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Abstract

Deep learning based single image super-resolution mod-
els have been widely studied and superb results are
achieved in upscaling low-resolution images with fixed
scale factor and downscaling degradation kernel. To im-
prove real world applicability of such models, there are
growing interests to develop models optimized for arbi-
trary upscaling factors. Our proposed method is the first
to treat arbitrary rescaling, both upscaling and downscal-
ing, as one unified process. Using joint optimization of both
directions, the proposed model is able to learn upscaling
and downscaling simultaneously and achieve bidirectional
arbitrary image rescaling. It improves the performance
of current arbitrary upscaling models by a large margin
while at the same time learns to maintain visual percep-
tion quality in downscaled images. The proposed model is
further shown to be robust in cycle idempotence test, free
of severe degradations in reconstruction accuracy when the
downscaling-to-upscaling cycle is applied repetitively. This
robustness is beneficial for image rescaling in the wild when
this cycle could be applied to one image for multiple times.
It also performs well on tests with arbitrary large scales and
asymmetric scales, even when the model is not trained with
such tasks. Extensive experiments are conducted to demon-
strate the superior performance of our model.

1. Introduction

In real world applications, it is common to rescale an im-
age with arbitrary scale factors, either scaling up or down,
for various purposes like display, storage or transmission.
While recent deep learning based image super-resolution
(SR) method have advanced the performance of image up-
scaling significantly, they are mostly optimized for fixed
scale factors and known downscaling degradation kernels.
Lately, there are growing interests in SR models that sup-
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Figure 1. Visual examples of quality degradation from multiple
downscaling-to-upscaling cycles: IRN [29] and ours.

port arbitrary scale factors and great successes have been
achieved, including arbitrary upscaling for scale factors in
certain range [11], or learning a continuous image represen-
tation to resize it at any larger resolution [6], or asymmetric
arbitrary upscaling where the vertical and horizontal scale
factors could be different [26]. Like standard SR models,
these methods are all optimized for the unidirectional up-
scaling process. In contrast, another line of image rescal-
ing models [14,25,29] are developed to optimize the down-
scaling process together with the inverse upscaling and are
able to improve accuracy on the upscaling task significantly
comparing to unidirectional SR models of the same scale
factors. Currently these bidirectional rescaling models are
limited to a specific integer scale as far as we know.

Here we propose a joint optimization process that is able
to learn arbitrary downscaling and arbitrary upscaling si-
multaneously. By modeling both downscaling and upscal-
ing as equivalent subpixel splitting and merging processes
and learning through a downscaling-to-upscaling cycle, the
proposed method is able to achieve the best arbitrary up-
scaling accuracy while maintaining high perception-quality
in downscaled outputs. An LIIF [6]-like subpixel weight
function (SVF) and a novel subpixel weight function (SWF)
are introduced for subpixel splitting and merging respec-
tively. Using ground-truth (GT) image as supervision for
high-resolution (HR) reconstruction, plus a weak supervi-
sion in low-resolution (LR), the proposed model, jointly
optimized for both upscaling and downscaling, is able to
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greatly advance performances in arbitrary image rescaling,
including very large or asymmetric scales.

In addition, so far as we know, current models are only
evaluated for a single application of the downscaling-to-
upscaling cycle and the effects of multiple cycles have never
been studied. Ideally, application of additional cycle should
not introduce any further changes beyond the initial cycle.
This ideal downscaling-to-upscaling process, by definition,
is an idempotent operation. In other words, for a function
f of variable x, f is idempotent if ∀x, f(f(x)) = f(x).
While an ideal idempotent rescaling cycle may not be fea-
sible, it is desirable to have minimum additional degrada-
tion when more than one downscaling-to-upscaling cycle is
applied. Here a proxy objective is studied for optimizing
both reconstruction accuracy and idempotence, and a cycle
idempotence test is introduced to assess the output quality
from multiple cycles in comparison to the original GT. As
shown in Fig. 1, IRN [29] has high quality result for the first
cycle (C1), but severe artifacts appear pervasively when the
output from C1 is used as input for C2. In comparison, re-
sults from ours have similar high quality at C1, and little
visible artifact even at C5.

In summary, the main contributions of our work include:

• First model to consider bidirectional arbitrary image
downscaling and upscaling as a joint process and set
SOTA performance in arbitrary image rescaling.

• A newly proposed cycle idempotence test which
demonstrates our method’s superior performance in
model robustness after repetitive downscaling-to-
upscaling cycles.

