articulated objects under novel
poses and viewpoints is critical to several applications. Ear-
lier methods formulated the problem as conditional image-
to-image translation [3,9,31,34,42,62,64,69]. Given an im-
age of an object and a target pose, these methods use a gen-
erator model to transfer a given image to a target pose. The
conditioning pose is usually obtained from 2D keypoints or
parametric meshes. However, keypoints or mesh models are
available for handful of object categories (e.g., faces, human
body, and hands), preventing these methods from general-
izing to arbitrary object classes.

More recently, NeRF [35] ignited a wave of research on
synthesizing novel views of an object by using a sparse set
of multi-view images [1, 29, 35, 38, 57, 65]. These meth-
ods learn an implicit 3D representation that provides the
color and density of each point in 3D space. Photorealistic
images can then be generated using volumetric rendering.
Since the implicit 3D representation they use is continuos
and topology-agnostic, these methods can reconstruct arbi-
trary, static objects. Many follow-up works extend NeRF to
model dynamic scenes, using single- or multi-view videos
for training [28, 39, 43, 54, 56]. However, these methods
only “reenact” the video used for training, and do not offer
control over the articulated pose. We build on these devel-
opments and propose a method that also provides control
over the articulated pose of the objects.

To allow re-posing the objects, various implicit repre-
sentations for articulated objects have also been proposed,
especially for humans. They allow novel view and pose syn-
thesis, but require ground truth poses [8,36,49], or dense 3D
meshes [24, 30, 40, 41, 53] annotations for the training im-
age. In contrast, we propose a re-poseable 3D implicit rep-
resentation trained only from multi-view videos and fore-
ground masks of a previously unseen object category. We
simultaneously decompose the parts, estimate the connec-
tions between them, and reconstruct the image with no prior
information about the structure of the object.
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Figure 3: Given a multi-view video of an articulated, dynamic object, an MLP associates a frame id with the configuration of the object’s
parts, approximated with ellipsoids. To predict the color of a 3D query point in global coordinates, we assemble a feature f from its
coordinates and signed-distance functions, expressed with respect to all of the parts. From f , a second MLP produces the color and a
residual SDF to perform volume rendering. Simultaneously, from the parts we discover the structure. We train the system end to end, thus
back-propagating the error all the way to the poses and radii of the parts. For clarity, some components and loss terms are not shown here.

2.2. Discovery of 3D Joints of Articulated Objects

Explicitly re-posing an object is straightforward if the
joints locations are given, but localizing the 3D joints is
challenging. Ground-truth 3D joints supervision simplifies
the problem [16, 20, 25–27, 50, 70]. However, 3D annota-
tions are expensive to gather and, perhaps more importantly,
they make the resulting algorithms category-specific. Other
works simplify the problem and rely on 2D annotations and
multi-view [17, 18, 22, 44, 55, 63] or temporal [37] informa-
tion for 3D supervision. Although 2D joints are cheaper
to annotate, the process is still time-consuming and hard to
scale to a large number of objects and classes. To address
this, some recent methods aim to discover the joints of ar-
ticulated objects using self-supervised learning [19, 23, 48].
While these methods show impressive results, they still rely
on carefully designed, object-specific templates and/or prior
information, which cannot be directly applied to other ob-
ject classes. Other methods can handle arbitrary objects but
provide only 2D landmarks [7,33,52,67]. There exist some
works that discover 3D keypoints using self-supervision and
multi-view data, but they are limited to rigid objects [51].
Other works estimate the parts and the structure of arbitrary
objects from videos, but they require ground truth 2D trajec-
tory of keypoints [10, 59]. In contrast to these methods, our
approach discovers 3D joints of articulated objects and does
not require any 2D or 3D annotations, predefined template,
or any other prior knowledge about the object, which makes
it category-agnostic. Additionally, most of these methods
only provide locations for a sparse set of keypoints/joints
and do not provide any information about the surface ge-
ometry or texture of the object. While some methods pro-
vide self-supervised dense part labels, they are limited to
2D information [14, 46]. In contrast, our re-posable shape
representation provides dense part labels, 3D surface geom-
etry, as well as the texture of each part (implicitly).

