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Abstract

We consider the problem of reconstructing the depth of

dynamic objects from videos. Recent progress in dynamic

video depth prediction has focused on improving the out-

put of monocular depth estimators by means of multi-view

constraints while imposing little to no restrictions on the

deformation of the dynamic parts of the scene. However,

the theory of Non-Rigid Structure from Motion prescribes to

constrain the deformations for 3D reconstruction. We thus

propose a new model that departs significantly from this

prior work. The idea is to fit a dynamic point cloud to the

video data using Sinkhorn’s algorithm to associate the 3D

points to 2D pixels and use a differentiable point renderer

to ensure the compatibility of the 3D deformations with the

measured optical flow. In this manner, our algorithm, called

Keypoint Transporter, models the overall deformation of the

object within the entire video, so it can constrain the re-

construction correspondingly. Compared to weaker defor-

mation models, this significantly reduces the reconstruction

ambiguity and, for dynamic objects, allows Keypoint Trans-

porter to obtain reconstructions of the quality superior or

at least comparable to prior approaches while being much

faster and reliant on a pre-trained monocular depth esti-

mator network. To assess the method, we evaluate on new

datasets of synthetic videos depicting dynamic humans and

animals with ground-truth depth. We also show qualitative

results on crowd-sourced real-world videos of pets.

1. Introduction

We are interested in the problem of reconstructing 3D

dynamic scenes from casually recorded videos. A scene is

dynamic if it contains moving objects, including deforming
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Figure 1. Keypoint Transporter reconstructs the depth of 3D

non-rigid objects from a casually recorded video. Unlike prior

work, we model the deformations of the object globally from the

beginning to the end of the video. The key technical contribution is

a robust mechanism to track these long-range deformations. This

is based on estimating a dynamic cloud of 3D keypoints that are

(1) encouraged to optimally cover a set of candidate 2D points in

every frame via differentiable optimal transport and (2) to describe

a 2D trajectory compatible with the measured optical flow.

ones such as people or animals. This is a very challeng-

ing reconstruction scenario which has traditionally been ad-

dressed by making use of specialized hardware, such as

multi-camera domes or 3D scanners. However, with ad-

vancements in virtual and augmented reality, we can en-

visage a future in which non-experts may wish to create

content to experience in 3D. In these scenarios, dynamic

5595



3D scenes must be reconstructed from limited observations,

such as a monocular video captured by a phone camera.

Casual 3D reconstruction is much more challenging than

reconstruction in a controlled capture setup. While the

problem has many interesting aspects, including recon-

structing the shape and appearance of the visible parts of

the scene and extrapolating the parts that are not visible (for

new-view synthesis), in this work we focus on the task of

reconstructing depth from videos. Furthermore, we focus

specifically on reconstructing the depth of dynamic objects

which deform over time as these are often the focus of at-

tention, while being challenging to reconstruct.

Several works have recently considered the problem of

estimating depth in casual videos of dynamic scenes [20,29,

49]. The general approach is to first apply a deep network

such as MiDaS [23] in order to obtain a per-frame depth

estimation. Given this initial, and often unreliable, depth

estimate, principles from multi-view geometry are then ap-

plied to refine the solution, leveraging the information con-

tained in the whole video. The latter usually starts by es-

timating image correspondences by an off-the-shelf optical

flow method such as RAFT [44]. The simplest approach,

adopted by Consistent Video Depth (CVD) [29] assumes

dynamic objects behave rigidly across neighbouring video

frames, which limits its applicability to slowly moving ob-

jects. The follow up Robust CVD [20] does not apply geo-

metric constraints to the dynamic objects. Other approaches

such as Dynamic Video Depth (DVD) [49] explicitly esti-

mate and constrain the 3D deformation of the dynamic parts

of the scene by means of a small neural network.

While prior works have settled on variants of the pipeline

discussed above, in this paper we take a step back and ques-

tion their assumptions. Since the problem is to reconstruct

the 3D shape of a non-rigid object, we re-consider Non-

Rigid Structure from Motion (NRSfM) methods [4, 5, 11,

33]. The key lesson form NRSfM is that reconstructing a

deformable object is possible only if the space of deforma-

tions is sufficiently constrained. The simplest of such con-

straints is to assume that the 3D deformations span a low-

rank linear subspace. By comparison, (Robust) CVD do not

model non-rigid deformations explicitly, and DVD only en-

forces local smoothness of the 3D deformation field.

