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Figure 1. Degree of linear polarization (DoLP) of achromatic pixels are always achromatic regardless of the illumination colors.
Raw-RGB images (top) and their DoLP values of RGB (bottom). Achromatic patches located in the bottom rows have always achromatic
DoLP values.

Abstract

Color constancy is an essential function in digital pho-
tography and a fundamental process for many computer vi-
sion applications. Accordingly, many methods have been
proposed, and some recent ones have used deep neural net-
works to handle more complex scenarios. However, both the
traditional and latest methods still impose strict assump-
tions on their target scenes in explicit or implicit ways. This
paper shows that the degree of linear polarization dramat-
ically solves the color constancy problem because it allows
us to find achromatic pixels stably. Because we only rely
on the physics-based polarization model, we significantly
reduce the assumptions compared to existing methods. Fur-
thermore, we captured a wide variety of scenes with ground-
truth illuminations for evaluation, and the proposed ap-
proach achieved state-of-the-art performance with a low
computational cost. Additionally, the proposed method
can estimate illumination colors from chromatic pixels and
manage multi-illumination scenes. Lastly, the evaluation
scenes and codes are publicly available to encourage more
development in this field.

1. Introduction
When a light source illuminates an object, the observed

color is determined by the reflectance of the object and the

illumination color. The goal of color constancy is to sepa-
rate the illumination color from the observation and obtain
an image equivalent to one captured under achromatic illu-
mination. Because human vision inherently has this abil-
ity [6], color constancy is vital for digital photography to
capture suitable images for human preferences. Addition-
ally, color constancy is critical for various computer vision
applications [5, 23, 57], including methods using deep neu-
ral network (DNN) [2]. However, color constancy is still
a challenging problem because separating the material re-
flectance and illumination color from observation is funda-
mentally ill-posed.

Some studies have introduced statistical knowledge
about objects or illuminations in scenes to overcome the
difficulty. Gray-world [12] and its extensions [17, 51] ex-
ploit the assumption that the average value of objects’ re-
flectance in a scene becomes achromatic. White-patch
methods [20, 35] assume that scenes include perfect reflec-
tion and regard the area as the representation of the illu-
mination color. However, natural scenes frequently violate
these statistical expectations, which significantly degrades
the quality of the results.

Regarding data-driven algorithms, several illumination-
estimation models have been developed using training data
sets [11, 21, 23, 31]. More recently, methods that exploit
DNNs have been proposed and have achieved higher per-
formance [30,41,47]. Furthermore, several approaches have
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introduced new learning frameworks to handle images cap-
tured by unknown cameras [1,29,39,54,58]. However, these
learning-based methods are still highly dependent on the
quality of the training data.

Speaking of polarization, it could help solve the color
constancy problem because diffuse (representing material
color) and specular (representing illumination color) polar-
ization behave differently [53]. For instance, several studies
have estimated illumination colors by assuming that only
the specular reflection is polarized [18, 45], meaning that
polarization amplitude directly represents the illumination
color. However, because diffuse reflection also affects
polarization [9, 33], this assumption incorrectly estimates
illumination colors, especially when diffuse reflection
dominates the scene.

In this paper, we show that degree of linear polarization
(DoLP) significantly contributes to solving the color con-
stancy problem because it allows us to find achromatic pix-
els stably. Our main idea is quite simple: the DoLP val-
ues of achromatic pixels are also achromatic regardless of
the illumination colors. Figure 1 shows several color charts
captured under different illuminations. Focusing on the
achromatic squares located on the bottom row of the color
chart, we notice that their DoLP values are always achro-
matic despite the drastic change of illumination colors. In
summary, our contributions are as follows:

• We propose the first approach to indicate the dramatic
contribution of DoLP to solving the color constancy
problem.

• Our method achieved state-of-the-art performance at
a low computational cost on our new evaluation data,
which include a wide variety of illuminations.

• The proposed approach is robust because it is inde-
pendent of statistical knowledge about reflectance or
illuminations, free from any optimization or training
processes, and accurately considering diffuse polariza-
tion.