Our work is also related to the recent methods for 3D

shape representation that use implicit functions [2, 11, 12],
which represent a deformable 3D shape as a composition of
simple shape elements, e.g., 3D Gaussians (where the level
set is an ellipsoid). Each element contributes to the implicit
surface of the shape. However, these methods cannot learn
surface textures, they require the ground truth 3D shape for
training, and do not learn the physical connectivity between
parts, which prevents explicit re-posing. Concurrent meth-
ods circumvent the need of 3D shape supervision, but do
not allow for explicit re-posing [60, 61].

3. Method

3.1. Overview

Our method takes as input a sequence of T multi-view,
posed images of an articulated, moving object,O, and fore-
ground masks indicating its silhouette. From those, we
learn to render novel views of O. We also discover plausi-
ble joints that allow us to render O in a new pose and from
a novel viewpoint, without any additional supervision. We
use a hybrid representation of the object that combines an
explicit rough approximation of its body, and a subsequent
implicit refinement. More concretely, we represent O ex-
plicitly as a set of P parts, each approximated with an ellip-
soid, see Figure 2. Rather than assuming P to be known, we
over-segment the object and subsequently merge the differ-
ent parts as needed (Section 3.5.2). The ellipsoid represent-
ing part i is parametrized with its three-dimensional radius
ri. (Throughout the paper, we use bold for vectors and ma-
trices.) Its pose at time t is represented by the translation of
its center of mass, ti(t), and a rotation matrix, Ri(t). To
discover and localize the object’s joints, which define the
relationship between different parts, we observe that a 3D
point is a meaningful joint if roto-translating a part around
it explains a pose change in the reconstructed image.

There are four components to our method. First, a train-
able module estimates the pose of each part, at each frame

3679



t ∈ [1, T ] (Section 3.2). From the posed parts, we propose
to discover the underlying structure (Section 3.5), which
we use as regularization during training, and to re-pose the
object at inference. The third is a module that also uses
the pose of the parts, and is trained to predict the color
and signed-distance function of points in 3D (Section 3.3).
The final component renders the output view by perform-
ing volumetric rendering on these predictions [35,57] (Sec-
tion 3.4). We train the system end-to-end (Figure 3).

3.2. Pose Estimation

As shown in Figure 2, we represent each part of the ob-
ject O as an ellipsoid ei, such that their union, E , approx-

imates the object’s 3D shape Ω: E =
P⋃
i=1

ei ≈ Ω. Each

ellipsoid has a learnable three-dimensional radius param-
eter ri. Using the frame id t as input, we train an MLP,
TΘ, that outputs the global rotation Ri(t) (represented with
a 3 × 3 rotation matrix) and translation ti(t) of each ei.
We initialize these parameters randomly and observe that
the optimization is reasonably robust to different initializa-
tions. Following common practice [35], rather than feeding
t to TΘ directly, we use positional encoding γ(t), where
γ(·) = {cos(α ·)}{α=1:50}. Since we overfit our system
to a single scene, we can directly optimize the rotation and
translation of each part in the global coordinate system, for
each time frame: TΘ : γ(t) → {Ri(t), ti(t)}{i=1:P}. By
predicting rotations and translations in the global coordi-
nate system, we naturally force the pose of the object to be
estimated consistently across views.

3.3. Shape and Appearance Decoder

Similar to NeuS [57], we seek to estimate the color, c,
and signed-distance functions (SDFs), d, at any 3D point,
xg , to perform volumetric rendering. Since the ellipsoids
alone cannot accurately capture the object’s shape, we use
a second MLP, SΘ, to predict a residual. To ensure that
the final shape does not deviate significantly from E , we
represent this as a residual SDFs, ∆d, which is bounded by
construction. We first convert the query point xg , expressed
in global coordinates, to the local coordinate system of each
part xi(t) = (Ri(t))

−1(xg−ti(t)), and we apply weighted
positional encoding [36] to compute a feature vector

f = CAT{wPE
i γ(xi(t))}{i=1:P}, (1)

where CAT is the concatenation operation. The weights in
Equation 1 are computed as

wPE = softmax
{
−sPEdi

}
{i=1:P} , (2)

where di = SDFi(xi(t), ei), and sPE is a learnable temper-
ature parameter for the softmax. The SDFs from the ellip-
soids can be computed directly from their radii and poses

Original Frames Reconstruction Parts

Figure 4: Reconstruction and part segmentation rendered from
novel perspectives.