We thus propose Keypoint Transporter (KeyTr): built on

the idea of constraining the deformations that the object un-

dergoes throughout the video. This is a significant departure

from recent works because it requires to track deformations

across the entire video (not just instantaneously as in, e.g.,

DVD). In contrast to traditional NRSfM, which utilizes 2D

feature trackers, KeyTr works by maintaining a set of 3D

keypoints that can be deformed within a low-rank subspace.

The keypoints and deformations are learned so that: (1) the

2D projections of the deformed keypoints cover the object

region well in each frame, and (2) their 2D trajectories are

compatible with the measured optical flow. The latter con-

straint is enforced in a differentiable and occlusion-aware

manner by using an off-the-shelf point cloud renderer.

Compared to prior methods that model only local de-

formations, we empirically show that globally modelling

and constraining object deformations significantly reduces

the reconstruction ambiguity. Because of this, we show

that KeyTr obtains superior or at least comparable recon-

struction quality without using a pre-trained depth estima-

tion model such as MiDaS; instead, our model reconstructs

videos individually from scratch without any prior learning.

We also introduce several new datasets for measuring the

quality of dynamic video depth algorithms. We quantita-

tively evaluate on synthetic datasets of humans and animals

and we further evaluate the reconstructions qualitatively, on

real videos of pets collected for the study.

2. Related work

Non-rigid Structure from Motion. NRSfM simultane-

ously estimates the viewpoints and 3D structure of a dy-

namic scene. This is naturally modelled by matrix factor-

ization [6]. Subsequent research has focused on reducing

the ambiguity incurred in decomposing viewpoint and ob-

ject deformation by restricting the rank of the deformation

space [2, 10, 11, 51] or of the 3D point trajectories [3, 4].

Other works enforced smoothness in the spatio-temporal

domain [1, 14, 21, 22], sparse [50] or Gaussian [46] priors,

or minimized canonicalization loss [33]. In this spirit, we

also constrain the space of deformations to be low-rank.

Learning deformable meshes. Several authors consid-

ered learning 3D shape predictors specialized to individual

object categories. For instance, CMR [17] and DIB-R [7]

learn to reconstruct a mesh of genus-0 topology from a col-

lection of category-specific images supervised with sparse

2D keypoints. UMR [25] prescinds from keypoint super-

vision by leveraging an unsupervised parts detector trained

on a large dataset. There is also a large amount of work on

reconstructing important categories such as humans.

More relevant to this work are approaches that learn

to ‘overfit’ a neural network to a single video: Kokkinos

and Kokkinos [19] use Laplacian mesh editing of a known

category-level template, while LASR [48] learns a paramet-

ric skinning model. Our method is equally general to LASR

and, while it does not obtain a full reconstructed mesh, is

more robust.

Dynamic new-view synthesis. Also relevant to our re-

construction problem are works on dynamic video new-

view synthesis (NVS). Neural Volumes [27] recover a time-

dependent voxelized reconstruction of a dynamic object by

learning codes and decoders. Inspired by neural radiance

fields (NeRF) [31], which replace voxels with a continu-

ous representation of shape and appearance, several works
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Figure 2. An overview of Keypoint Transporter. We represent the object shape in the i-th frame Ii as a cloud of keypoints Xi whose de-

formations span a low-rank linear deformation basis B. We minimize Li
assign to obtain the assignment between the 2D keypoint projections

π(Πi, xp) and a set of candidate 2D candidate locations ui
p′ sampled from each image. Furthermore, Li

flow encourages keypoints to track

unique locations on the object surface. Finally, we also optimize a complementary color reconstruction loss Li
RGB.

proposed to train radiance fields on videos of dynamic

scenes. These generally encode time using a positional en-

coder [26, 36] or otherwise [34, 47] and use a neural net-

work for warping 3D coordinates back to a canonical (time-

invariant) reconstruction of the scene or object. However,

“cancelling” non-rigid deformations in this manner is am-

biguous, so these methods regularize the learned deforma-

tion field assuming elasticity [34] or penalizing the field’s

divergence [47]. In practice, they manage to reconstruct

well only the videos that render limited motions, such as

changing facial expressions in the case of Nerfies [34].