• Achieving SOTA in tests of arbitrary asymmetric
scales and large out-of-distribution scales too.

2. Related Work

Arbitrary Scale Super-Resolution. Deep learning based
image super-resolution have been studied extensively for
the last few years [8,15,20,31,32], and these methods com-
monly train one model for one fixed scale factor. Lim et
al. [20] was the first to propose a multi-scale SR model,
which shares one feature learning backbone for different
scales but still needs scale specific processing modules to
handle the last step for multiple scales. Later, Li et al. [19]
proposed a multi-scale residual network that learns multi-
scale spatial features using convolution layers with differ-
ent kernel sizes. However, these methods are still limited
to a fixed set of integer scale factors. Inspired by weight
prediction techniques in meta-learning [18], Hu et al. [11]
proposed a single Meta-SR model to solve SR at arbitrary
scale factors by predicting weights of convolutional layers
for arbitrary scale factors, not limited to a fixed set of integer
ones. The newest ArbSR [26] proposed a plug-in module

to further optimize existing SR models for arbitrary asym-
metric SR where scale factors along horizontal and vertical
directions could be different. These arbitrary SR works are
often limited to a fixed maximum scale factor to maintain
high performance. Most recently, Chen et al. [6] proposed
to learn pixel representation features to replace pixel value
features in previous methods. With a learned local implicit
image function (LIIF), this model is able to predict pixel
values at arbitrary large scales. Our work extends the idea
of LIIF to be applicable for arbitrary downscaling and up-
scaling at the same time.

Bidirectional Image Rescaling. As pointed out above,
most super-resolution models rely on LR-HR pairs where
each LR image is downscaled from the corresponding HR
using frequency-based kernels like Bicubic [22]. These
models are trained for upscaling reconstruction only with-
out taking the image downscaling method into joint con-
sideration. To take advantage of the potential mutually
beneficial reinforcement between downscaling and the in-
verse upscaling, Kim et al. [14] proposed an auto-encoder
framework to jointly train image downscaling and upscal-
ing together. Similarly, Sun et al. [25] proposed a new con-
tent adaptive-resampler based image downscaling method,
which can be jointly trained with any existing differentiable
upscaling (SR) models. More recently, Xiao et al. [29] pro-
posed an invertible rescaling net (IRN) that has set the state-
of-the-art (SOTA) for learning based bidirectional image
rescaling. Based on the invertible neural network (INN) [2],
IRN learns to convert HR input to LR output and an auxil-
iary latent variable z. By mapping z to a case-agnostic nor-
mal distribution during training, inverse image upscaling is
implemented by randomly sampling z from the normal dis-
tribution without need of the case specific ẑ. Current meth-
ods for bidirectional image rescaling are limited to a fixed
integer scale factor like ×4. As a contrast, we propose a
bidirectional arbitrary rescaling approach in this work.

Idempotent Image Processing. For image processing,
there are numerous examples of idempotent filters such as
median filter [23], cascaded median filters [9] and basic
morphological operations like opening and closing [10].
For many image processing application, it is beneficial to
have idempotent filters or processes for various reasons. In
the case of image JPEG compression, an image could be
compressed multiple times as it is not known for sure if an
image in the wild is already compressed. To reflect the im-
portance of repetitive image compression, there is a spe-
cific key feature of multi-generation robustness in the stan-
dardization process of JPEG XS [7]. Lately, it has been
discovered that there is model instability issue in succes-
sive deep image compression that results in severe visual
artifacts [16]. Here we will specifically study cycle idem-
potence of image SR and rescaling models after repetitive
applications of the downscaling-to-upscaling process.
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Figure 2. Proposed framework for a bidirectional arbitrary image rescaling network (BAIRNet) with magnified illustration of the subpixel
splitting and merging process.

Weak Supervision in Low Level Vision. Weak supervi-
sion in a branch of supervised learning where supervision
signals, like labels for image classification, are from either
imprecise or noisy sources. While it has been widely stud-
ied in high level tasks like object detection [4] and seman-
tic segmentation [13], its applications in low level vision
tasks like image restoration and reconstruction, however,
are not fully addressed. For image SR where LR-HR pairs
are needed, LR images are often synthesized from HR us-
ing bicubic interpolation and they could be imprecise com-
paring to real world LR images. There have been efforts
to co-collect true LR and HR images to build real-world
SR dataset like RealSR [5] and DRealSR [28]. However,
these pairs are subject to registration imprecision and/or lo-
cal motion blur as LR and HR are taken sequentially using
different lenses. For newest bidirectional rescaling mod-
els [14,25,29] that learn downscaling and upscaling jointly,
although accuracy in inverse upscaling is the primary goal, a
weakly supervised learning for downscaling is still needed.
While the LR image from bicubic interpolation has been
previously used as the downscaling reference, new forms of
weak supervision are investigated in our study.