(see Supplementary). Note that f effectively subsumes the
current estimates of the ellipsoids, their pose, and the loca-
tion of the sampled point. We then feed f to a second MLP

SΘ : f(xg)→ (c, ∆̃d)
∣∣
xg , (3)

where c is color of xg , and ∆̃d a residual with respect to the
SDFs estimated from the ellipsoids, which we compress as

∆d = dmaxtanh(s∆̃d), (4)

where dmax is the maximum value of ∆d and s is a learnable
scale parameter. The final SDF can be computed as

d = − 1

sd
logsumexp

{
−sddi

}
{i=1:P} + ∆d, (5)

where and sd is a learnable scaling factor. Following
NeuS [57], we compute the S-density from the signed-
distance function, d, and use it with the color estimate of
the 3D point to volume render the desired image. We also
regularize the SDF with the Eikonal loss [13]:

LSDF = E[(|∇d|2 − 1)2]. (6)

We predict SDFs rather than densities because ∆d is
bounded (Equation 4), and thus it naturally bounds the dif-
ference between the estimated surface positions of object Ω
and the ellipsoid approximation, E .

3.4. Rendering

The color of an output pixel can be predicted by volu-
metric rendering using the signed-distance function, as pro-
posed in NeuS [57], and which we briefly describe here
for completeness. The discrete opacity of the j-th point
along the 3D ray corresponding to the output pixel can be
computed as αj = max ((Φs(dj)− Φs(dj+1))/Φs(dj), 0),
where dj is the signed-distance function at the point (repre-
sented in global coordinates) and Φs is a sigmoid function.
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Figure 5: We do not assume the number of parts to be known.
Rather, we intentionally over-segment the object for training. Af-
ter convergence, we merge parts that are static relative to each
other. In this case, the first three steps of our procedure merge
a0, b0, c0, and d0 into a single part. The final two steps merge a3
with b3, and c3 with d3. A polygon (e.g., the triangular body of
the robot) indicates a part that is connected to more than two parts.

From this equation we compute the accumulated transmit-
tance along the ray, Tj =

∏j−1
k=1(1 − αk), which we use to

estimate the color of the output pixel as Ĉ =
∑
j Tjαjcj .

Similarly, the foreground mask can be rendered as M̂ =
ΣjTjαj . The photometric reconstruction loss Lphoto is then

Lphoto = Et,ray[||Ĉ−CGT ||22 + ||M̂−MGT ||22]. (7)

We refer to the paper by Wang et al. for more details [57].

3.5. Discovery of the 3D Joints

So far, we have described the object’s parts as an un-
structured set of ellipsoids E . That is, each part’s transfor-
mation is applied in the global coordinate frame, and the
parts act independently of each other. However, because
these ellipsoids represent the object explicitly, they allow us
to discover the underlying structure. Specifically, we make
two observations. First, a point inside part ei that coincides
with (is close to) a point in part ej as the relative pose be-
tween the two parts changes, is likely to be a joint that con-
nects the two parts. We detail how we leverage this insight
in Section 3.5.1. Because we do not know the number of
parts a priori, we start by over-segmenting the object. Our
second insight is that two connected parts that maintain the
same relative pose throughout the sequence can be merged:
the joint between them is not necessary to explain the poses
observed in the input sequence, Section 3.5.2. While we
discover the final structure and finalize the part merging af-
ter convergence, we also compute their respective losses at
training time for additional regularization (see Section 3.6).