• We widely analyzed how to estimate illuminations
from chromatic pixels and examined a solution for
multi-illumination scenes.

• Our codes and the created evaluation data are publicly
available to encourage more advancement in this field.

2. Related work
As described in Sec. 1, the color constancy problem is

ill-posed because many pairs of material reflectance and
illumination color can generate the same results. Many
algorithms have been proposed to address this ambiguity,

and the classical group is static approaches. The Gray-
world algorithm assumes that the average reflectance in a
scene is achromatic [12]. Several methods have extended
this assumption by relying on areas having more textures
[13,26,51]. Two-stage algorithms have also been proposed,
searching for achromatic pixels in a scene and executing
Gray-world on the labeled pixels [16, 37, 42, 55]. On the
other hand, the White-patch algorithm [19, 20, 35] assumes
that a perfect reflection causes the maximum intensity in
a scene, thus representing the illumination color. Addi-
tionally, the combination of the Gray-world and White-
patch has been examined [17, 25]. Furthermore, several
studies have introduced physics-based reflectance models
[28, 49, 50]. The abovementioned static approaches often
work well, and their computational cost is generally low, but
natural scenes frequently violate their statistical assump-
tions.

Another large category of color constancy algorithms
is learning-based approaches, which are becoming more
popular. Some studies have applied support vector regres-
sion [21, 52], kernel regression [4] or ridge regression [3].
More recently, a few methods have defined the color con-
stancy problem as a classification problem in a unique color
space [10, 11]. Furthermore, many studies have exploited
DNNs to deal with more complicated scenes [30, 41, 47].
Because these methods do not perform well for unknown
cameras, other methods have addressed the issue by using
a few additional images when estimating illuminations [1],
introducing a re-weighting module [54], generating several
candidate images and their likelihood [29], and exploiting
contrastive learning to acquire more general feature [39].
These data-driven approaches perform better, especially for
complex scenes, but their results heavily depend on training
data distribution, and acquiring images with ground-truth
illumination colors is usually laborious.

For polarization, it has been proven that the polarization
of reflected light is related to the surface normal of the re-
flection point. Therefore, polarization has long been used
for surface normal estimation [7, 43, 44, 48, 53]. Addition-
ally, because polarization behaves differently depending on
diffuse or specular reflection, several studies have exploited
polarization to separate reflected and transmitted light oc-
curring at glass surfaces [36, 38, 40]. Furthermore, other
methods have applied polarization analysis for estimating
illumination colors by assuming that only specular reflec-
tion is polarized [18, 45]. Based on this assumption, polar-
ization amplitude directly represents the illumination color,
but this is easily violated because diffuse reflection is also
polarized. Therefore, more accurate models that consider
both diffuse and specular polarization have recently been
introduced [9,33]. Additionally, the development of the po-
larization camera [56] has made it much easier to capture
polarization information. On the whole, polarization has
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(c) Labeled 
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results

Figure 2. Concept of our DoLP-based color constancy. The input is raw-RGB (a) and DoLP (b) images. First, we search achromatic
pixels based on the chromaticity of DoLPs (c) and then acquire white-balanced results (d). Note that we also use chromatic pixels and
introduce weighting schemes to acquire final results, explained in Sec. 3.4 and Sec. 3.5, respectively.

been widely studied, but no color constancy method with
an accurate polarization model that considers both diffuse
and specular reflection has been proposed.

3. Method
3.1. Problem definition

When an RGB camera is used to capture light reflected
by an object, the observed intensity ij of a pixel can be de-
scribed as

ij =

∫
ω

cj(λ)r(λ)l(λ)dλ, (1)

where λ denotes the wavelength, ω is the range of the visi-
ble spectrum, and cj is the camera sensitivity function cor-
responding to the sensor’s color channel j ∈ {R,G,B}. r
represents the reflectance of the object, and l is the spectrum
of the incident light.

Besides, under the assumption of narrow spectral re-
sponse, the function Eq. (1) can be approximately re-
garded as the product of the surface reflectance rj ∈
{rR, rG, rB} and the illumination observed by the camera
lj ∈ {lR, lG, lB}. Under this assumption, Eq. (1) is revised
as

ij = rj lj . (2)

Given the observation ij , the goal of color constancy is
to estimate lj and to obtain a white-balanced image iWB =
(iR · lG/lR, iG, iB · lG/lB).