3. Proposed Method
3.1. Bidirectional Arbitrary Image Rescaling

The proposed framework for a bidirectional arbitrary im-
age rescaling network (BAIRNet) is illustrated in Fig. 2. It
is a bidirectional process, including downscaling to convert
the GT image x to an LR image x̃, and upscaling to restore
a HR image x̂ from x̃. As illustrated on the left, each of
the two directions consists of the same three steps: feature
encoding, subpixel splitting and subpixel merging. These
steps are denoted as

x̃=fm(s,ω)=fm(fDs (z,φ),ω)=fm(fDs (fe(x),φ),ω)

x̂=fm(s̃,ω̃)=fm(fUs (z̃,φ̃),ω̃)=fm(fUs (fe(x̃),φ̃),ω̃)
(1)

for downscaling and upscaling respectively. For two of
the three steps, the same feature encoding fe and subpixel

merging fm are shared for both downscaling and upscal-
ing. For subpixel splitting though, different subpixel value
function (SVF) are trained for downscaling and upscaling,
denoted as fDs and fUs respectively. For variables, z and
z̃ are feature vectors, s and s̃ are subpixel values, φ and φ̃
are subpixel coordinates, and ω and ω̃ are subpixel weights
used in merging. Each pair has the same definition and ˜ is
used to differentiate upscaling from downscaling.

To illustrate the subpixel splitting and merging process, a
magnified illustration is included in Fig. 2 on the right. One
pixel i of the input is split to one or more subpixels first,
and after remapping, a new set of subpixels is merged to
one pixel j in the rescaled image. A subpixel k in the inter-
mediate step is defined as one rectangle in the image space
that reside wholly inside one original pixel as well as in-
side one rescaled pixel, and its boundaries are aligned with
the boundaries of input and/or rescaled pixels. Here we use
pi, rj and sk to represent values of pixels i, j and k respec-
tively. In the illustrated downscaling example, pixel i is split
to 4 subpixels, denoted as Pi = {i1, i2, i3, i4}. To merge
subpixels to rescaled pixels, a remapping process is needed
to associate groups of subpixels corresponding to rescaled
pixels. In the example in Fig. 2, output pixel j is merged
from 4 subpixels, denoted as Rj = {j1, j2, j3, j4}. Lastly,
as illustrated in the downscaled pixel j, its central, top-
left and bottom-right coordinates are denoted as (hcj , v

c
j),

(h1j , v
1
j ) and (h2j , v

2
j ) respectively.

For input pixel i and subpixel k, k ∈ Pi, defining φik
as relative coordinates of k in reference to i: φik = (h1k −
hci , v

1
k−vci , h2k−hci , v2k−vci ), the process to predict subpixel

values sk during subpixel-splitting is denoted as

sk = fs(zi, φ
i
k) (2)

where fs is the SVF and zi is the feature vector of pixel i.
This process is the same for both downscaling and upscal-
ing but separate SVFs are trained and denoted differently in
Eq. 1 for distinction.

The value of pixel j at subpixel-merging is computed as

rj =
∑
k∈Rj ω

j
ksk/

∑
k∈Rj ω

j
k (3)

17391



where ωjk is the weight of subpixel k during merging of
pixel j. For the subpixel merging weights in upscaling, ω̃jk
is simply defined as the area of subpixel k. As the majority
of upscaled pixel j consists of just one subpixel k, and the
others have either 2 or 4, the area based weights are suffi-
cient to represent the significance of each subpixel. While
in the case of downscaling, each pixel j may include a large
number of subpixels and the impact of each subpixel should
dependent on both its size and location. Here we propose
a subpixel weight function (SWF) module to learn the sub-
pixel weights for merging during the end-to-end training,
denoted as ωjk = fw(ψjk). Similar to φik, ψjk is defined as
(h1k − hcj , v1k − vcj , h2k − hcj , v2k − vcj).

