
Attentive Fine-Grained Structured Sparsity for Image Restoration

Junghun Oh1 Heewon Kim1 Seungjun Nah1,3 Cheeun Hong1 Jonghyun Choi4 Kyoung Mu Lee1,2

1Dept. of ECE, ASRI, 2IPAI, Seoul National University 3NVIDIA 4Yonsei University
1{dh6dh, ghimhw, cheeun914, kyoungmu}@snu.ac.kr, 3

seungjun.nah@gmail.com,
4
jc@yonsei.ac.kr

Abstract

Image restoration tasks have witnessed great perfor-

mance improvement in recent years by developing large

deep models. Despite the outstanding performance, the

heavy computation demanded by the deep models has re-

stricted the application of image restoration. To lift the re-

striction, it is required to reduce the size of the networks

while maintaining accuracy. Recently, N :M structured

pruning has appeared as one of the effective and practical

pruning approaches for making the model efficient with the

accuracy constraint. However, it fails to account for differ-

ent computational complexities and performance require-

ments for different layers of an image restoration network.

To further optimize the trade-off between the efficiency

and the restoration accuracy, we propose a novel pruning

method that determines the pruning ratio for N :M struc-

tured sparsity at each layer. Extensive experimental results

on super-resolution and deblurring tasks demonstrate the

efficacy of our method which outperforms previous prun-

ing methods significantly. PyTorch implementation for the

proposed methods will be publicly available at https:

//github.com/JungHunOh/SLS_CVPR2022

1. Introduction

Advances in deep learning has brought success in image

restoration tasks such as super-resolution [29, 48] and de-

blurring [39, 60, 61]. Due to the heavy computational bur-

den required by such methods, however, computing high-

resolution images in practical applications has been chal-

lenging. Network pruning is one of the most popular tools

to alleviate the computational burden of neural networks by

eliminating weights that are less critical to the accuracy. It

has shown remarkable efficacy in finding submodels for a

better trade-off between accuracy and efficiency for image

classification [9, 15, 17, 30, 34] and segmentation [14, 57].

Unstructured pruning [11, 13, 26] aims to find and re-

move individual weights that have relatively less impact on

model accuracy. Still, accelerating the resulting models is

difficult due to irregular sparsity patterns of weight tensors,

v≈ ≈

Figure 1. Trade-off between image restoration performance

(PSNR) vs computational costs (MACs) on super-resolution (top)

and deblurring tasks (bottom). We compare our method to the

magnitude-based filter pruning [28] and the existing methods on

N :M sparsity (One-shot pruning [37] and SR-STE [64]).

considering the complex nature of parallelization on GPUs.

On the other hand, structured pruning removes predeter-

mined structures (e.g., a filter in convolution layers [28] or a

channel of feature maps [17]) to enable the acceleration of

pruned networks on GPUs. However, we empirically find

image restoration models to be often susceptible to substan-

tial performance degradation from structured pruning.

Recently, N :M fine-grained structured sparsity [19,

37, 64] has emerged as a better alternative, combining

the strengths of both pruning methods: namely, fine-

grained sparsity from unstructured pruning and hardware

acceleration-ability from structured pruning. N :M struc-

tured sparsity enforces N number of weights in each group

of M number of consecutive weights to have non-zero val-

17673



ues. Such sparsity constraint has the potential of hardware

acceleration, where 2:4 sparsity pattern has recently been

supported in NVIDIA Ampere generation GPUs [37]. How-

ever, training a network with N :M sparsity has been proven

to be difficult, which the existing works on N :M sparsity

have focused on improving [37, 64]. Such difficulty has

prevented the direct application of the already developed

pruning techniques, such as pruning with layer-wise vary-

ing pruning ratios [27, 34], which is known to be crucial to

the performance of the pruned networks. Particularly, we

observed that several layers (e.g. the last upsampling layer)

in image restoration networks are very sensitive to pruning

with respect to the performance.

Here, we propose a layer-wise N :M sparsity search

framework for efficient image restoration networks, named

Searching for Layer-wise N :M structured Sparsity (SLS).

In the prior arts [9, 17, 30, 31, 33], a filter or a channel is

used as a unit of pruning but it is challenging to define the

pruning unit in the case of N :M sparsity. To this end, we

propose to consider the original weight tensor as the sum

of sparse tensors whose configurations are determined by

the magnitude of weights. We use each of sparse tensor as

the unit of pruning in our N :M sparsity search problem.

To learn how many units to preserve, we propose a train-

able score for each pruning unit, which is designed to en-

sure units with the lowest magnitude-based importance are

removed first for better performance.

Furthermore, since image restoration tasks often have

different computational constraints, we present an adaptive

inference method that uses several models trained by SLS

with different efficiency. The proposed adaptive inference

technique determines which pruned model should be used

at inference time depending on the restoration difficulty of

an input image patch. The adaptive inference method fur-

ther improves the efficiency-accuracy trade-off and enables

a flexible adoption of the computational budgets.

We summarize our contributions as follows:

• Observing the pruning sensitivity of each layer to be dif-

ferent, we propose a novel method, SLS, to determine the

layer-wise N :M sparsity levels.

• From the mixture of the pruned models with different

computational costs and accuracy, we propose to find a

better trade-off with additional controllability at infer-

ence time.

• By extensive experiments with super-resolution and de-

blurring, we empirically validate our pruned models gen-

erally achieve state-of-the-art performance.

2. Related Work

Image Restoration. Motion blur or low resolution are

common artifacts in images and restoring high-quality from

such low-quality inputs has been widely studied in com-

puter vision. In deep learning literature, many neural net-

work architectures have been proposed to mitigate the ar-

tifacts. In image deblurring, multi-scale architectures [7,

39,52], stacked networks [50,58,60], recurrent models [61]

were proposed primarily to achieve better restoration qual-

ity. Due to the difficulty of ill-posed problem, such meth-

ods have employed complex architectures with high model

capacity, leading to slow execution speed. Similarly, the

advances in deep super-resolution from pioneering SR-

CNN [5] were made by studying various network archi-

tectures such as deep networks [23, 29], attention mecha-

nisms [4, 42, 62], and dense connections [12, 53, 63].