3.2. Polarization model

When a surface reflects light, the reflection changes the
polarization of the light. This process is described by mul-
tiplying a Mueller matrix M ∈ R3×3 and a Stokes vector
s ∈ R3 as Ms. Note that we do not consider the fourth
dimension representing circular polarization in this paper.
Besides, when observing a Stokes vector s = (s0, s1, s2)

T ,

its DoLP is computed as
√

s21 + s22/s0, and angle of linear
polarization (AoLP) is 1

2 tan
−1(s2/s1).

Based on a dichromatic reflection model [46], re-
flectance r in Eq. (1) is divided into specular reflectance
rs and diffuse reflectance rd. Furthermore, the specular and
diffuse reflections have their own Mueller matrices Ms and
Md [9,33], respectively. Given that the specular component
is independent of wavelength, Eq. (1) is updated as

i0j
i1j
i2j

 =

[
rsMs

∫
ω

cj(λ)l(λ)dλ+

Md

∫
ω

cj(λ)rd(λ)l(λ)dλ

]l0
l1
l2

 , (3)

where (l0, l1, l2)
T and (i0j , i1j , i2j)

T denote the Stokes
vector of the incident light and observation, respectively.
Note that we do not assume Muller matrices are dependent
on wavelength, which is an assumption frequently used in
polarization-related studies [48]. Additionally, we expect
the Stokes vector of the incident illumination to be inde-
pendent of the wavelength. Given that many polarization-
based methods assume that illuminations are unpolarized
(l1 = l2 = 0) [8, 15, 32], this assumption is rarely violated,
except under multi-reflection. Besides, this function also
assumes that a pixel is predominantly illuminated by one
light source. These limitations are discussed in Sec. 6.

3.3. DoLP-based color constancy

When a pixel is achromatic, its diffuse reflection rd is
free from wavelength λ. Thus, Eq. (3) becomesi0j

i1j
i2j

 =

∫
ω

cj(λ)l(λ)dλ [rsMs + rdMd]

l0
l1
l2

 . (4)
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When we express the computed result of the integral
part in Eq. (4) as Kj and denote the remaining part
[rsMs + rdMd] (l0, l1, l2)

T as (s
′

0, s
′

1, s
′

2)
T , Eq. (4) is re-

vised as i0j
i1j
i2j

 = Kj

s
′

0

s
′

1

s
′

2

 . (5)

Therefore, the DoLPj of the observed result becomes

DoLPj =

√
K2

j s
′2
1 +K2

j s
′2
2

Kjs
′
0

=

√
s
′2
1 + s

′2
2

s
′
0

. (6)

It means that when a pixel is achromatic, its
DoLPR, DoLPG, DoLPB become the same regardless of
the camera sensitivity function cj(λ) and illumination color
l(λ). Note that this theory explicitly considers the diffuse
polarization Md, and we discuss the benefit in Sec. 5.

Figure 1 shows several raw-RGB images captured under
different illuminations (top) and the corresponding DoLP
images (bottom). When focusing on the achromatic pixels
located on the bottom row of the color chart, it can be seen
that the DoLP values of these pixels are achromatic despite
the drastic change of illumination colors.

The basic concept of the DoLP-based color constancy
is shown in Fig. 2. Firstly, we search achromatic pixels
based on the chromaticity of DoLP values. Secondly, we
compute illumination colors by considering the RGB col-
ors in these pixels to be the same as the illumination colors
(ij = lj). Note that we use also chromatic pixels and intro-
duce weighting schemes to acquire final results, explained
in Sec. 3.4 and Sec. 3.5, respectively.