3.5.1 Structure Discovery

We start by sampling N equally spaced joint candidates, ξni ,
for each part ei, see Figure 2. We provide more details about
the sampling in the Supplementary. In order to discover
connections we first compute the distance between all can-

didates over all frames and for every part pair (i, j)

lm,ni,j =
∑

t

(
||ξmi − ξnj ||22 + λl||ti − tj ||22

)
, (8)

where the second term penalizes connections between parts
that are far from each other, λl is a regularization coeffi-
cient, and t is the frame id. To prevent the distance from
changing too quickly, we smooth it across training iterations

l̄m,ni,j (τ + 1)← (1− ε) · l̄m,ni,j (τ) + ε · lm,ni,j (τ), (9)

where ε is a momentum, and τ the training iteration. We
compute the cost of connecting parts i and j as

l̄i,j(τ) = min
n,m

l̄ m,ni,j (τ). (10)

We sort the list of l̄i,j’s for all parts in ascending order and
traverse it to connect the parts that are closest (lowest cost).
We assume the object’s structure, Γ, to be an acyclic graph,
so we require that there be a path between any two joints,
and we do not allow connections that would create loops.
We do not connect parts that violate this requirement, even
if their l̄ is the next lowest. This procedure allows us to
determine the structure of any articulated object that can
be modelled as an acyclic graph. We note that modeling
the structure as a tree naturally yields a hierarchy for the
parts (with an arbitrary definition of the root node), which
is necessary for re-posing. We also compute the overall cost
associated with a particular configuration Γ

LΓ =
∑

(i,j)∈Γ

l̄i,j , (11)

which we use to regularize our training proce-
dure (see Section 3.6). Figure 5 shows the typical
quality of the structure we identify. Note that
a part can connect to multiple parts. While
this approach is reasonably robust, we found
that roughly one out of ten random initial-
izations (Section 3.2) can yield to slightly in-
correct discovered structures, as shown in the
inset on the right.

3.5.2 Part Merging

Rather than assuming prior knowledge on the total num-
ber of parts, we over-segment the object and merge redun-
dant parts. Specifically, we combine parts that are static
with respect to each other throughout the sequence, see Fig-
ure 5. Differently put, we only preserve the articulations
that are necessary to explain a change of pose in the input
videos. The relative position between parts can be com-
puted as Rj

i = R−1
i Rj and tji = R−1

i (tj − ti). We can
then measure the relative motion as

Di,j = σt(R
j
i ) + λmotionσt(t

j
i ), (12)
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Original Frame Re-Posing Parts

Figure 6: After learning the 3D joints and parts of a previously
unseen object category from a multi-view video sequence, we can
re-pose it by explicitly manipulating rotation and translation of
each joint and part. Credits: human [41], dog [21].

where σt is the standard deviation over time. We use Equa-
tion 12 to define an additional loss term for our training:

Lmerge =
1

P 2

∑

i 6=j

Di,jΦ1

(
D̄ −Di,j

D̄

)
, (13)

where D̄ is a hyperparameter, and Φ1 is a sigmoid function.
Additional training details can be found in the Supplemen-
tary. After the training is complete, we merge parts with
limited motion relative to each other. Specifically, we com-
pute Equation 12 for all pairs of parts and iteratively merge
those for which Di,j is small. A few steps of this process
are shown in Figure 5.

3.6. Training Strategy and Regularization

We train our system on a single scene, and in an end-
to-end fashion. The process optimizes also for the parts’
radii {ri}, in addition to training the parameters of the two
MLPs. To help stabilize the training, we progressively in-
crease the number of frames used for training as the training
converges. This strategy yields a reasonable initialization of
the structure, which is then adjusted to capture a consistent
part decomposition and structure over the entire video.

Our loss function comprises several terms, including
LSDF, Lphoto, LΓ, and Lmerge in Equations 6, 7, 11, and
13, respectively. However, we only add Lmerge after all the
frames are added to the training. We describe additional
regularization terms in the following, and we evaluate the
contribution of each term in Section 4.5. The final loss is a
weighted sum of these terms, see Supplementary.