While this framework has some resemblance with two
prior works, that is, IRN [29] and LIIF [6], there are some
substantial differences between our proposed and the pre-
vious two. First, IRN is limited to one fixed integer scale
per trained model. Although it is also trained to optimize
both downscaling and upscaling together, it is based on an
invertible network which uses forward and backward infer-
ences for downscaling and upscaling respectively. In con-
trast, ours is utilizing the same three-step process for both
directions, and only one model is needed to handle arbi-
trary scales. IRN also samples auxiliary latent variables ran-
domly during the backward upscaling process which brings
uncertainty and causes severe artifacts in cycle idempo-
tence tests. Comparing to LIIF, our model consolidates
the downscaling and upscaling process to utilize similar im-
plicit functions for both arbitrary downscaling and upscal-
ing. As a result, it can be trained for bidirectional arbitrary
rescaling and leads to great improvements in performance.
Lastly, asymmetric scales are not studied in LIIF.

3.2. Idempotent Image Rescaling

The rescaling cycle defined in Eq. 1 can be simplified
as x̂ = f(x). Without considering constraints in LR, the
primary goal to optimize this cycle is to minimize its recon-
struction loss, but it is also desirable to learn an idempotent
one. These two objectives could be defined separately as

f = arg minfζL(x, fζ(x))

f = arg minfηL(fη(x), fη(fη(x)))
(4)

As these two objectives may conflict, an empirical proxy
objective is proposed to learn a compromise between the
two. In practice, the model is trained to minimize recon-
struction error after n cycles, described as

f = arg minfθL(x, fnθ (x)), n ∈ [1, N ] (5)

where fnθ means fθ is applied n times. When N is set as
1, this proxy objective is equivalent to the primary task of
1-cycle reconstruction. In our experiments, different values
of N are investigated to compare the trade-off between two
objectives: reconstruction accuracy and cycle idempotence.

3.3. Weak Supervision in LR

Considering the multi-cycle optimization as in Eq. 5 and
the need to generate visually coherent LR images, the over-
all loss for training our model is defined as

L = λ1Lrec(x, x̂n) + λ2Lref (x, x̃n) (6)
where Lrec is the reconstruction loss for HR, Lref is the
reference loss in LR, and x̃n and x̂n are the LR and HR
outputs after n-cycles respectively. Although it is possible
to train it fully self-supervised by setting λ2 = 0, it will
lead to visually non-meaningful x̃ due to random initializa-
tion. In previous methods [14, 25, 29], a L2 reference loss
L2(x̃, x̄), where x̄ is the LR reference downsampled from
x using Bicubic [22] method, is used as an imprecise super-
vision. In contrast to previous methods, various strategies,
like reducing λ2 to 0 at later stage of training, or calculating
Lref from the mean values of each color channel instead
of per-pixel, are explored in our study to demonstrate the
advantage of weak supervision in LR.

4. Experiments
4.1. Data and Settings

For fair comparison with previous works like LIIF and
IRN, the same 800 HR images from DIV2K [1] are used
for training. For quantitative evaluation, we use HR im-
ages of five commonly used benchmark datasets, includ-
ing Set5 [3], Set14 [30], BSD100 [21], Urban100 [12] and
Manga109 [12], plus 100 HR images from the DIV2K val-
idation set. Following previous practices like LIIF, we take
the peak noise-signal ratio (PSNR) and SSIM [27] on the lu-
minance channel for the 5 benchmark sets, but use the same
metrics in RGB color space for DIV2K validation set.

For the 200×200 input HR patches in one training batch,
each is assigned with a random downscaling scale sampled
from a uniform distribution of U(1, 4). For individual mod-
ules, we use RDN [32] minus its upsampling module as
the feature encoder, which generates a feature map with the
same size as the input image. For both downscaling and up-
scaling SVF, a 5-layer MLP with ReLU activation and hid-
den dimensions of 256 is used. For the downscaling SWF,
a 5-layer MLP with hidden dimensions of 16 is used. With
a batch size of 8, all models are trained using Adam [17]
optimizer. In order to conduct ablation studies efficiently,
a pretrained model is generated after 500 epochs, 300 itera-
tion each, from an initial learning rate of 10−4. The learning
rate decays by half after every 100 epochs. For this stage,
Lrec is set as a pixel-level L1 loss and Lref is set as L2,
and no SWF module is included. The pretrained one is fur-
ther trained for 500 epochs get the base model BAIRNet,
with downscaling SWF included, and Lref is set as L2 for
the mean pixel value per color channel. λ1 and λ2 are set
as 1 unless specified otherwise. BAIRNet is further fine-
tuned for 200 epochs using the proxy objective as defined
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Table 1. Quantitative comparison of SOTA SR and rescaling methods with the best two results highlighted in red and blue respectively
(methods in bold require multiple models and additional interpolations to achieve arbitrary scales).