3.4. Chromatic pixels

For chromatic pixels, we exploit the knowledge that
a white-balanced color of a pixel becomes the opposite
against its DoLP color. We introduce two expectations: the
specular and diffuse polarization cancel out each other be-
cause they have different AoLPs, and the specular DoLP
is larger than the diffuse one. Therefore, the DoLP is ap-
proximately equal to subtracting the diffuse reflection rd(λ)
from the specular one rs, while the white-balanced color
equals the sum of rd(λ) and rs. Denoting RGB values of
DoLP as dR,G,B, their average as d̄, white-balanced result
as iWB = (kRiR, iG, kBiB), and its average as ī, this rela-
tion is expressed as

− kRiR − ī, iG − ī, kBiB − ī√
(kRiR − ī)2 + (iG − ī)2 + (kBiB − ī)2

=

dR − d̄, dG − d̄, dB − d̄√
(dR − d̄)2 + (dG − d̄)2 + (dB − d̄)2

. (7)
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Figure 3. For chromatic pixels, intersection points of the simul-
taneous equations represent the illumination colors. Equation (8)
and ground-truth illuminations plotted in a kR-kB space under two
different illuminations.

Note that iWB and DoLP are subtracted by their averages
and normalized to align their domain differences. By trans-
forming Eq. (7), we obtain the following equation:

(dR−dB)iG+(dB−dG)iRkR+(dG−dR)iBkB = 0. (8)

After observing two or more pixels, we can estimate the
illumination color by solving these simultaneous equations.

Figure 3 shows the simultaneous equation Eq. (8) and
ground-truth illuminations plotted in a kR-kB space under
two illuminations. We used chromatic pixels of the color
charts to plot this figure. Comparing the intersections of the
lines to the ground-truth illuminations, it can be seen that
the intersections represent the illumination colors.

3.5. Weighting scheme

We introduce weighting schemes to handle the contribu-
tion of each pixel.

Differences between RGB values of DoLP: The can-
didate achromatic pixels are more reliable when the
RGB differences of the DoLP values are smaller.
When defining |DoLPR −DoLPG| /DoLPR,G,B as x and
|DoLPB −DoLPG| /DoLPR,G,B as y, the reliability of
achromatic pixels wdolp

ach is expressed as

wdolp
ach = {1− 1

1 + e−a(x−b)
} × {1− 1

1 + e−a(y−b)
}. (9)

Figure 4 shows the computed reliability wdolp
ach with a =

50, b = 0.08. Pixels with higher reliability are plotted as
brighter. From this image, we know that the achromatic
pixels are accurately computed as more reliable.

Conversely, the candidate chromatic pixels are more re-
liable when the RGB differences of the DoLP values are
larger. We compute wdolp

ch as

wdolp
ch =

1

1 + e−a(x−b)
× 1

1 + e−a(y−b)
. (10)
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(a) Raw-RGB. (b) Reliability.

Figure 4. The weight wdolp
ach accurately regards achromatic pixels.

Raw-RGB images (a) and computed reliability using Eq. (9) with
a = 50, b = 0.08 (b). Brighter pixels represent higher reliability.

Differences between RGB values of AoLP: We also rely
on the AoLP chromaticity to consider ambient illumina-
tions. Because they come from every direction and become
unpolarized, when a scene includes the ambient illumina-
tions, Eq. (5) becomesi0j

i1j
i2j

 =

Kjs
′

0 + lamb
j

Kjs
′

1

Kjs
′

2

 , (11)

where lamb
j denotes the ambient illumination. Because

AoLP is free from the first component, it is still achro-
matic. We use the same function as Eq. (9) for the relia-
bility waolp

ach , where x and y represent |AoLPR −AoLPG|
and |AoLPB −AoLPG|, respectively. Regarding the inher-
ent ambiguity of AoLP, see supplementary materials.

DoLP values: Because pixels with small DoLP are highly
susceptible to noises, we reduce the contribution from these
pixels. When defining an average value of DoLPR,G,B as
x, we use the following function:

wdolp =
1

1 + e−a(x−b)
. (12)

AoLP differences for excluding edges: Bayer-RGB
sensors assign false colors to the edges, which significantly
affects chromatic pixels. Because AoLP differences
between RGB channels are typically small except for the
edges, we compute waolp

ch to remove these pixels using
the same function as Eq. (9). Figure 5 shows a captured
image (Fig. 5a), its DoLP (Fig. 5b), and a weighted DoLP
(Fig. 5c). Comparing Fig. 5b with Fig. 5c, we see that false
DoLP colors along the edges were decreased.