In order to make deblurring and super-resolution fast,

many efforts have been made to design light-weight archi-

tectures. For deblurring, [25] adopted Inception-ResNet-

v2 [51] and MobileNetV2 [46] to build feature pyramid

networks. Also, [44] used a shallow recurrent model and

progressively deblurred an image. Similarly, for super-

resolution, [2] and [32] proposed to use an effective convo-

lutional module for an efficient yet accurate network. Fur-

thermore, instead of designing models manually, neural ar-

chitecture search (NAS) was adopted [3, 22, 49] to find effi-

cient model structures. Different from the previous methods

designing light-weight architectures, our method makes the

existing models efficient by using N :M sparsity.

Network Pruning. From the early studies in neural net-

works, the redundant weights that have negligible impact

on the final output have been witnessed and pruning aims

to remove such unnecessary components [13, 26]. In un-

structured pruning [6, 10, 11, 45], unimportant individual

weight connects were eliminated, with the primary focus on

accuracy preservation. However, due to the irregular spar-

sity patterns, accelerating the pruned networks requires spe-

cially designed hardware, limiting the application in prac-

tice [54]. On the other hand, structured pruning removes

groups of the weights (e.g., layers, filters, and channels of

a feature map) in the network architecture, leading to eas-

ier acceleration on off-the-shelf devices. Especially, filter or

channel pruning methods [9,15–17,27,28,30,33,35,38,56]

have risen as a popular pruning strategy. They either train

networks to find optimally pruned networks [9,15,27,33,56]

or propose metrics to measure the relative importance of fil-

ters or channels in pre-trained models [16,17,28,30,35,38,

43]. However, we observed that such coarse-grained struc-

tured sparsity can lead to significant damage to the perfor-

mance in image restoration networks.

Recently, several approaches have been proposed in or-

der to make the structured pruning at a more fine-grained

level. Block-level sparsity with matrix math pipelines [8]

is successfully accelerated with the known pruning struc-

ture. However, it requires to increase the feature size to

maintain the original accuracy. A more fine-grained bal-

anced sparsity is proposed in [55] which can be accelerated

by grouping weights and pruning each group with a uni-

17674



𝑐𝑖𝑛

×

𝑐𝑜𝑢𝑡
Compression

Sparse 

multiplication

Weight Input𝑐𝑖𝑛 𝐷

𝑀
𝑁

(a) Visual illustration for N :M sparsity

ෑ𝑖=11 𝑘𝑖 ≥ 𝜏 ? 𝑻𝒓𝒖𝒆
1 0𝒃 00

𝐹𝑎𝑙𝑠𝑒𝑘1 × 𝑘2 ෑ𝑖=12 𝑘𝑖 ≥ 𝜏 ?
1 1𝒃 00

𝐹𝑎𝑙𝑠𝑒
𝑻𝒓𝒖𝒆× 𝑘3 ෑ𝑖=13 𝑘𝑖 ≥ 𝜏 ?

1 1𝒃 01

𝑭𝒂𝒍𝒔𝒆
1 1𝒃 11

Selected weight

Important



𝑖Path for 3:4 sparsityPossible paths

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4)

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2)
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1)

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3)

(b) Overview of the proposed method

Figure 2. (a) Visual illustration for N :M sparsity [37], where N = 3 and M = 4. We illustrate the sparse multiplication process only

for the first row of the weight, where the non-zero weights and the input features at the corresponding positions are highlighted in green

boxes. D refers to the spatial dimension of the input feature. (e.g., input height × input width in a convolutional layer.) (b) Overview of the

proposed method, SLS, which decomposes the weights into M (M = 4 in this case) groups based on the weight magnitude (Equation (1)).

According to Equation (2), the final pruned weights are constructed based on the binary mask b, each value of which controls whether

the corresponding group will be used. The binary mask will be generated based on the priority of each importance group, following the

operations outlined by Equation (3) and (4). We illustrate the case when the searched sparsity is 3:4.

form sparsity. Unlike the coarse-grained structured prun-

ing methods, a pruned model by this method can achieve

relatively higher accuracy by approximating feature map

channels with the remaining weights. Recently, a similar

idea was proposed as 2:4 fine-grained structured sparsity

with hardware support on NVIDIA Ampere GPUs [37] and

more general N :M sparsity configurations were explored

in [19, 64]. However, the previous works only consider

the uniform N :M sparsity levels over all layers, ignoring

the layer-wise varying computational costs and contribution

to the performance. In this paper, we further optimize the

trade-off between the computational costs and performance

by searching for an appropriate N :M sparsity level for each

layer, specifically effective for extremely pruned networks.

3. Proposed Method

3.1. N:M sparsity

A weight tensor with N :M sparsity indicates a type of

a weight tensor that satisfies the following conditions (See

Figure 2a): (1) The number of input channels is divisible

by M . (2) Each group of M consecutive weights should

have at least N non-zero weights. With a weight satisfying

the above constraints, the weight and input tensor are com-

pressed by ignoring the zero weights and the corresponding

input feature values. Then, the computations of the ten-

sor multiplication between the compressed weight and input

tensor are reduced to N
M

of the original computations.

3.2. Overview

The conventional structured pruning methods [9, 17, 30,

31, 33] remove the predetermined structural units (e.g., fil-

ters or channels of a feature map). The common approach

for finding layer-wise pruning ratios in structured pruning

methods is to train a score value defined in each pruning

unit and remove units with a small score value [9, 21, 33].