Method Scale Param. Set5 Set14 BSD100 Urban100 Manga109 DIV2K
Bicubic ×1.5 - 36.75/0.9611 32.86/0.9268 32.16/0.9133 29.49/0.9095 34.79/0.9707 33.95/0.9416

RCAN [31] ×1.5 15.4M 40.97/0.9767 37.05/0.9578 35.59/0.9516 35.93/0.9660 42.33/0.9889 38.47/0.9701
Meta-SR [11] ×1.5 15.5M 41.47/0.9785 37.52/0.9601 35.86/0.9543 36.91/0.9696 43.17/0.9904 38.88/0.9718

LIIF [6] ×1.5 22.3M 41.23/0.9774 37.37/0.9591 35.76/0.9536 36.70/0.9684 42.84/0.9894 38.82/0.9717
ArbSR [26] ×1.5 16.6M 41.47/0.9786 37.51/0.9603 35.86/0.9547 36.92/0.9697 43.12/0.9904 38.84/0.9719
CAR [25] ×1.5 51.1M 40.50/0.9763 37.08/0.9596 35.72/0.9535 34.70/0.9635 40.90/0.9881 37.93/0.9683
IRN [29] ×1.5 1.66M 43.55/0.9891 39.52/0.9795 39.28/0.9833 36.52/0.9811 42.64/0.9936 40.18/0.9838

BAIRNet† ×1.5 22.4M 47.13/0.9849 43.12/0.9760 46.63/0.9959 44.01/0.9946 45.49/0.9948 44.99/0.9920
Bicubic ×2.5 - 31.76/0.8983 28.52/0.8196 28.13/0.7853 25.43/0.7837 28.56/0.8954 29.40/0.8505

RCAN [31] ×2.5 15.6M 36.05/0.9436 31.69/0.8815 30.47/0.8508 30.42/0.8990 36.59/0.9634 32.72/0.9079
Meta-SR [11] ×2.5 15.5M 36.18/0.9441 31.90/0.8814 30.47/0.8508 30.57/0.9003 36.55/0.9639 32.77/0.9086

LIIF [6] ×2.5 22.3M 35.98/0.9434 31.64/0.8813 30.45/0.8510 30.42/0.8992 36.39/0.9630 32.78/0.9091
ArbSR [26] ×2.5 16.6M 36.21/0.9448 31.99/0.8830 30.51/0.8536 30.68/0.9027 36.67/0.9646 32.77/0.9093
CAR [25] ×2.5 52.8M 37.33/0.9548 33.78/0.9169 32.53/0.9020 32.19/0.9301 37.63/0.9717 34.32/0.9310
IRN [29] ×2.5 4.35M 39.78/0.9742 36.39/0.9553 35.56/0.9542 33.99/0.9589 39.33/0.9836 36.60/0.9607

BAIRNet† ×2.5 22.4M 40.11/0.9664 36.62/0.9469 36.29/0.9563 36.62/0.9679 40.26/0.9830 37.46/0.9627
Bicubic ×3.5 - 29.30/0.8374 26.52/0.7362 26.50/0.7003 23.70/0.6935 25.83/0.8203 27.38/0.7802

RCAN [31] ×3.5 15.6M 33.47/0.9138 29.24/0.8141 28.42/0.7731 27.61/0.8348 32.74/0.9328 30.13/0.8511
Meta-SR [11] ×3.5 15.5M 33.59/0.9146 29.60/0.8140 28.42/0.7728 27.71/0.8356 32.75/0.9337 30.18/0.8524

LIIF [6] ×3.5 22.3M 33.41/0.9133 29.20/0.8131 28.39/0.7714 27.60/0.8334 32.60/0.9324 30.16/0.8517
ArbSR [26] ×3.5 16.6M 33.63/0.9149 29.58/0.8147 28.41/0.7744 27.69/0.8360 32.84/0.9339 30.14/0.8518
CAR [25] ×3.5 52.8M 34.98/0.9303 31.38/0.8643 30.14/0.8326 29.97/0.8871 35.00/0.9507 31.88/0.8865
IRN [29] ×3.5 4.35M 37.12/0.9546 33.65/0.9196 32.54/0.9047 31.84/0.9277 36.86/0.9690 33.84/0.9281

BAIRNet† ×3.5 22.4M 36.85/0.9472 32.97/0.9074 32.36/0.8986 32.71/0.9338 36.98/0.9671 33.87/0.9266

×
2
.5

×
3
.5

×
2
.5

GT† Bicubic† RCAN [31]† Meta-SR [11]† LIIF [6]† ArbSR [26]† CAR [25]† IRN [29]† BAIRNet†

×
3
.5

Figure 3. Visual examples of arbitrary rescaling from Urban100 and DIV2K at two scales: ×2.5 and×3.5 (Best viewed for online version).

in Eq. 5, where N is set as 3 and the final model is denoted
as BAIRNet† with † used for distinction.