Dynamic video depth prediction. More directly related

to our work are methods that estimate depth from videos.

The simplest approach is to apply a monocular depth es-

timator such as Monodepth2 [12] to every frame. These

monocular estimators are often learned in a self-supervised

manner, e.g. using datasets of web videos [13]. However,

self-supervision assumes a rigid scene, so dynamic objects

are often explicitly discounted [12, 13]. Although depth su-

pervision is difficult to obtain for real videos, 3D films can

be exploited. Specifically, MiDaS [23] trained a supervised

estimator of the disparity up to a scale and a shift.

Monocular depth estimators cannot guarantee consis-

tency of the predicted depth within a video, nor they use

the whole video to improve the prediction. Follow-up meth-

ods [20, 29, 49] leverage multi-view geometry to refine the

output of (or re-train) monocular predictors. They do so

by establishing 2D correspondences with an optical-flow

method [44] and compute a reprojection loss. The latter

requires per-frame camera poses, which can be obtained

from an SfM method (COLMAP [39]), as in CVD [29], or

estimated via bundle adjustment, as in Robust CVD [20].

While CVD assume that the dynamic portions of the scene

behave rigidly across neighbouring video frames, Robust

CVD relaxes them and Dynamic Video Depth (DVD) [49]

explicitly predicts the 3D scene flow with an MLP in a man-

ner similar to the dynamic NeRF methods [26, 34, 36, 47].

However, these methods can only model and regularize the

deformation locally, at each time instant. While KeyTr also

enforces deformations to be consistent with the optical flow,

it differs significantly in using a much stronger model of de-

formation for the entire video; furthermore, it does not use

the input from a monocular depth estimator at all.

3. Keypoint Transporter

Given a video consisting of N RGB frames (Ii)Ni=1,

Ii ∈ R
3×H×W and corresponding masks (M i)Ni=1, M i ∈

{0, 1}H×W outlining the object of interest, our goal is to

predict depth maps (Di)Ni=1, Di ∈ R
H×W containing, for

each pixel that belongs to the object, the z component of the

corresponding 3D point location in the camera coordinates.

We further assume that frames are labelled with camera

projection matrices (Πi)Ni=1, Πi ∈ R
3×4, for example ob-

tained from a standard SfM method (COLMAP [39, 40] or

ORB-SLAM [32]), and that the optical flow fields F i 7→j ∈
R

2×H×W between pairs of frames Ii and Ij are provided

by an off-the-shelf method such as RAFT [44].

Method overview Keypoint Transporter (Fig. 2) amounts

to estimating a time-varying point cloud Xi that: (1) de-

forms in a simple manner (i.e., according to a low rank

model); (2) covers the object masks M i well; and (3) de-

forms consistently with the measured optical flow F i 7→j .

Additionally, (4) we also encourage the colors of the points

to be consistent through time and with the images. The rest

of the section describes these four ideas in detail.

Notation. We assume the perspective camera model with

left-multiplication of points by projection matrices. The

perspective projection function u = π(Πi, x) maps points

x ∈ R
3 in world coordinates to points u ∈ {1, . . . , H} ×
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{1, . . . ,W} in the camera plane such that Πi[x; 1] =
du[u; 1], where du = Di[u] ∈ R+ is the depth of u.

3.1. Representing the shape and its deformations

The key component of KeyTr is a deformable 3D point

cloudXi representing the shape of the reconstructed object.

Namely, the shape of the object in the i-th frame is given by

an ordered collection (xi1, . . . , x
i
P ) = Xi ∈ R

P×3 of P =
500 three-dimensional keypoints. The point cloud deforms

according to the linear model:

Xi =

K
∑

k=1

αi
kBk. (1)

In this equation, inspired by NRSfM [5,33,45],Bk ∈ R
P×3

is the k-th element of the deformation basis B. The basis

contains only a small number K ≪ P of elements. It is

fixed and shared across all video frames, whereas the co-

efficients (αi
k)k=1,...,K express the specific deformation of

the object observed in frame Ii. In this manner, the possible

deformations of the object span a linear subspace of rankK.