In the case of N :M sparsity pattern, however, it is chal-

lenging to determine such structural units because there are

many possible configurations for preserving N weights out

of M weights. To overcome the challenge, in Section 3.3,

we consider the original weight tensor as the sum of M ten-

sors with 1:M sparsity whose configurations of remaining

weights are determined by the magnitude of weight. We

propose to use each sparse tensor as the unit of pruning.

Then, we propose a differentiable sparsity search frame-

work that learns score values for each pruning unit by us-

ing a straight-through estimator [20]. We empirically found

that the magnitude-based importance and the score value

can lead to a conflict with respect to the importance rank of

a pruning unit, which brings a substantial performance loss.

In Section 3.4, we eliminate the conflict by ensuring the

score value is aligned to the magnitude-based importance.

In Section 3.5, we present our loss function and propose a

loss annealing strategy to control the speed of pruning dur-

ing training. In Section 3.6, we propose an adaptive infer-

ence method to improve the efficiency-accuracy trade-off.

17675



3.3. Differentiable N:M Sparsity Search

Let W l
∈ R

clout×clin×kl
h×kl

w denote the weight tensor in

l-th convolutional layer. For notation simplicity, l is omitted

unless otherwise noted. Our goal is to find the effective

sparsity level of each layer given the target computational

budgets. To this end, we represent the weight tensor as the

sum of sparse tensors with 1:M sparsity:

W =

M
∑

i=1

Ŵ i, (1)

where Ŵ i is a weight tensor with 1:M sparsity in which

only the i-th important weight is remained every M con-

secutive weights. We define the importance of each weight

as its magnitude, which has been widely used in the prun-

ing literature [19, 64]. By doing so, we can view the sparse

tensor as a pruning unit in our problem setting. In other

words, Ŵ i is analogous to a filter or a channel in the ex-

isting structured pruning methods. Then, we formulate the

pruning ratio search problem as follows:

W̃ =

M
∑

i=1

bi · Ŵ i, (2)

where bi is a binary value indicating whether Ŵ i should be

removed or not. To optimize bi using gradient descent, we

adopt straight-through estimator (STE) [20]:

bi =

{

S(pi, τ) in a forward path,

pi in a backward path,
(3)

where S(·, τ) is a function that returns 1 for the greater

value than a threshold τ and 0 otherwise and pi is a priority

score of Ŵ i that is learned during training.

3.4. PriorityOrdered Pruning

In section 3.3, we introduce the two importance mea-

sures for each sparse tensor: the magnitude of weight is

for the definition of the pruning unit and the priority score

is for learning the pruning ratio. However, the importance

rank indicated by the two measures can be different, by

which a pruning unit with weights of larger magnitude can

be removed first before one with weights of smaller magni-

tude. We found such misalignment leads to substantial per-

formance degradation. To solve this problem, we propose

Priority-Ordered Pruning (POP) method that aligns the two

importance measures by design. Specifically, we define the

priority score as follows:

pi ≡

i−1
∏

n=1

kn (4)

where p1 ≡ 1 and kn is a trainable parameter that is initial-

ized to 1 and clamped to ensure 0 ≤ kn ≤ 1. By Equa-

tion (4), pi+1 ≤ pi is guaranteed, so a pruning unit with

weights of smaller magnitude is removed first. Figure 2b il-

lustrates the overall process of the proposed learning frame-

work.

3.5. Loss Function

For practical usage of the proposed method, we design

our pruning framework as a budgeted pruning [9, 41], in

which a network is pruned to meet the desired target com-

putational budget. To this end, we first define the computa-

tional costs of a convolutional layer with N :M sparsity with

respect to multiply-accumulate operations (MACs). The-

oretically, the MACs of a convolutional layer with N :M

sparsity are N
M

of the original ones. Thus, the computa-

tional costs of a pruned convolutional layer are defined as

follows:

Cpruned = Coriginal ×

∑M

i=1
bi

M
, (5)

where Coriginal = (cout · cin · kh · kw)× (H ·W ) denotes

the original computational costs of the layer and H and W

are the spatial sizes of the output of the layer. Then, we

formulate our loss function as follows:

L = Ltask + λreg

L
∑

l=1

Cl
pruned, (6)

where L is the total number of layers to be pruned, Ltask

is the task-specific loss function (e.g., L1 loss for image

restoration tasks) and
∑L

l=1
Cl

pruned is the computational

regularization loss. The two loss terms are balanced by the

hyper-parameter λreg . Note that the gradient from the com-

putational regularization loss can flow to ki by using STE in

Equation (3). Starting from a pretrained network, the net-

work is pruned until satisfying
∑L

l=1
Cl

pruned ≤ Ctarget,

where Ctarget denotes a target computational budget. After

reaching the target budget, all ki are frozen and the pruned

network is fine-tuned by optimizing the task-specific loss.

We empirically found that when the target computa-

tional budget is extremely low (e.g., Ctarget = 0.1 ×
∑L

l=1
Cl

original), λreg should be large enough to reach the

target budget. However, a large λreg can result in an ag-

gressive performance degradation because the network is

pruned too fast, which is hard to be recovered even after a

fine-tuning process. To solve this problem, we set λreg as

a small value at the beginning of training and gradually in-

crease it according to the pruned rate change.At every pre-

determined K epoch, we measure the pruned rate change

during the last K epochs and update λreg by following rules:

λreg =

{

α× λreg if ∆
Cpruned

Coriginal
≤ T ,

λreg else,
(7)

17676



75% pruned           87.5% pruned model             93.75% pruned model           Bicubic 

Selected when 𝛽 = 2 Selected when 𝛽 = 0.05
Efficient

Accurate

Figure 3. Visualization of the proposed adaptive inference method.