4.2. Arbitrary Rescaling Performance
To assess the performance of our proposed method for

arbitrary rescaling, we compare rescaled HR images using
a set of arbitrary scales. For each fixed scale, the resolu-
tion of LR images are kept the same for all methods for
fair comparison. For models trained for integer scales only,
like RCAN and IRN, evaluation on arbitrary scales is im-
plemented as upscaling LR using the closest oversampled

integer scale (use ×3 for any scales between 2 and 3) be-
fore resampling using bicubic interpolation to target size.
For bidirectional CAR [25] and IRN, HR inputs are also
pre-upsampled accordingly. As listed in Table 1, PSNR and
SSIM results from three scales (×1.5/2.5/3.5) are com-
pared. It shows that our BAIRNet† outperforms others
by a comfortable margin for ×1.5 and ×2.5, and it is the
best in ×3.5 tests for the 3 large test sets out of 6 while
trailing slightly behind IRN for the other 3. Visually as
shown in Fig. 3, bidirectional methods like IRN and ours
are the best overall. Between the two, IRN is more blurry
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Figure 4. Cross-scale performance comparison for arbitrary
rescaling testing (×1.1−×4) on DIV2K validation set.

in ×2.5 and its color is off in the second example of ×3.5.
Results of continuous scales between ×1.1 and ×4 (sam-
pled every 0.1) are also illustrated in Fig. 4 to compare
our model with others. For arbitrary upscaling models like
Meta-SR, LIIF and ArbSR, they are essentially equivalent
to RCAN and with each other for scales above ×2. Bidi-
rectional models CAR and IRN improves performances in
larger scales greatly but their performances suffer at small
arbitrary scales. BAIRNet† is clearly the best overall, at
the top for all scales except trailing slightly behind IRN for
scales above ×3.5, plus the spike at ×2, where no extra in-
terpolation needed is needed for IRN.

4.3. Cycle Idempotence

A cycle idempotence test is defined as the assessment
of L(x, fn(x)) for different number of cycles, where fn

means the rescaling cycle f is applied n times. Here we use
the PSNR value in place of L for test assessment. For the
first set of test, defined as closed test, the downscaling func-
tion is fixed as the one best matches its upscaling one. So for
RCAN, Meta-SR, ArbSR and LIIF, matlab imresize [24] is
used for its equivalence with the Matlab one. For other bidi-
rectionally trained models, their own corresponding down-
scaling process are applied respectively. For the open test,
which means the downscaling is set freely, cv2.resize with
INTER AREA interpolation is picked for its wide applica-
tion, and it is used for all methods for fair comparison.

To avoid extra interpolation for RCAN and IRN, a ×4
scale is chosen here for testing on the DIV2K validation set
and the results are compared in Fig. 5. For the closed test,
BIL-NN (bilinear for downsampling and nearest-neighbour
for upsampling) is included as a perfectly idempotent refer-
ence. IRN has the best performance at cycle 1 with its bidi-
rectional learning and invertible network structure. How-
ever, there is a drastic drop from cycle 2 and hereafter, prob-
ably caused by the random latent variable sampling during
the upscaling process. For our method, both BAIRNet and
BAIRNet† are included to show the improvement in idem-
potence of BAIRNet†, which is fine-tuned from BAIRNet
using the proxy objective of multiple-cycle losses. At cycle

12

18

24

30

BIL-
NN

RCAN

Meta-SR LII
F

ArbSR
CAR

IRN

BAIRNet

BAIRNet†
RCAN

Meta-SR LII
F

ArbSR
CAR

IRN

BAIRNet

BAIRNet†

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Closed Test Open Test

Figure 5. PSNR results from closed and open idempotence tests
for 1-5 cycles on DIV2K validation set (×4).