By increasing or decreasing K, we encourage more flexible

or rigid deformations of the shape, respectively.

Rather than fitting the coefficients α directly, we further

constrain them and set them to be the output αi = ψ(γ(ti))
of a small multi-layer perceptron (MLP) ψ that takes as

input the timestamp ti ∈ R of the i-th frame. Simi-

lar to NSFF [24], we pre-process the timestamp with a

harmonic positional embedding γ(t) before passing into

ψ. The architecture of ψ closely follows C3DPO’s shape

predictor [33]. Following [42], in order to prevent re-

constructions lying behind cameras, among other losses,

our training minimizes the negative-depth penalty Li
d+ =

1
P

∑P

j=1 min(du(xi
j
), 0)

2, where du(xi
j
) is the depth of the

point xij ∈ Xi in camera Πi.

3.2. Optimal keypoint transport

In NRSfM, the standard approach for defining a set of

keypointsX is to start from a set of 2D feature tracks gener-

ated by an off-the-shelf 2D tracker. However, such trackers

are usually fragile and often result in incorrect or interrupted

tracks. We prefer instead to optimize the 3D keypoints X
directly. In this section we define which object points should

be tracked. We do so in two steps: first, we define a set of

P ′ candidate points locations Ω⋆(Ii) = {ui1, . . . , u
i
P ′} in

each image Ii and then we assign the 3D keypoints Xi to

them to provide a good coverage of all such locations.

Candidate point locations Ω⋆(Ii). There are several op-

tions for defining the candidate locations Ω⋆(Ii). While

a standard solution would be to select points that yield

good features to track (e.g., Harris corners [15], MSER re-

gions [30], or SIFT keypoint detections [28]), such key-

points usually do not cover the surface of the object uni-

formly and focus only on certain well-textured regions,

which may lead to sparse reconstructions. Instead, we sam-

ple uniformly at random P ′ = 1000 points Ω⋆(Ii) from the

set of foreground pixels Ωfg(Ii) = {u |M i[u] = 1}.

Optimal assignment of keypoints to candidate locations.

Next, we explain how the 3D keypoints Xi are assigned to

the candidate locations Ω⋆(Ii). To this end, let ΩΠ(Ii) =
{π(Πi, xi1), . . . , π(Π

i, xiP )} be the 2D projections of the

3D keypoints {xi1, . . . , x
i
P }. We seek the optimal assign-

ments A ∈ {0, 1}P×P ′

that minimise our proposed 2D-3D

assignment loss as follows:

Li
asgn =min

A

∑

p∈{1,...,P},
p′∈{1,...,P ′}

ρp,p′ Ap,p′ , (2)

s.t. :
∑

p

Ap,p′ = 1,
∑

p′

Ap,p′ = P ′/P, (3)

Ap,p′ ∈ {0, 1}, ∀p ∀p′, (4)

where ρp,p′ = ∥uip′ − π(Πi, xip)∥/σ ∈ R+ is the Euclidean

distance between the candidate location uip′ and the pro-

jected keypoint π(Πi, xip).
1

Fortunately, Eq. (2) is an optimal transport problem and

thus can be solved efficiently: if the assignment matrix is re-

laxed to the continuous range Â ∈ [0, 1]P×P ′

, the problem

becomes a linear programming (LP) problem which has a

solution that coincides with the solution of the integer lin-

ear program (2) due to the weights being totally unimodular.

Furthermore, while the resulting LP problem is still rather

large, we can efficiently find approximate solutions using

Sinkhorn’s algorithm [9, 41], which has the additional ben-

efit of supporting back-propagation of the gradient of Li
asgn.

Recall that, for memory efficiency, we set the size P ′ of

Ω⋆(Ii) to 1000 points during every training iteration. In or-

der to alleviate potential optimization issues due to the lim-

ited size of Ω⋆(Ii), we add to Li
asgn an additional Chamfer

Distance term Li
CD computed between the full set of fore-

ground pixels Ωfg(Ii) and ΩΠ(Ii). Note that it is crucial

to jointly optimize Li
CD and Li

asgn because minimizing only

Li
CD leads to a non-uniform foreground coverage resulting

in large gaps between the reconstructed 3D points.