Given the 3 images on the right side of the figure and 4 model

candidates (75%, 87.5%, 93.75% pruned CARN [2] and bicubic

upsampler), the trained MSE estimators estimate MSE between

the restored image and the ground truth. Then, our method selects

one model by Equation (8). By adjusting β, one can determine

whether to focus on efficiency or accuracy.

where α is a hyper-parameter determining how fast λreg is

increased and T is the threshold value of pruned rate change

for updating λreg . Since the performance of the pruned net-

work is not sensitive to the annealing hyper-parameters (α,

T , and K), we fix them for all experiments.

3.6. Adaptive Inference

Each region in a low-quality image often has different

restoration difficulties. For example, in the case of image

super-resolution tasks, flat areas such as the sky can be eas-

ily restored by using only a few computational resources.

Also, in order to restore large images (e.g., 2K or 4K), it can

be inevitable to process the whole image by dividing it into

small patches due to the resource constraints [24]. From

this motivation, we propose an adaptive inference method

that determines which pruned models, trained by SLS, to

use according to the restoration difficulty of an input image

patch at inference time.

To quantify the restoration difficulty of a patch, we as-

sume that the more an image patch is hard to be restored, the

larger error between the ground truth and the restored result.

Since the ground truth is not available at inference time, we

use a light-weight convolutional neural network that can es-

timate the mean squared error (MSE) between the ground

truth and the restored result from a target model. Given

several models trained by SLS with different target com-

putational budgets, we train the MSE estimators for each

candidate model using training datasets.

Formally, given an image patch x, our adaptive infer-

ence method selects a model among the candidates that is

obtained by the following operation:

argmax
i

C1 − Ci

C1

× β +
fn(x)− fi(x)

fn(x)
, (8)

where Ci and fi(·) indicate the computational costs and the

estimated MSE with respect to the i-th candidate model

and n is the total number of candidates. We sort the in-

dex of each model with respect to the computational costs

(Ci+1 ≤ Ci). By maximizing the two terms in Equa-

tion (8), our method tries to find the most efficient yet accu-

rate model given x. The hyper-parameter β enables flexible

control of the computational costs of the selected model by

making focus on either the computational costs or the per-

formance. Figure 3 visualizes the proposed adaptive infer-

ence method.

4. Experiments

4.1. Dataset and Models

To validate the effectiveness of the proposed methods,

we conduct experiments on image deblurring and super-

resolution tasks. For image deblurring, we perform prun-

ing on 3 model architectures that vary by the computa-

tional cost and the restoration accuracy: residual UNet [40],

SRN [52] and DMPHN [60]. GOPRO dataset [39] is em-

ployed to train and evaluate the deblurring models. For im-

age super-resolution, we use 3 popular and efficient archi-

tectures: EDSR [29], CARN [2] and RFDN [32]. We use

DIV2K dataset [1] for training, Set14 [59], B100 [36] and

Urban100 [18] benchmark datasets for evaluation.

4.2. Implementation Details

To make a fair comparison between different pruning

methods, we train the networks with the same amount of

iterations. The total training epochs are 4000 and 600, re-

spectively for deblurring and super-resolution. Since the

methods except for SR-STE [64] require a pretraining phase

before pruning, we allocate half of the training epochs for

pretraining and the rest for the pruning process for those

methods. We set the hyper-parameters as τ = 0.5, α = 1.1,

T = 0.1. λreg is set to 10−12 and 10−10 for image deblur-

ring and super-resolution tasks, respectively. Also, we set

M = 32 to allow extreme pruning ratios. For more details,

please refer to the supplementary material.

4.3. Quantitative Comparison

In Table 1 and 2, we present the computational costs

(GMACs) and the image restoration performance of the

pruned models on image deblurring and super-resolution

tasks, respectively. For each model, we train them using dif-

ferent computational budgets, 1/4, 1/8, and 1/16 of the orig-

inal costs. Our method, SLS, is compared with the existing

17677



Table 1. Image deblurring performance comparisons on GOPRO

dataset [39].