Ellipsoid Surface Regularization Our explicit use of el-
lipsoids to approximate the shape of the object allows us to
sample points from the surface at a low cost. The projection
of sampled surface points onto the image should cover the

Tgt Poses Schm.∗et al. Kun.∗et al. Ours

Figure 7: Re-posing comparison against the baseline methods,
Section 4.3. For Kundu∗ et al. we use the neutral body model.

whole foreground mask of the object, and no pixels outside
of it. We encourage this by minimizing the chamfer dis-
tance between the points sampled from the surface and the
points sampled from the foreground mask:

LE =
1

NE

∑

i

min
j
||pEi −pMj ||22+

1

NM

∑

j

min
i
||pEi −pMj ||22,

where pEi are the coordinates of points randomly sampled
from the surface of E and projected into the image space,
NE is their number, pMj are the coordinates of points ran-
domly sampled from the mask MGT , and NM is their num-
ber.
Part Coverage Loss Similarly, the centers of the parts, ti,
should be distributed over the foreground mask, rather than
being concentrated in a region. Therefore, the centers of the
parts are also learned to minimize the chamfer distance to
the foreground mask:

Lt =
1

P

∑

i

min
j
||ti − pMj ||22 +

1

NM

∑

j

min
i
||ti − pMj ||22.

(14)

Separation Loss We further discourage the parts them-
selves to be concentrated in a single region by penalizing
small distances between their centers:

Lseparation =
1

P 2

∑

i6=j

exp

( |ti − tj |22
2σ2

)
, (15)

where σ controls the scale of the distances to be regular-
ized.

4. Evaluation and Results
We evaluate our method’s ability to re-pose objects and

estimate their joints—both qualitatively and quantitatively.

4.1. Pose Manipulation

One critical advantage of our explicit representation is
the ability to manipulate the pose of previously unseen cat-
egories without prior knowledge: we can directly use the
structure we discover by watching the object move. Given
the frame id of a particular sequence, we manipulate the
corresponding pose by applying hand-crafted rotations and
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Table 1: Quantitative evaluation.

Novel view Re-posing Joints (mm)
LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ MPJPE↓

Kundu∗ et al. [23] 0.059 0.957 0.082 0.941 12.24
Schmidtke∗ et al. [48] 0.055 0.957 0.061 0.953 18.56
Ours w/o merge 0.053 0.966 0.064 0.953 7.59
Ours w/ merge 0.056 0.965 0.065 0.952 11.11

translations to each of the parts. To showcase our method’s
ability to discover the structure, we render a small dataset
of seven structurally diverse robots. We provide more de-
tails about the rendered data in the Supplementary. We also
trained our method on RGBD-dog, dataset of dogs [21].
Figures 1 and 6 show re-posing examples for objects with
different structures, number of parts, and joints. More re-
sults are on the project’s website. We do not estimate the
range of motion at each joint, and leave it up to the user to
define plausible poses.

4.2. Pose Manipulation for Humans

The structure our method discovers is plausible, as it al-
lows for accurate re-posing, but it may not coincide exactly
with the physical structure of the object. For a quantitative
evaluation we focus on humans, because of the rich litera-
ture of methods and annotated data for this category. We use
the ZJU-MoCap dataset [41] for our experiments. Specifi-
cally, after training our method, we use a subset of the train-
ing frames to learn a linear transformation from the joints
of an SMPL model [32] to ours. Since the ZJU-MoCap
dataset [41] has ground truth SMPL annotations, we can
use this mapping to re-pose our model to target frames not
observed in training, as shown in Figure 7. We use five
subjects from the ZJU-MoCap dataset. For each sequence
we use the first 80% of frames for training and the remain-
ing for testing. The details of the mapping to and from the
SMPL model are in the supplementary. Note that this map-
ping is for evaluation purposes only—our method allows
for direct manipulation and does not need a SMPL model,
as shown in Figure 6. The last two rows of Table 1 re-
port the reconstruction quality of our re-posed renderings
for the test frames, averaged over all the five subjects. We
provide numbers for our model before and after merging
(Section 3.5.2). We note that merging causes a small per-
formance hit because it reduces the expressiveness (DOF)
of the representation. However, even after merging, the per-
formance remains competitive. Figure 8 shows the merging
results with and without Lmerge. Using Lmerge allows us to
appropriately pull parts together that have the same motion,
and to learn a more meaningful part decomposition.