3.3. Consistency of deformation and optical flow

Minimization of the assignment loss Li
asgn encourages

the 3D keypoints X to cover well the candidate 2D key-

point locations in each frame; however, it does not guaran-

tee that the deformation of X is temporally consistent. In

1Eq. (3) assumes that P divides P ′ (and P ′ ≥ P ); if not, one (arbi-

trarily) assigns each column to sum to either ⌊P ′/P ⌋ or ⌊P ′/P ⌋+ 1, so

that all points are assigned once.
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fact, the candidate locations at different time steps are un-

related and, in general, the assignment process can match a

given 3D point to different locations for different frames.

In order to encourage the 3D tracks to be compatible

with the visual evidence, we employ a flow-consistency

loss Lflow. The challenge is how to implement such a loss

efficiently, accounting for potential self-occlusions of the

3D points, and in a manner which is easily differentiable.

We show next how a differentiable renderer can be used

for this purpose. In order to do so, we first define a

set of fixed descriptors, one for each 3D keypoint: Φ =
(ϕ(x1), . . . , ϕ(xP )), where ϕ : R3 → R

Dφ . The descrip-

tors are arbitrary and only used to “color” each keypoint for

the purpose of identification.2 At the beginning of training,

they are initialised by taking P uniform random samples

ϕ(xp) ∈ {ϕ ∈ R
Dφ : ∥ϕ∥ = 1} from the (Dϕ − 1)-

dimensional unit hypersphere. Given these descriptors, we

use the PyTorch3D’s soft point rasterizer [37] to render the

point cloud Xi from the viewpoint of camera P i, resulting

in the feature map R(Xi,Φ, P i) ∈ R
Dφ×H×W .

Now consider the mapsR(Xi,Φ, P i) andR(Xj ,Φ, P j)
obtained from two frames Ii and Ij . If the 3D trajectories

are consistent with the optical flow field F i 7→j ∈ R
2×H×W

mapping 2D pixel locations from image Ii to image Ij , then

the flow must match identical descriptors in the two maps,

as these correspond to the same 3D point identity. This

is captured by the flow-consistency loss Li 7→j
flow =

∥

∥

∥
M i ⊙

[

R(Xi,Φ, P i)− s
(

R(Xj ,Φ, P j), F i 7→j
)

]
∥

∥

∥

ε
, where s de-

notes differentiable bilinear image sampling3 and ∥z∥ε =
∑

i ε

(

√

1 +
(

zi
ε

)2
− 1

)

is an element-wise soft-Huber

norm with the cut-off threshold ε = 0.01.

Note that it is important to use a rendering function R
that leverages z-buffering to correctly resolve rendering

conflicts between points lying on the same projection ray

because the consistency with optical flow Lflow should be

enforced only for the surface points that are visible (and

hence rendered) in camera P i.

3.4. Low­rank shape appearance

The final supervisory signal aims at assigning an RGB

value to each keypoint to match the colors observed in the

images Ii. While we could make a color constancy assump-

tion and attach a constant color cp ∈ R
3 to each keypoint,

this would be a poor choice for dynamic objects as their ex-

posure to light can change over time. Furthermore, real-life

objects are often non-Lambretian. Instead, extending the

ideas above, we allow the colors of points to change over

2Hence Φ can be thought as a random projection of the indicator func-

tion of each keypoint, which is a much lower dimensional representation

of its identity because D ≪ P .
3Implemented with the grid sample function of PyTorch [35].

time in a low-rank manner.

Formally, the colors Ci of the keypoints in the i-th frame

are obtained as a linear combination of a small number Kc

of color basis vectors Bc
k ∈ R

K×3 as follows:

Ci = τ

(

Kc

∑

k=1

βi
kB

c
k

)

, (5)

where βi
k ∈ R is the k-th color coefficient in frame Ii and

τ is the sigmoid activation function, ensuring that the fi-

nal colors are bounded to [0, 1]. Similar to the shape coef-

ficients αi in the previous sections, the color coefficients

βi are predicted by using a second branch of the time-

conditioned MLP ψ that already outputs αi.