After we calculate all the weights of achromatic pixels
wdolp

ach waolp
ach wdolp and chromatic pixels wdolp

ch waolp
ch wdolp for

every pixel in the image, we acquire two illuminations lachj

and lchj by calculating the weighted average of achromatic

(a) Input. (b) DoLP. (c) Weighted.

Figure 5. The weight waolp
ch precisely removes the edges. Input

(a), Corresponding DoLP (b), and DoLP multiplied by waolp
ch (c).

0.2 0.3 0.4 0.5 0.6

x
0.20

0.30

0.40

0.50

0.60

y

Gehler et al.  [22]
Ours

Figure 6. Illumination color comparison between our data and
Gehler et al. [22]. Illumination colors are mapped to xy chro-
maticity space.

and chromatic pixels. Lastly, the estimated illumination is
the blend of the two illuminations αlachj + (1− α)lchj .

4. Experiment
Data for evaluation: We used two cameras to capture the
evaluation data. The first camera was an FLIR BFS-U3-
51S5PC-C implemented with a Sony IMX250MYR color
polarization sensor. Each pixel has one of four wire grid
polarizer angles (0◦, 45◦, 90◦, 135◦), so it captures polar-
ization images in a single shot. After capturing, we applied
a polarization-demosaicking method [34] to the raw images
to obtain four polarization images (i0j , i45j , i90j , i135j ). The
second camera was a Grasshopper3 GS3-U3-41C6C imple-
mented with a CMOSIS CMV4000 color sensor. We lo-
cated a linear polarizer in front of the camera and captured
four polarization images by manually rotating the polarizer.
We acquired the observed Stokes vector by calculatingi0j

i1j
i2j

 =

(i0j + i45j + i90j + i135j )/2
i0j − i90j
i45j − i135j

 . (13)

We captured a total of 82 images using these two cam-
eras. These images included several weather conditions for
27 outdoor scenes and various illumination colors for 55
indoor scenes. For computing the ground-truth illumina-
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Method Mean Med. Tri. Best25% Worst25%

White-patch [35] 5.38 3.69 4.12 0.99 12.51
Gray-world [12] 5.28 3.94 4.19 1.42 11.68
Shad. gray [17] 9.13 8.20 8.30 2.66 17.43
Gray-edge [51] 8.65 7.37 7.37 2.76 16.90
Weighted-GE [27] 9.16 8.24 8.27 2.83 17.42
Chen et al. [14] 5.62 4.05 4.18 1.29 12.88
Qian et al. [42] 4.88 2.61 3.03 0.89 13.00
FFCC [11] 7.49 5.17 5.37 1.29 17.93
FC4 [30] 4.21 3.39 3.47 1.65 8.53
C4 [58] 3.55 2.31 2.73 0.96 8.01
C5 [1] 4.83 3.67 3.80 0.99 11.52

Ours 3.82 2.44 2.65 0.60 9.73

Table 1. Angular errors for all 82 scenes.

tion colors, each image was paired with the same scene in-
cluding a color chart, with which we used the third-darkest
patch to acquire the ground-truth illuminations. In Fig. 6,
we compared the illumination color distribution of our data
with Gehler et al. [22]. The figure tells us that our data con-
tain broad illumination colors. Note that our data included a
few high-saturated illuminations represented by several out-
liers. For more details, see supplementary materials.

Parameters for weights: Parameters for each weight de-
scribed in Sec. 3.5 were a = 50, b = 0.08 for wdolp

ach ,
a = 50, b = 1 for waolp

ach , a = 50, b = 0.15 for wdolp,
a = 50, b = 0.2 for wdolp

ch , a = 50, b = 10 for waolp
ch ,

and α = 0.95. We manually fixed these parameters by us-
ing scenes including the color chart. Note that we used the
same parameters for all the data.