1, both are closely behind IRN, and their additional quality
losses from multiple cycles are gradual. After 5 cycles, both
are still significantly better than upscaling-only models at
cycle 1, and BAIRNet† is clearly better than BAIRNet. This
shows the advantage of our method in robustness to repeti-
tive rescaling cycles in closed settings, and the effectiveness
of multi-cycle losses. For open tests on the right, while all
models are subject to significant performance losses at cy-
cle 1 comparing to closed tests, our models have a much
slower degradation for multiple cycles. Due to page limi-
tation, more visual examples of cycle idempotence tests are
included as supplementary materials.

Table 2. PSNR improvements over base BAIRNet after fine-tuning
using N -cycle losses (Eq. 5), testing 5 cycles each for 3 scales.

Cycle N = 1 N = 3
‡
N = 5

×4 ×3 ×2 ×4 ×3 ×2 ×4 ×3 ×2

1 0.09 0.09 0.09 0.08 0.10 0.13 0.05 0.08 0.13
2 0.14 0.16 0.21 0.16 0.21 0.33 0.15 0.21 0.34
3 0.21 0.24 0.32 0.27 0.36 0.56 0.28 0.39 0.60
4 0.29 0.34 0.42 0.40 0.54 0.78 0.44 0.60 0.86
5 0.38 0.43 0.49 0.54 0.73 1.00 0.61 0.82 1.11

To study the effectiveness of variousN in Eq. 5, the base
BAIRNet model is trained for another 200 epochs using
N = 1, 3, 5 respectively. As shown in Table 2, the improve-
ments in PSNR for three fine-tuned models are compared
for 1-5 cycles at 3 different scales. There are consistent im-
provements across scales and cycles even when N = 1, in-
dicating the base BAIRNet is not fully trained. For N = 3,
it is shown to improve PSNR more significantly after multi-
cycles, especially for smaller scales, while only trailing by
0.01 at 1-cycle for ×4. For N = 5, the corresponding gain
at multi-cycles is larger, but there is trade-off of accuracy at
1-cycle. Overall, it is demonstrated that the proposed proxy
objective is effective at increasing model robustness in cy-
cle idempotence while maintaining high performance at the
primary goal of 1-cycle reconstruction accuracy.
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Table 3. PSNR results achieved for both symmetric and asymmetric scale factors (methods in bold require extra interpolations).

Set5 Set14 BSD100 Urban100
‡

Manga109
×2
×3

×1.6
×3.2

×3.6
×1.2

×2.5 ×2
×3

×1.6
×3.2

×3.6
×1.2

×2.5 ×2
×3

×1.6
×3.2

×3.6
×1.2

×2.5 ×2
×3

×1.6
×3.2

×3.6
×1.2

×2.5 ×2
×3

×1.6
×3.2

×3.6
×1.2

×2.5

ArbSR 35.90 35.90 35.85 36.21 31.89 31.96 31.59 31.99 30.58 30.87 30.24 30.51 30.59 30.60 29.74 30.68 36.17 35.88 35.30 36.67
IRN 38.66 38.55 38.80 39.78 35.49 35.31 35.02 36.39 34.87 34.69 34.19 35.56 32.75 32.44 32.09 33.99 37.42 37.08 37.12 39.33
BAIRNet 39.40 39.05 38.34 40.03 36.00 35.71 34.36 36.53 35.33 35.14 33.47 36.24 34.14 33.34 31.52 36.51 39.01 38.30 36.95 40.11
BAIRNet‡ 40.06 40.42 40.11 40.16 36.66 37.00 36.33 36.68 36.28 36.96 36.64 36.17 36.32 36.74 35.82 36.43 40.01 40.27 39.42 40.14

LR‡ Bicubic‡ ArbSR‡ IRN‡ BAIRNet‡ BAIRNet‡ GT‡

Figure 6. Visual examples of arbitrary asymmetric rescaling from Urban100 test set (Best viewed for online version).

Table 4. PSNR results for large out-of-distribution scales.

×6 ×12 ×18 ×24 ×30

Bicubic 24.82 22.27 21.00 20.19 19.59
LIIF 27.02 23.95 22.40 21.40 20.71
ArbSR 26.61 23.07 21.45 20.49 19.81
BAIRNet 29.29 25.55 23.84 22.75 21.97

4.4. Out-of-distribution Assessment

While our model is trained with symmetric scale factors
randomly distributed between ×1 − ×4 and mainly tested
using such in-distribution settings, there is no such limita-
tion in the capacity of the proposed method. For assess-
ment, as shown in Table 3 and 4 respectively, our model is
compared with ArbSR for asymmetric scales and with LIIF
for large scales. In both cases, BAIRNet is used as is for up-
scaling by simply changing the output resolution and using
corresponding φ̃ as in Eq. 1. These out-of-distribution tests
further demonstrate robustness of our proposed method.