Finally, given an RGB frame Ii, its corresponding cam-

era pose P i, the point cloud Xi and the composed colors

Ci, we define the RGB reconstruction loss Lrgb as follows:

Li
RGB = ∥M i ⊙

[

R(Xi, Ci, P i)− Ii
]

∥ε, (6)

using once again the soft point rasterizer R [37].

3.5. Training details

Training of KeyTr optimizes the weights of the time-

conditioned predictor ψ and of the shape and color bases

B and Bc using stochastic gradient descent with Adam

optimizer (learning rate = 0.001) until convergence. Dur-

ing each training iteration, we randomly sample a time-

ordered list of Nbatch indices J = (i1, . . . , iNbatch
) such that

1 ≤ i1 ≤ · · · ≤ iNbatch
≤ N , and backpropagate w.r.t. the

batch loss, which is defined as follows:

∑

i∈J

(wasgnL
i
asgn + wCDL

i
CD + wRGBL

i
RGB + wd+L

i
d+)

+

Nbatch−1
∑

j=1

wflowL
Jj 7→Ji+1

flow , (7)

with weights wasgn = 0.1, wCD = 10.0, wRGB =
1.0, wflow = 1.0, wd+ = 100.0.

4. New benchmarking data

Assessing dynamic video depth reconstruction quantita-

tively requires videos of deformable objects with known

depth. Furthermore, in order to clearly isolate the perfor-

mance of a depth estimation method from exogenous fac-

tors such as the object segmentation quality, this data should

come with ground truth information for object masks and

other parameters such as camera poses and calibrations.

In order to better test our algorithm quantitatively and

qualitatively, we introduce a number of new synthetic and

real video benchmarks with dynamic deformable objects,

described below and illustrated in Fig. 3.

5599



Animals-in-motion Humans-in-motion – easy Humans-in-motion – diff.

ℓd-scaled
1

ℓ
d-seq-scaled
1

ℓd
1

ℓd-scaled
1

ℓ
d-seq-scaled
1

ℓd
1

ℓd-scaled
1

ℓ
d-seq-scaled
1

ℓd
1

MiDAS† [23] 0.567 0.873 5.826 0.870 1.058 5.830 0.131 0.247 0.485

DVD† [49] 0.577 0.588 0.720 1.119 1.136 2.409 0.102 0.185 0.684

RCVD† [20] 0.678 0.904 0.941 1.094 1.232 1.245 0.129 0.227 -

NSFF† [26] 6.861 8.418 8.418 4.274 7.256 7.256 0.372 3.119 3.119

LASR [48] 1.630 1.635 1.799 7.349 7.397 7.452 1.615 1.723 3.303

KeyTr 0.135 0.171 0.196 0.098 0.161 0.183 0.086 0.181 0.780

Table 1. Quantitative comparison of depth estimation on all considered datasets (Animals-in-motion, Humans-in-motion). We report the

absolute metric depth error ℓd
1, the scale-invariant depth error ℓd-scaled

1 , and the sequence-scale-invariant ℓ
d-seq-scaled
1

. Methods labelled with †

require a monocular depth predictor supervised with ground truth annotations.

Figure 3. We evaluate on Humans-in-motion and Animals-in-

motion synthetic datasets as well as the Pet AMT video datataset.

Humans-in-motion. This dataset contains 13 videos of

animated synthetic humans performing simple full-body

movements and actions. There are two subsets: easy, with

a single person in a video without foreground occlusions,

and difficult, with people that can be occluded by each

other and objects in the environment. Similarly to [16], our

dataset is based on 375 3D scans from the RenderPeople

dataset,4 animated using motion capture sequences. Scenes

are rendered using Blender [8]. Background uses environ-

ment maps for the easy set and models from the Replica

dataset [43] (scans of real indoor environments) for the

difficult set. Each video sequence contains between

250 and 300 frames (≈10 sec long) and is rendered using

randomly sampled smooth camera trajectories. All sam-

ples in this dataset contain ground-truth depth maps, object

masks and camera trajectories.