Evaluation metrics: To evaluate the errors between the
ground-truth l and estimated illuminations l̂, we computed
the angular error arccos( l·l̂

∥l∥∥l̂∥
) according to the existing

color constancy methods. For a broad evaluation, we re-
ported several metrics about the angular error: mean, me-
dian, tri-mean of all the errors, mean of the lowest 25% of
errors , and mean of the highest 25% of errors.

5. Results
Comparison with existing methods: We compared our
results with both static and learning-based methods. For
the static methods, we chose White-patch [35], Gray-world
[12], Shades of gray [17], Gray-edge [51], Weighted gray-
edge [27], Chen et al. [14], and Qian et al. [42]. For the
learning-based studies, we used FFCC [11], FC4 [30], C4
[58], and C5 [1]. We selected these methods based on their
reproducibility. We used MATLAB’s built-in functions for
White-patch, Gray-world, and Chen et al., and used imple-

Method Mean Med. Tri. Best25% Worst25%

White-patch [35] 5.07 3.44 3.94 0.96 11.81
Gray-world [12] 5.41 4.29 4.63 1.44 11.44
Shad. gray [17] 9.20 8.30 8.36 2.49 17.77
Gray-edge [51] 8.76 7.44 7.41 2.65 17.27
Weighted-GE [27] 9.23 8.33 8.31 2.69 17.75
Chen et al. [14] 5.43 3.95 4.08 1.24 12.49
Qian et al. [42] 4.38 2.55 2.89 0.86 11.43
FFCC [11] 7.38 5.09 5.26 1.23 18.07
FC4 [30] 4.08 3.34 3.38 1.63 8.27
C4 [58] 3.43 2.25 2.66 0.93 7.80
C5 [1] 4.67 3.23 3.35 0.96 11.37

Ours 3.21 2.29 2.46 0.57 7.57

Table 2. Angular errors for 79 images not including blue skies.

mentations available from Gijsenij et al. [24] for Shades of
gray, Gray-edge, and Weighted gray-edge. For the learning-
based methods, we did not train or fine-tune the models us-
ing our evaluation data and used parameters provided by the
authors.

Table 1 lists the calculated errors for all 82 scenes. For
the mean values of all errors, the proposed method per-
formed second-best. Regarding the other metrics, ours was
the best for the tri-mean and the mean of the highest 25%
errors but third-best for the lowest 25% errors. This is be-
cause our method performed poorly when scenes included
blue skies, as shown in Fig. 8. As shown in Fig. 8a, be-
cause the DoLP values of blue skies are achromatic and are
typically not the main light source, our method failed to pre-
dict the illumination colors (Fig. 8c), which is discussed in
Sec. 6. Therefore, to evaluate our performance without the
issue, we excluded three scenes that were dominated by the
blue skies. Table 2 lists the results for the 79 images. From
this table, it can be seen that we performed best of all meth-
ods in terms of mean error, tri-mean, mean of the highest
and the lowest 25% errors.

Additionally, we qualitatively compared our results with
Gray-world, C4 [58], and C5 [1]. Figure 7 shows seven
scenes including several illumination conditions for out-
door and indoor scenes. Because we estimated illumination
colors based on the physics-based model, our method per-
formed better especially when color distributions of scenes
were biased or scenes were illuminated by a highly satu-
rated illumination.

Advantage of considering diffuse polarization: We ex-
amined several scenes dominated by diffuse polarization to
demonstrate our theoretical contribution compared to the
assumption that disregards the diffuse component. The in-
troduced polarization model of Eq. (3) tells us when the
diffuse component becomes larger, the polarization ampli-

19745



(a) Input. (b) Gray-world. (c) C4 [58]. (d) C5 [1]. (e) Ours. (f) Ground truth.

Figure 7. Qualitative evaluations with Gray-world, C4 [58], and C5 [1].

(a) DoLP. (b) Ground truth. (c) w/ Ach. (d) w/o Ach.