Model Method GMACs Num. Param. PSNR↑ / SSIM↑ / LPIPS↓

UNet

Unpruned 458.04 6.79M 29.46 / 0.8837 / 0.1686

One-shot (2:4) 230.84 3.40M 29.55 / 0.8849 / 0.1662

Filter pruning 115.42 1.70M 28.79 / 0.8692 / 0.1893

One-shot (8:32) 117.24 1.70M 29.19 / 0.8771 / 0.1795

SR-STE (8:32) 117.24 1.70M 28.85 / 0.8691 / 0.1860

SLS (Ours) 116.64 1.55M 29.37 / 0.8811 / 0.1740

Filter pruning 65.27 956.74K 28.31 / 0.8570 / 0.2070

One-shot (4:32) 60.44 851.38K 28.64 / 0.8646 / 0.1985

SR-STE (4:32) 60.44 851.38K 28.33 / 0.8571 / 0.2070

SLS (Ours) 60.31 797.30K 28.98 / 0.8726 / 0.1870

Filter pruning 29.31 425.86K 27.65 / 0.8398 / 0.2325

One-shot (2:32) 32.04 427.19K 27.79 / 0.8430 / 0.2345

SR-STE (2:32) 32.04 427.19K 27.77 / 0.8431 / 0.2271

SLS (Ours) 30.91 397.55K 28.36 / 0.8573 / 0.2117

SRN

Unpruned 1200.51 7.09M 30.28 / 0.9021 / 0.1310

One-shot (2:4) 605.35 3.55M 30.53 / 0.9065 / 0.1264

Filter pruning 302.67 1.77M 29.76 / 0.8915 / 0.1467

One-shot (8:32) 307.77 1.78M 30.34 / 0.9030 / 0.1313

SR-STE (8:32) 307.77 1.78M 29.91 / 0.8942 / 0.1407

SLS (Ours) 306.84 1.72M 30.45 / 0.9051 / 0.1283

Filter pruning 171.21 998.98K 29.33 / 0.8821 / 0.1603

One-shot (4:32) 158.98 895.00K 29.87 / 0.8944 / 0.1427

SR-STE (4:32) 158.98 895.00K 29.35 / 0.8839 / 0.1545

SLS (Ours) 157.41 897.97K 30.21 / 0.9006 / 0.1351

Filter pruning 76.94 444.87K 28.70 / 0.8691 / 0.1811

One-shot (2:32) 84.59 252.50K 29.04 / 0.8766 / 0.1688

SR-STE (2:32) 84.59 252.50K 28.83 / 0.8723 / 0.1747

SLS (Ours) 84.52 489.81K 29.75 / 0.8918 / 0.1470

DMPHN

Unpruned 994.48 8.05M 31.22 / 0.9164 / 0.1243

One-shot (2:4) 501.86 4.03M 31.43 / 0.9196 / 0.1192

Filter pruning 250.94 2.02M 30.47 / 0.9043 / 0.1417

One-shot (8:32) 255.55 2.02M 31.05 / 0.9137 / 0.1292

SR-STE (8:32) 255.55 2.02M 30.63 / 0.9058 / 0.1406

SLS (Ours) 254.64 2.24M 31.26 / 0.9170 / 0.1242

Filter pruning 142.02 1.14M 29.58 / 0.8872 / 0.1639

One-shot (4:32) 132.40 1.01M 30.13 / 0.8984 / 0.1504

SR-STE (4:32) 132.40 1.01M 29.79 / 0.8916 / 0.1559

SLS (Ours) 132.26 1.20M 30.79 / 0.9097 / 0.1343

Filter pruning 63.90 506.41K 28.61 / 0.8662 / 0.1908

One-shot (2:32) 70.82 506.88K 27.60 / 0.8393 / 0.2348

SR-STE (2:32) 70.82 506.88K 28.60 / 0.8678 / 0.1831

SLS (Ours) 70.29 603.47K 30.04 / 0.8967 / 0.1525

pruning methods, filter pruning [28], one-shot N :M prun-

ing [37] and SR-STE [64], with respect to PSNR, SSIM,

and LPIPS. Under almost the same GMACs, SLS con-

sistently achieves the best image restoration performance

across all tasks and model architectures. Especially, SLS

outperforms the other methods by a large margin at ex-

tremely pruned cases. These results show that our method

can achieve a better trade-off between the computational

costs and restoration performance by searching for the ef-

fective layer-wise N :M sparsity levels.

4.4. Qualitative Comparison

We present the qualitative results in Figure 5. In the case

of image super-resolution tasks (the first two rows), we ob-

serve that the models trained by SLS can restore more sharp

and clear textures, compared to the results from the other

methods. Notably, the results from the filter pruning suffer

checkerboard artifacts since pruning the last pixel shuffle

upscaling layer [47] results in sparse pixel values. Sim-

Table 2. Image super-resolution performace (PSNR↑) compar-

isons on benchmark datasets with the scaling factor of 4.