4.3. Baselines Description and Evaluation

A direct numerical comparisons with the state-of-the-
art is impossible: ours is the first work that can explicitly
re-pose a dynamic object from a previously unseen cate-

Initial joints Merged joints Parts center
<latexit sha1_base64="BT1NRUZR5gHpMlwRcVySt/wRzLM="></latexit>

w/ Lmerge

<latexit sha1_base64="cA+2VFlSZufZxpdKUAgUcO2V8M8="></latexit>

w/o Lmerge

Merged joints Parts center
(a) (b)

Figure 8: Effect of merging loss. (a) merging with Lmerge and (b)
without it.

gory, without supervision (other than multi-view supervi-
sion), or prior knowledge of the underlying structure. More-
over existing methods are not scene-specific. The methods
by Schmidtke et al. [48] and by Kundu et al. [23], both of
which assume a template and only work for humans, are the
closest existing solutions for unsupervised, direct pose ma-
nipulation. Although they tackle a more constrained task,
we use them as inspiration for baselines that allow for a
quantitative evaluation.

Both Schmidtke et al. [48] and Kundu et al. [23] em-
ploy a CNN-based encoder, which allows them to work on
scenes not seen in training. This gives an unfair advantage
to our method, which overfits to a specific sequence. There-
fore, we propose the modifications, which allow us to train
both methods for a specific sequence, like ours.

We modify the method by Kundu et al. by swapping their
CNN-based encoder with an MLP that overfits the SMPL
parameters to each frame. These parameters are then used
to adapt the SMPL mesh to the pose in the frame. We train
the MLP by enforcing that the color of corresponding ver-
texes in different frames match. After convergence we com-
pute the color of all the vertexes of the SMPL model by
averaging the colors of the corresponding pixels in all the
input frames. Re-posing their solution, then, reduces to ma-
nipulating the SMPL parameters. To adapt the approach of
Schmidtke et al., we replace their 2D template with a 3D
template and their CNN encoder with an MLP that learns
how to deform the 3D template to match the pose at the
given time frame. Given a viewport we can project the tem-
plate to a 2D representation, which can be converted to an
RGB image with a second network. We denote both base-
lines with a ∗ to indicate they are adapted from their origi-
nal versions, and provide a diagram for each method in the
Supplementary. A few considerations are in order. First,
the architecture of both MLPs is the same as ours, and the
number of the parameters to be predicted comparable. Sec-
ond, while we make those methods scene-specific to remove
our advantage, they still only work for people and still use
a template or an SMPL model, like the original versions.
They are our best effort at a fair comparison. We train both
models on the same train/test split of the same five subjects
we use for our method. For Kundu∗ et al. we use the neutral
SMPL body model. A qualitative comparison can be seen
in Figure 7. Table 1 reports LPIPS [66] and SSIM [58] for
both reconstruction (i.e., same pose as in one of the input
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Figure 9: The joints our method discovers are plausible and stable
across the sequence.

frames, but different view) and re-posing. Our method is on
par or slightly better than these baselines despite making no
assumptions about the structure of the object.

4.4. Joint Estimation Evaluation

Our method discovers plausible joints. That is, they al-
low to re-pose the object consistently with the input images,
but they may not exactly coincide with the physical joints.
Figure 9 offers a qualitative evaluation: our 3D joints ap-
pear to closely follow the physical joints locations and they
are stable over time. For a quantitative evaluation, we use
one tenth of the frames in each sequence to compute a linear
mapping from our joints and joints candidates to the joints
of the SMPL model provided by the dataset, as is common
practice for methods that discover landmarks [33, 52, 67].
The details of the algorithm that regresses this mapping are
in the Supplementary. We apply the linear mapping to the
remaining frames to compute the mean per joint position
error (MPJPE) [15]. We also compare with the baselines
defined in Section 4.3. For Kundu∗ et al. we learn a lin-
ear mapping from the predicted SMPL vertices to the GT
joints provided by the dataset, while for Schmidtke∗ et al.
we compute the same linear mapping as for our method.
Once again, our method performs on par, and sometimes
even better despite the additional information available to
the baseline methods.