Figure 8. Failure case. (a) DoLP image. (b) Ground truth. (c) Our
result using both achromatic and chromatic pixels. (d) Our result
only using chromatic pixels.

tude is more affected by the diffuse reflectance rd. Figure 9
shows two color charts captured under different illumina-
tions. We linearly located the color chart, light source, and

the camera to suppress specular reflection. In this case, the
assumption disregarding the diffuse reflection incorrectly
estimated the illumination colors (Fig. 9d). On the contrary,
our method robustly predicted the illuminations (Fig. 9c).
Our angular errors of these two scenes were 0.83 (top) and
1.13 (bottom), while those without considering diffuse re-
flection were 6.22 and 7.38, respectively. And for the 82
evaluation scenes, the mean angular error is 4.24 when dis-
regarding the diffuse polarization.

Extension to multi-illumination scenes: Moreover, we
aimed to handle scenes including several illuminations. Fig-
ure 10 shows three color charts illuminated by different il-
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(a) Input. (b) GT. (c) w/ diffuse. (d) w/o diffuse.

Figure 9. The proposed method correctly handles the diffuse-
dominated scenes. (a) Raw-RGB images. (b) White-balanced im-
ages using the ground-truth illuminations. (c) Our results. (d)
White-balanced results without considering diffuse polarization.

(a) Input. (b) Our result.

Figure 10. Our method manages the multi-illuminations. (a) Input
images illuminated by three different illuminations. (b) Our re-
sults acquired by estimating the illumination colors on each image
patch. All images are in sRGB color space.

lumination colors. Because our method can estimate illu-
minations almost pixel-wise, our result shown in Fig. 10b
completely manages three different illuminations at the
same time. We divided the images into 8× 8 and separately
computed the illuminations. For calculating the reliability,
we used the same parameters described above. We also ex-
amined the outdoor scene shown in Fig. 11 including sunlit
and shadow areas. Figure 11b shows the white-balanced re-
sult using only one illumination color computed by a color
chart located in the sunlit area. In this image, we know that
the shadow area is tinted with blue because this part is il-
luminated by the blue sky. However, our result (Fig. 11a)
does not have this kind of unnatural effect. For this scene,
we divided the image into 20 × 20 patches. Note that we
estimated illuminations using the same scene without the
color charts. For the discussion of the patch size, see sup-
plementary materials.

6. Discussions
In this section, we explain several cases the introduced

model Eq. (3) does not consider.

Directly observing minor light sources: Because our
polarization model Eq. (3) assumes at least one reflection,
directly observing minor light sources could harm the re-

(a) Our result. (b) GT-corrected image.

Figure 11. Our method simultaneously estimates illuminations
of shadow and sunlit pixels. (a) Our results acquired by esti-
mating the illumination colors on each image patch. (b) White-
balanced image using the ground-truth illumination from a sunlit
color chart. All images are in sRGB color space.

sults. Scenes including blue skies are an example of this
case because the contribution of the blue skies are quite mi-
nor than the sunlight. Even in these cases, we can estimate
illumination colors by only using chromatic pixels (Fig. 8d),
so proposing a novel algorithm is an issue for the future.
Note that regarding major illuminations as achromatic does
not degrade our results.

Special cases of multi-illuminations: Because Mueller
matrices depend on the directions of incident light and view
point, DoLP of achromatic pixels do not become achromatic
when they are illuminated by several different illumination
colors from different positions. Note that when these lights
have the same color, the DoLP values of achromatic pixels
become achromatic; thus, our method still works well.

RGB of incident Stokes vector is different: The model
assumes the Stokes vector of the incident illumination is
independent of wavelength, but multi-reflected light often
violates this assumption. In this case, the estimated illumi-
nations using chromatic pixels are heavily affected. How-
ever, since the pixels containing the multi-reflection do not
contribute to the achromatic pixels, the effect of multi illu-
mination is very limited.

7. Conclusion
In this paper, we proposed a new DoLP-based approach

to solve the color constancy problem. We showed that the
DoLP allows us to find achromatic pixels stably, and our
experimental results demonstrate our state-of-the-art per-
formance. Additionally, our method can estimate illumina-
tions from chromatic pixels and handle multi-illumination
scenes. Our method still has several limitations, and a more
detail runtime investigation will be needed. However, this
paper conclusively proved the impressive contribution of
DoLP to the color constancy problem.
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