Model Method GMACs Num. Param. Set14 / B100 / Urban100

EDSR

Unpruned 114.49 1.52M 28.58 / 27.56 / 26.04

One-shot (2:4) 58.22 765.00K 28.56 / 27.55 / 26.01

Filter pruning 29.11 380.93K 28.44 / 27.48 / 25.75

One-shot (8:32) 30.09 345.50K 28.49 / 27.50 / 25.83

SR-STE (8:32) 30.09 345.50K 28.44 / 27.46 / 25.73

SLS (Ours) 29.56 363.39K 28.49 / 27.51 / 25.84

Filter pruning 16.56 214.85K 28.35 / 27.41 / 25.59

One-shot (4:32) 16.02 174.75K 28.34 / 27.41 / 25.52

SR-STE (4:32) 16.02 174.75K 28.33 / 27.39 / 25.51

SLS (Ours) 15.62 190.59K 28.38 / 27.43 / 25.63

Filter pruning 7.52 96.00K 28.13 / 27.20 / 25.17

One-shot (2:32) 8.98 89.38K 28.10 / 27.23 / 25.11

SR-STE (2:32) 8.98 89.38K 28.13 / 27.27 / 25.22

SLS (Ours) 8.65 97.28K 28.22 / 27.32 / 25.31

CARN

Unpruned 91.22 1.11M 28.49 / 27.49 / 25.82

One-shot (2:4) 46.63 565.00K 28.49 / 27.51 / 25.86

Filter pruning 23.31 279.46K 28.37 / 27.43 / 25.64

One-shot (8:32) 24.20 278.76K 28.44 / 27.47 / 25.74

SR-STE (8:32) 24.20 278.76K 28.40 / 27.42 / 25.65

SLS (Ours) 24.09 276.34K 28.46 / 27.48 / 25.79

Filter pruning 13.31 157.75K 28.26 / 27.32 / 25.36

One-shot (4:32) 13.02 140.24K 28.24 / 27.32 / 25.36

SR-STE (4:32) 13.02 140.24K 28.23 / 27.33 / 25.43

SLS (Ours) 13.02 140.27K 28.39 / 27.41 / 25.61

Filter pruning 6.08 70.61K 27.98 / 27.15 / 24.93

One-shot (2:32) 7.44 70.97K 27.86 / 27.08 / 24.78

SR-STE (2:32) 7.44 70.97K 28.03 / 27.19 / 25.09

SLS (Ours) 7.26 67.18K 28.22 / 27.32 / 25.35

RFDN

Unpruned 39.86 828.75K 28.52 / 27.51 / 25.91

One-shot (2:4) 20.02 416.25K 28.54 / 27.51 / 25.92

Filter pruning 10.44 214.77K 16.50 / 17.32 / 15.52

One-shot (8:32) 10.10 210.00K 28.46 / 27.47 / 25.73

SR-STE (8:32) 10.10 210.00K 28.33 / 27.41 / 25.59

SLS (Ours) 10.05 240.17K 28.50 / 27.50 / 25.84

Filter pruning 6.05 123.84K 15.76 / 16.61 / 14.78

One-shot (4:32) 5.17 106.88K 27.99 / 27.16 / 24.93

SR-STE (4:32) 5.17 106.88K 28.19 / 27.31 / 25.30

SLS (Ours) 5.16 139.60K 28.41 / 27.43 / 25.63

Filter pruning 2.85 57.74K 15.01 / 15.82 / 14.03

One-shot (2:32) 2.66 55.31K 27.49 / 27.06 / 24.72

SR-STE (2:32) 2.66 55.31K 28.02 / 27.21 / 25.08

SLS (Ours) 2.66 77.49K 28.22 / 27.32 / 25.31

ilarly, the results on image deblurring tasks (the last two

rows) show that the models trained by SLS can restore the

detailed textures and cleaner car plates with better read-

ability while other pruning methods fail to reconstruct such

high-frequency details. The overall results show that un-

der the same computational budgets, models pruned by SLS

achieve perceptually satisfying performance.

4.5. Finding Optimal Pruning Ratio for Each Layer

Different from the previous methods that set a uniform

N :M sparsity in all layers, our SLS finds the sparsity

level for each layer via learning. In Figure 6, we visual-

ize the searched level of sparsity of each layer. The re-

sults show that the searched N have a tendency to decrease

when the computational costs of the corresponding layer be-

come heavy. Interestingly, we found that this tendency is

not shown in the last upscaling layer in RFDN (indicated

as the 50-th layer in the figures). We empirically found

that the last upscaling layer has a significant impact on the

17678



Super-Resolution

Unpruned Filter Pruning One-shot (2:32) SR-STE (2:32) SLS (Ours)

Deblurring

Unpruned Filter Pruning One-shot (2:32) SR-STE (2:32) SLS (Ours)

Figure 5. Qualitative comparisons with the existing pruning methods. The first two rows show image super-resolution results from RFDN

with the scaling factor of 4. The last two rows show image deblurring results from DMPHN. For each task, all pruned models have almost

the same computational costs (1/16 of the original value) with respect to GMACs.

Table 3. Ablation studies on the proposed methods. In the 3rd

column, the two numbers indicate the update periods (iterations)

for updating Ŵ
l

i in RFDN and UNet, respectively. For RFDN, we

use Urban100 dataset. We set the target budget as 1

8
of the original

computational costs.

POP λreg annealing
Update period PSNR↑

(Iterations) RFDN UNet

✗ ✓ 1000/131 25.46 28.57

✓ ✗ 1000/131 25.59 28.84

✓ ✓ No update 25.46 28.74

✓ ✓ 1/1 25.61 28.88

✓ ✓ 10000/1310 25.61 28.92

✓ ✓ 1000/131 25.63 28.98

performance since it is directly related to the final output.

Thus, considering the better restoration performance in Ta-

ble 2, these results demonstrate that SLS finds more effec-

tive pruning ratios for each layer by taking into account both

the computational costs and the contribution to the perfor-

mance of each layer.

4.6. Ablation Studies

To validate the effectiveness of each component in SLS,

we conduct ablation studies and the results are shown in

Table 3. To investigate the effect of Priority-Ordered Prun-

ing (POP), we defined the priority score values p not as the

cumulative product of auxiliary trainable parameters as in

Equation (4) but as independent trainable parameters. The

17679



(a) Visualization of the searched layer-wise computational costs (MACs) (b) Visualization of the searched layer-wise N (when M = 32)

Figure 6. Analysis on the searched layer-wise N :M sparsity. The results are obtained by training RFDN model with Ctarget =
1

8
Coriginal.

We visualize the layer-wise pruning ratios in terms of (a) GMACs and (b) N . The layer is sorted with respect to MACs before pruning.

The highlighted bar by the red arrow indicates the result of the last upsampling layer in RFDN. The brown line in (b) is for the comparison

with the uniform pruning [37, 64].

2 4 6 8 10 12 14 16
GMACs

25.0

25.1

25.2

25.3

25.4

25.5

25.6

PS
NR

Adaptive Inference
75% Pruned
87.5% Pruned
93.75% Pruned

Figure 7. Results of the proposed adaptive inference method on

Urban100 dataset with the scale factor of 4. We use the bicubic

upsampler and three CARN models trained by SLS with different

target budgets.

results show that there is a large performance loss when

POP is not used, indicating that aligning the two importance

measures (the magnitude of weights and the priority scores)

is essential. For the ablation study on λreg annealing, we

set λreg as a large value that is finally found when the an-

nealing strategy is used and train the models with it. The

results demonstrate that λreg annealing brings an additional

performance gain by controlling the speed of pruning pro-

cess according to the current pruned rate. In Equation (1),

we group the weight tensor into several sparse tensors by

using the magnitude of weights. Since the weights change

during training, we should update the sparse tensors, Ŵ i.

To find an appropriate update period, we train models with

different update periods. As expected, the pruned models

suffer significant performance degradation when there is no

update. Also, updating Ŵ i at every iteration is not helpful,

so we set the update period as 10000 and 1310 iterations (10

epochs) for super-resolution and deblurring, respectively.

4.7. Adaptive Inference

Figure 7 shows the results of the proposed adaptive in-

ference method on image super-resolution tasks. An input

image is divided into several patches and each patch is re-

stored by the selected model by Equation (8). As shown in

the figure, our adaptive inference scheme not only enables

the detailed control of computational budgets but also im-

proves the trade-off between the computational costs and

the restoration performance in terms of PSNR. For the ex-

perimental details and the results on deblurring tasks, please

refer to the supplementary material.

5. Conclusion

In this paper, we propose a novel layer-wise pruning ra-

tio search framework, SLS, tailored for N :M sparsity. Our

differentiable learning framework is trained end-to-end with

the task-specific and the computational regularization loss

to determine a more effective degree of sparsity for each

layer. Compared with the previous methods with uniform

N :M sparsity at all layers, our results achieve state-of-the-

art image restoration performance at similar computational

budgets. Furthermore, our adaptive inference scheme facil-

itates the detailed control of the computational budgets with

improved restoration performance.