4.5. Ablation Study

In our first ablation study we evaluate the effect of each
loss term to the overall performance. We use subject 366
from the ZJU-MoCap dataset and train our model from
scratch by disabling one loss term at the time. The results
are shown in Table 2. We note that the additional terms have
a marginal effect on the quality of the rendered images, but
they do reduce the joints estimation error measurably. Al-
though Lt slightly degrades the novel view synthesis per-
formance, without it, we observe issues with the structure
discovery. Qualitative results are shown in the Supplemen-
tary. In our second experiment, we evaluate the importance
of training SΘ to predict an SDF residual ∆d, instead of the
SDF d itself, as done in Neural-GIF [53]. Table 2 confirms
that predicting residual is critical to both the image recon-
struction quality and the joints estimation.

Table 2: Ablation study.
Ours +Lmerge -LΓ -LE -Lt -Lseparation -∆d

Novel view LPIPS↓ 0.063 0.062 0.062 0.062 0.061 0.062 0.065
Novel view SSIM↑ 0.958 0.958 0.958 0.959 0.959 0.959 0.954
Novel pose LPIPS↓ 0.065 0.065 0.069 0.069 0.065 0.067 0.077
Novel pose SSIM↑ 0.954 0.953 0.951 0.952 0.954 0.952 0.946
Joint MPJPE(mm)↓ 8.49 10.25 9.35 12.13 8.70 9.72 22.14

5. Discussion and Limitations
Our method can discover the structure of unseen cate-

gories, but it needs a foreground mask, which may not be
available for new classes. While off-the-shelf instance seg-
mentation approaches can be used, as we do for the exper-
iments on humans [4] and dogs [5], this limits the practi-
cal applicability of our method. In addition, our method
requires multi-view videos that capture the object from all
sides. The results in the paper use five cameras around the
object for robots, six cameras for humans, and eight cam-
eras for the dog. The four viewpoints available in the Hu-
man3.6M dataset [15] do not provide sufficient coverage for
our method. An additional constraint is that we can only re-
pose parts that move relative to each other in the training
sequence—we cannot infer what we cannot see. Our solu-
tion does not tackle the problem of defining plausible mo-
tion ranges around the joints and focuses on spherical joints,
leaving different types of joints, such as sliding joints, for
future work. We also observed that the randomness of the
structure initialization can sometimes affect the structure
discovery (Section 3.5.1). We leave it to future work to find
a more elegant solution than simply re-initializing it when
this happens.
Societal impact. Our approach lends itself to similar dis-
honest uses as deepfakes, e.g., a person could be “rendered
to perform” illegal, incriminating, or indecent activities.

6. Conclusions
We presented a method that discovers the structure of

an articulated object from arbitrary categories, by watching
it move in a multi-view video. It can then render the object
from novel views and even directly manipulate its pose. Our
method works for arbitrary articulated objects, as we show
using robots with varying structures.

Acknowledgments
This work was partially supported by JST AIP Ac-

celeration Research JPMJCR20U3, Moonshot R&D Grant
Number JPMJPS2011, JSPS KAKENHI Grant Number
JP19H01115 and Basic Research Grant (Super AI) of In-
stitute for AI and Beyond of the University of Tokyo.

References
[1] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Pe-

ter Hedman, Ricardo Martin-Brualla, and Pratul P Srini-

3684



vasan. Mip-NeRF: A multiscale representation for anti-
aliasing neural radiance fields. IEEE International Confer-
ence on Computer Vision (ICCV), 2021. 1, 2

[2] Aljaz Bozic, Pablo Palafox, Michael Zollhofer, Justus Thies,
Angela Dai, and Matthias Nießner. Neural deformation
graphs for globally-consistent non-rigid reconstruction. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2021. 3

[3] Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A
Efros. Everybody dance now. In IEEE International Confer-
ence on Computer Vision (ICCV), 2019. 2

[4] Hao Chen, Kunyang Sun, Zhi Tian, Chunhua Shen, Yong-
ming Huang, and Youliang Yan. Blendmask: Top-down
meets bottom-up for instance segmentation. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2020. 8