Animals-in-motion. This dataset is similar to Humans-

in-motion, but it contains 10 videos of animals (dog, horse,

cow, sheep, chimp) modelled and manually animated by a

3D artist. Each video sequence contains 100 frames (≈3

sec long) and is rendered using randomly sampled camera

trajectories. As in the previous case, this dataset contains

per-frame ground-truth object masks, depth maps and cam-

era trajectories for all sequences.

Pet AMT videos. In order to benchmark on challeng-

ing real-life data, we also collected videos of pets (cats

and dogs) using Amazon Mechanical Turk (AMT) follow-

ing the data collection protocol recently proposed in [38].

We instructed each user to arrange a pet-centric scene with

the user slowly circling around the animal while keeping it

4http://renderpeople.com/

fully within the field of view. After collection, we sample

300 uniformly spaced frames from each video and extract

camera extrinsics using COLMAP [39]. We further gener-

ate foreground masks using the PointRend segmenter [18].

Since the dataset does not provide ground-truth depth, we

only evaluate qualitatively.

5. Experiments

We compare our Keypoint Transporter to several base-

lines using the datasets introduced above. The baselines,

together with the evaluation protocol, are detailed here.

Evaluation protocol We measure the depth reconstruc-

tion accuracy for the regions that contain a dynamic ob-

ject (e.g., a human or an animal). Formally, given a set

of ground truth depth maps
{

Di
}N

i=1
, Di ∈ R

H×W
+ ,

their corresponding predictions
{

D̂i
}N

i=1
, D̂i ∈ R

H×W
+ ,

and the foreground object masks M i ∈ {0, 1} ∈
R

H×W , we evaluate the absolute metric depth error ℓd
1 =

1
|Mi|

∑

u∈Mi

∣

∣Di[u] − D̂i[u]
∣

∣, which is averaged over the

set of foreground pixels M i, and then over the frames and

videos in the benchmark.

Since ℓd
1 is often dominated by the incorrect scaling

of the predicted depth map, we also consider a loss that

is scale invariant. Specifically, we define ℓd-scaled
1 =

argmins∈R+

1
|Mi|

∑

u∈Mi

∣

∣Di[u] − sD̂i[u]
∣

∣

2
, thus finding

the best scale s that aligns the prediction with the ground

truth. Intuitively, ℓd-scaled
1 ignores the scale mismatch and, as

such, solely evaluates the quality of the reconstructed shape.

Finally, we also report ℓd-seq-scaled
1 which differs from

ℓd-scaled
1 by sharing the same scale value s for all the frames

of a given sequence. The benefit compared to per-frame

rescaling is that a low error in this metric means that depth

is reconstructed consistently for the duration of the video,

still up to an overall scaling factor.

Baselines Our KeyTr is compared to several depth es-

timation and 3D reconstruction baselines, described next.

LASR [48] optimizes a deformable mesh in a manner which

is consistent with the estimated optical flow and foreground

segmentation. For fairness, we modify it to use the ground
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Figure 4. Qualitative evaluation of depth maps reconstructed by Keypoint Transporter and corresponding baselines from Animals-in-

motion(first 5 columns) and Humans-in-motion(easy set, last 2 columns) video sequences using ground-truth object masks.

truth camera motions. MiDaS [23] is a state-of-the-art

monocular depth predictor trained on a large variety of

video datasets. Because frames are processed indepen-

dently, depth predictions are not consistent through time,

nor the scale is consistent with the ground truth camera mo-

tion, usually leading to poor performance in metric depth

error ℓd
1 and, to a lesser extent, ℓd-seq-scaled

1 . DVD [49] and

RCVD [20] fine tune the output of MiDAS to be video-

consistent and are described in detail in Sec. 1. NSFF [26] is

an extension of NeRF [31] that can handle a dynamic scene

by estimating a 3D flow field to represent the deformation

of dynamic objects. While NSFF is meant for new-view

synthesis, it is possible to extract depth by computing the

expected termination of the camera rays in the volume.