Acknowledgment. This work was supported in part by IITP

grant funded by the Korea government (MSIT) [No. 2021-0-

01343, Artificial Intelligence Graduate School Program (Seoul

National University), and No. 2021-0-02068, Artificial Intelli-

gence Innovation Hub], and in part by AIRS Company in Hyundai

Motor Company & Kia Motors Corporation through HMC/KIA-

SNU AI Consortium.

17680



References

[1] Eirikur Agustsson and Radu Timofte. NTIRE 2017 chal-

lenge on single image super-resolution: Dataset and study.

In CVPR Workshops, 2017. 5

[2] Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast,

accurate, and lightweight super-resolution with cascading

residual network. In ECCV, 2018. 2, 5

[3] Xiangxiang Chu, Bo Zhang, Hailong Ma, Ruijun Xu, Jixiang

Li, and Qingyuan Li. Fast, accurate and lightweight super-

resolution with neural architecture search. In ICPR, 2020.

2

[4] Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and

Lei Zhang. Second-order attention network for single image

super-resolution. In CVPR, 2019. 2

[5] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou

Tang. Image super-resolution using deep convolutional net-

works. IEEE TPAMI, 38(2):295–307, 2015. 2

[6] Jonathan Frankle and Michael Carbin. The lottery ticket hy-

pothesis: finding sparse, trainable neural networks. In ICLR,

2019. 2

[7] Hongyun Gao, Xin Tao, Xiaoyong Shen, and Jiaya Jia. Dy-

namic scene deblurring with parameter selective sharing and

nested skip connections. In CVPR, 2019. 2

[8] Scott Gray, Alec Radford, and Diederik P Kingma.

Gpu kernels for block-sparse weights. arXiv preprint

arXiv:1711.09224, 3, 2017. 2

[9] Shaopeng Guo, Yujie Wang, Quanquan Li, and Junjie Yan.

Dmcp: differentiable markov channel pruning for neural net-

works. In CVPR, 2020. 1, 2, 3, 4

[10] Song Han, Huizi Mao, and William J. Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. In ICLR, 2016. 2

[11] Song Han, Jeff Pool, John Tran, and William Dally. Learning

both weights and connections for efficient neural network. In

NIPS, 2015. 1, 2

[12] Muhammad Haris, Gregory Shakhnarovich, and Norimichi

Ukita. Deep back-projection networks for super-resolution.

In CVPR, 2018. 2

[13] Babak Hassibi and David G Stork. Second order derivatives

for network pruning: optimal brain surgeon. In NIPS, 1993.

1, 2

[14] Wei He, Meiqing Wu, Mingfu Liang, and Siew-Kei Lam.

Cap: context-aware pruning for semantic segmentation. In

WACV, 2021. 1

[15] Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang

Zhang, and Yi Yang. Learning filter pruning criteria for deep

convolutional neural networks acceleration. In CVPR, 2020.

1, 2

[16] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.

Filter pruning via geometric median for deep convolutional

neural networks acceleration. In CVPR, 2019. 2

[17] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In ICCV, 2017.

1, 2, 3

[18] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single

image super-resolution from transformed self-exemplars. In

CVPR, 2015. 5

[19] Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Seffi

Naor, and Daniel Soudry. Accelerated sparse neural train-

ing: a provable and efficient method to find n:m transposable

masks. In NeurIPS, 2021. 1, 3, 4

[20] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-

Yaniv, and Yoshua Bengio. Binarized neural networks. NIPS,

2016. 3, 4

[21] Minsoo Kang and Bohyung Han. Operation-aware soft chan-

nel pruning using differentiable masks. In ICML, 2020. 3

[22] Heewon Kim, Seokil Hong, Bohyung Han, Heesoo Myeong,

and Kyoung Mu Lee. Fine-grained neural architecture

search. arXiv preprint arXiv:1911.07478, 2019. 2

[23] Jiwon Kim, Jungkwon Lee, and Kyoung Mu Lee. Accurate

image super-resolution using very deep convolutional net-

works. In CVPR, 2016. 2

[24] Xiangtao Kong, Hengyuan Zhao, Yu Qiao, and Chao Dong.

Classsr: a general framework to accelerate super-resolution

networks by data characteristic. In CVPR, 2021. 5

[25] Orest Kupyn, Tetiana Martyniuk, Junru Wu, and Zhangyang

Wang. DeblurGAN-v2: Deblurring (orders-of-magnitude)

faster and better. In ICCV, 2019. 2

[26] Yann LeCun, John S Denker, and Sara A Solla. Optimal

brain damage. In NIPS, 1990. 1, 2

[27] Bailin Li, Bowen Wu, Jiang Su, and Guangrun Wang. Ea-

gleeye: fast sub-net evaluation for efficient neural network

pruning. In ECCV, 2020. 2

[28] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. In

ICLR, 2017. 1, 2, 6

[29] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and

Kyoung Mu Lee. Enhanced deep residual networks for single

image super-resolution. In CVPR Workshops, 2017. 1, 2, 5

[30] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,

Baochang Zhang, Yonghong Tian, and Ling Shao. Hrank:

filter pruning using high-rank feature map. In CVPR, 2020.

1, 2, 3

[31] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang,

Liujuan Cao, Qixiang Ye, Feiyue Huang, and David Doer-

mann. Towards optimal structured cnn pruning via genera-

tive adversarial learning. In CVPR, 2019. 2, 3

[32] Jie Liu, Jie Tang, and Gangshan Wu. Residual feature dis-

tillation network for lightweight image super-resolution. In

ECCV Workshops, 2020. 2, 5

[33] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,

Shoumeng Yan, and Changshui Zhang. Learning efficient

convolutional networks through network slimming. In ICCV,

2017. 2, 3

[34] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin

Yang, Tim Kwang-Ting Cheng, and Jian Sun. Metapruning:

meta learning for automatic neural network channel pruning.