[5] Bowen Cheng, Alexander G. Schwing, and Alexander Kir-
illov. Per-pixel classification is not all you need for semantic
segmentation. In Advances in Neural Information Process-
ing Systems (NeurIPS), 2021. 8

[6] Inchang Choi, Orazio Gallo, Alejandro Troccoli, Min H
Kim, and Jan Kautz. Extreme view synthesis. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 1

[7] Subhabrata Choudhury, Iro Laina, Christian Rupprecht, and
Andrea Vedaldi. Unsupervised part discovery from con-
trastive reconstruction. Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2021. 3

[8] Boyang Deng, John P Lewis, Timothy Jeruzalski, Ger-
ard Pons-Moll, Geoffrey Hinton, Mohammad Norouzi, and
Andrea Tagliasacchi. NASA neural articulated shape ap-
proximation. In European Conference on Computer Vision
(ECCV), 2020. 2

[9] Patrick Esser, Ekaterina Sutter, and Björn Ommer. A vari-
ational U-Net for conditional appearance and shape genera-
tion. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. 2

[10] Joao Fayad, Chris Russell, and Lourdes Agapito. Automated
articulated structure and 3D shape recovery from point corre-
spondences. In IEEE International Conference on Computer
Vision (ICCV), 2011. 3

[11] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna,
and Thomas Funkhouser. Local deep implicit functions for
3D shape. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2020. 3

[12] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna,
William T Freeman, and Thomas Funkhouser. Learning
shape templates with structured implicit functions. In IEEE
International Conference on Computer Vision (ICCV), 2019.
3

[13] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit geometric regularization for learning
shapes. In International Conference on Machine Learning
(ICML), 2020. 4

[14] Wei-Chih Hung, Varun Jampani, Sifei Liu, Pavlo
Molchanov, Ming-Hsuan Yang, and Jan Kautz. SCOPS:
Self-supervised co-part segmentation. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2019.
3

[15] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3.6M: Large scale datasets and pre-
dictive methods for 3D human sensing in natural environ-
ments. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 2014. 1, 8

[16] Umar Iqbal, Pavlo Molchanov, Thomas Breuel, Juergen
Gall, and Jan Kautz. Hand pose estimation via 2.5D latent
heatmap regression. In European Conference on Computer
Vision (ECCV), 2018. 1, 3

[17] Umar Iqbal, Pavlo Molchanov, and Jan Kautz. Weakly-
supervised 3D human pose learning via multi-view images
in the wild. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2020. 1, 3

[18] Karim Iskakov, Egor Burkov, Victor Lempitsky, and Yury
Malkov. Learnable triangulation of human pose. In IEEE
International Conference on Computer Vision (ICCV), 2019.
1, 3

[19] Tomas Jakab, Ankush Gupta, Hakan Bilen, and Andrea
Vedaldi. Self-supervised learning of interpretable keypoints
from unlabelled videos. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2020. 3

[20] Angjoo Kanazawa, Michael J Black, David W Jacobs, and
Jitendra Malik. End-to-end recovery of human shape and
pose. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. 1, 3

[21] Sinead Kearney, Wenbin Li, Martin Parsons, Kwang In Kim,
and Darren Cosker. RGBD-Dog: Predicting canine pose
from RGBD sensors. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2020. 6, 7

[22] Muhammed Kocabas, Salih Karagoz, and Emre Akbas. Self-
supervised learning of 3D human pose using multi-view ge-
ometry. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 1, 3

[23] Jogendra Nath Kundu, Mugalodi Rakesh, Varun Jampani,
Rahul Mysore Venkatesh, and R Venkatesh Babu. Appear-
ance consensus driven self-supervised human mesh recovery.
In European Conference on Computer Vision (ECCV), 2020.
1, 3, 7

[24] Youngjoong Kwon, Dahun Kim, Duygu Ceylan, and Henry
Fuchs. Neural human performer: Learning generalizable ra-
diance fields for human performance rendering. In Advances
in Neural Information Processing Systems (NeurIPS), 2021.
2
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