5.1. Results

Table 1 contains quantitative comparisons of all meth-

ods. Our approach significantly outperforms DVD, RCVD,

LASR and NSFF on the Humans-in-motion-easy and

Animals-in-motion datasets, where our KeyTr produces an

average error < 20cm, while other methods have errors

above 50cm, sometimes reaching several meters.

For the Humans-in-motion-difficult dataset, results

are mixed. Most methods have a difficult time estimating

the true metric depth of the videos, but perform reasonably

Lasgn + LCD Lflow Lrgb ℓd-scaled
1

ℓ
d-seq-scaled
1

ℓd
1

" 0.87 0.91 0.91

" 8.36 8.36 8.36

" " 8.00 8.04 8.00

" 0.22 0.23 0.31

" " 0.19 0.21 0.27

" " 0.13 0.16 0.19

" " " 0.14 0.17 0.20

Table 2. The ablation study evaluating the contribution of each

loss term of our method on the Animals-in-motion dataset.

up to a scaling factor. In this case, our approach is better for

the scaled metrics ℓd-scaled
1 and ℓd-seq-scaled

1 (arguably the most

useful ones in many applications), but DVD outperforms it

in the non-scaled metric ℓd
1.

Additionally, Figures 4 and 5 contain qualitative evalua-

tion of Keypoint Transporter on all considered datasets.

Ablation study. Next we evaluate the contribution of the

components of KeyTr by turning them off and recording the

change of performance. In more detail, we switch on/off

the loss terms Lflow, Lasgn+LCD, Lrgb. Table 2 contains the

results on the synthetic Animals-in-motion dataset.

As shown in the table, assigning vertices to candidate

object points is essential for performance (Lasgn+LCD), as
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Figure 5. Depth predicted by our method (KeyTr) on real-life sequences from our collected Pet AMT videos of cats and dogs.

without the latter the learned point cloud does not cover the

object properly. The RGB loss Lrgb is helpful in terms of

depth estimation, but only when the flow loss Lflow is not

used as well. Adding Lflow to Lasgn+LCD has the biggest

effect, reducing the prediction error by 30-40%, depending

on the metrics. However, also adding Lrgb to these two does

not bring further improvements.

Varying the number of basis shapes We further analyse

the regularisation effect of the number of vectors K of the

shape basis B. Figure 6 records the depth errors attained by

our method on Animals-in-motion as a function of K. It is

obvious that too low/high values of K hurt all depth errors

(especially the most sensitive metric error ℓd
1) suggesting the

benefits of our low-rank shape regularization.

6. Broader impact and limitations

Monocular depth reconstruction is a general-purpose

technique, which incurs the usual risks of misuse, bias and

lack of fairness typical of computer-vision methods based

on machine learning. KeyTr, however, is less susceptible

to bias since the model is trained from scratch on each new

video. Limitations of our method include failures of recon-

structing videos that exhibit little camera parallax compared

to the object deformation, and ones with occlusions caused

either by other parts of the scene or due to the object leav-

ing the field of view. As for the data used in the paper, we

use RenderPeople and Replica in a manner compatible with

their licenses; these datasets were collected with full subject

consent where applicable. Furthermore, we created the 3D

animal assets ourselves. Real pet video data collection was

reviewed and approved by our institutional review board.

0 20 40 60 80 100

0.2

0.3

K

ℓd-scaled1 ℓd1 ℓd-seq-scaled1

Figure 6. Absolute depth errors of our method (Keypoint Trans-

porter) on Animals-in-motion as a function of the number of basis

vectors K. The best performance is attained for K = 10.

7. Conclusions

While there has been significant progress in the develop-

ment of methods that can estimate depth from casual videos

of dynamic objects, we have identified common limitations

shared by these approaches: their inability to track, model

and constrain the deformation of the objects for the duration

of the video. This has inspired us to design a very different

algorithm with the main goal of explicitly capturing such

deformations. By doing so, we have shown empirically that

our method is often significantly more accurate than com-

petitors in recovering the geometry of the dynamic objects

despite using no learned geometric prior such as a monocu-

lar depth estimator. However, this has also limitations, such

as obtaining poorer results when the camera parallax is very

small. We argue that combining learned depth priors with

our deformation-aware model might solve this and further

improve the general performance of the system.
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