In ICCV, 2019. 1, 2

[35] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter

level pruning method for deep neural network compression.

In ICCV, 2017. 2

[36] David Martin, Charless Fowlkes, Doron Tal, and Jitendra

Malik. A database of human segmented natural images

and its application to evaluating segmentation algorithms and

measuring ecological statistics. In ICCV, 2001. 5

17681



[37] Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko

Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu, and

Paulius Micikevicius. Accelerating sparse deep neural net-

works. arXiv preprint arXiv:2104.08378, 2021. 1, 2, 3, 6,

8

[38] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,

and Jan Kautz. Importance estimation for neural network

pruning. In CVPR, 2019. 2

[39] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep

multi-scale convolutional neural network for dynamic scene

deblurring. In CVPR, 2017. 1, 2, 5, 6

[40] Seungjun Nah, Sanghyun Son, Jaerin Lee, and Kyoung Mu

Lee. Clean images are hard to reblur: Exploiting the ill-

posed inverse task for dynamic scene deblurring. In ICLR,

2022. 5

[41] Xuefei Ning, Tianchen Zhao, Wenshuo Li, Peng Lei, Yu

Wang, and Huazhong Yang. Dsa: more efficient budgeted

pruning via differentiable sparsity allocation. In ECCV,

2020. 4

[42] Ben Niu, Weilei Wen, Wenqi Ren, Xiangde Zhang, Lianping

Yang, Shuzhen Wang, Kaihao Zhang, Xiaochun Cao, and

Haifeng Shen. Single image super-resolution via a holistic

attention network. In ECCV, 2020. 2

[43] Junghun Oh, Heewon Kim, Sungyong Baik, Cheeun Hong,

and Kyoung Mu Lee. Batch normalization tells you which

filter is important. In WACV, 2022. 2

[44] Dongwon Park, Dong Un Kang, Jisoo Kim, and Se Young

Chun. Multi-temporal recurrent neural networks for progres-

sive non-uniform single image deblurring with incremental

temporal training. In ECCV, 2020. 2

[45] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kemb-

havi, Ali Farhadi, and Mohammad Rastegari. What’s hidden

in a randomly weighted neural network? In CVPR, 2020. 2

[46] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: inverted

residuals and linear bottlenecks. In CVPR, 2018. 2

[47] Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz,

Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan

Wang. Real-time single image and video super-resolution

using an efficient sub-pixel convolutional neural network. In

CVPR, 2016. 6

[48] Sanghyun Son and Kyoung Mu Lee. Srwarp: Generalized

image super-resolution under arbitrary transformation. In

CVPR, 2021. 1

[49] Dehua Song, Chang Xu, Xu Jia, Yiyi Chen, Chunjing Xu,

and Yunhe Wang. Efficient residual dense block search for

image super-resolution. In AAAI, 2020. 2

[50] Maitreya Suin, Kuldeep Purohit, and A. N. Rajagopalan.

Spatially-attentive patch-hierarchical network for adaptive

motion deblurring. In CVPR, 2020. 2

[51] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and

Alexander A Alemi. Inception-v4, inception-resnet and the

impact of residual connections on learning. In AAAI, 2017.

2

[52] Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, and Ji-

aya Jia. Scale-recurrent network for deep image deblurring.

In CVPR, 2018. 2, 5

[53] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,

Chao Dong, Chen Change Loy, Yu Qiao, and Xiaoou Tang.

Esrgan: Enhanced super-resolution generative adversarial

networks. In ECCV Workshops, 2018. 2

[54] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and

Hai Li. Learning structured sparsity in deep neural networks.

In NIPS, 2016. 2

[55] Zhuliang Yao, Shijie Cao, Wencong Xiao, Chen Zhang, and

Lanshun Nie. Balanced sparsity for efficient dnn inference

on gpu. In AAAI, 2019. 2

[56] Jianbo Ye, Xin Lu, Zhe Lin, and James Z. Wang. Rethink-

ing the smaller-norm-less-informative assumption in channel

pruning of convolution layers. In ICLR, 2018. 2

[57] Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping

Wang. Gate decorator: global filter pruning method for ac-

celerating deep convolutional neural networks. In NeurIPS,

2019. 1

[58] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar

Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling

Shao. Multi-stage progressive image restoration. In CVPR,

2021. 2

[59] Roman Zeyde, Michael Elad, and Matan Protter. On single

image scale-up using sparse-representations. In Jean-Daniel

Boissonnat, Patrick Chenin, Albert Cohen, Christian Gout,

Tom Lyche, Marie-Laurence Mazure, and Larry Schumaker,

editors, Curves and Surfaces, pages 711–730, Berlin, Hei-

delberg, 2012. Springer Berlin Heidelberg. 5

[60] Hongguang Zhang, Yuchao Dai, Hongdong Li, and Piotr Ko-

niusz. Deep stacked hierarchical multi-patch network for im-

age deblurring. In CVPR, 2019. 1, 2, 5

[61] Jiawei Zhang, Jinshan Pan, Jimmy Ren, Yibing Song, Lin-

chao Bao, Rynson W.H. Lau, and Ming-Hsuan Yang. Dy-

namic scene deblurring using spatially variant recurrent neu-

ral networks. In CVPR, 2018. 1, 2

[62] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng

Zhong, and Yun Fu. Image super-resolution using very deep

residual channel attention networks. In ECCV, 2018. 2

[63] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and

Yun Fu. Residual dense network for image super-resolution.

In CVPR, 2018. 2

[64] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie

Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li. Learn-

ing n:m fine-grained structured sparse neural networks from

scratch. In ICLR, 2021. 1, 2, 3, 4, 5, 6, 8

17682