For asymmetric scales sv
sh

where sv is the vertical scale
and sh is for horizontal, comparisons of 5 benchmark test
sets are shown in Table 3. Results from ArbSR are in-
cluded as a SOTA baseline for unidirectional models where
only upscaling is learned. For bidirectional IRN, although
additional interpolations are needed for both downscaling
and upscaling as only ×2 and ×4 models are available, its
performance is far more superior comparing to the ArbSR
baseline. For our base BAIRNet, pre-interpolation is only
needed for the downscaling stage, where the input GT im-
age is resampled using bicubic interpolation with a sm/sv
vertical scale and a sm/sh horizontal scale. Here sm =√
shsv , which will convert the asymmetric scale to symmet-

ric scale of sm for downscaling, while keeping the number
of input pixels approximately the same as GT for fair com-

Bicubic LIIF ArbSR BAIRNet GT

Figure 7. Examples of large scale factors (×30) with ↑ pointing to
corresponding LR inputs (Best viewed when zooming in).

parison. It is shown in Table 3 that BAIRNet is better than
IRN with the exception of ×3.6×1.2 , similar to the observation
from Fig. 4 that IRN is slightly better than BAIRNet for
scales larger than ×3.5. Unlike IRN that is limited to train-
ing data with symmetric scales, BAIRNet could be further
trained using data with asymmetric scales and the fine-tuned
model is denoted as BAIRNet‡. It no longer needs the ini-
tial symmetric conversion step and shows further significant
improvements in asymmetric tests, while subjects to slight
degradation in symmetric test for only 2 out 5 test sets. Vi-
sual examples in Fig. 6 clearly show that BAIRNet‡ is able
to reproduce more fine details at random asymmetric scales.

For tests of large scales as shown in Table 4, although all
models are trained from images with scales up to ×4, LIIF
is much more robust for large scales up to ×30 comparing
to ArbSR. For testing BAIRNet at scale s, the GT image is
pre-downscaled by a scale of s/4 using bicubic so the down-
scaling step in BAIRNet is capped at ×4. This is a reason-
able choice as this reduces the number of pixels used for the
time-consuming step of downscaling feature encoding. It is
shown that BAIRNet is consistently much better than LIIF
quantitatively. For visual examples in Fig. 7, BAIRNet is
clearly able to recover sharper details comparing to the oth-
ers. All LR inputs, either from bicubic resizing as in LIIF
and ArbSR or downscaling by BAIRNet, have the same low
resolution and are included in Fig. 7 for reference.
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Bicubicc IRNc BAIRNetc BAIRNetc

Figure 8. Visual examples of downscaled LR images with false color artifacts in magnified view.

4.5. Ablation Study

To assess the effectiveness of modules like SWF and dif-
ferent LR supervision strategies, the pretrained model is
trained for an additional 200 epoch using different settings
as shown in Table 5. For settings of Lref , L2 means L2 loss
at pixel level, Lc2 means L2 for Cb and Cr channels only,
and Lm2 refers to using mean pixel value per color channel.
Note that for Lc2, λ2 is set as 2. It is shown clearly in Ta-
ble 5 that the SWF module in downscaling step is beneficial
across different scales. For Lref , it is obvious that weaker
supervision leads to improved restoration accuracy overall,
and the weakLm2 is effectively the same as no supervision in
LR at all. For Lrec, as images of various scales are included
in each batch of model training, it is expected that those
with lower scales have smaller reconstruction losses natu-
rally. Intuitively, a simple scale-normalization, Ls = L1/s
where s is the rescaling factor, is used in the training of
BAIRNet. For comparison, the model is also trained with-
out such loss normalization, and as shown in the table, it
is equivalent with the primary model using Ls for larger
scales, but suffers from performance loss at smaller scales.

Table 5. PSNR results for different model and training settings.

‡
D-SWF 7 3 3 3 3 3

Lref L2 L2 Lc
2 Lm

2 7 Lm
2

Lrec Ls Ls Ls Ls Ls L1

DIV2K
×4 31.19 31.42 31.78 32.12 32.13 32.14
×3 34.24 34.42 34.66 35.13 35.12 35.10
×2 38.89 39.42 39.32 40.11 40.15 39.93

For the specific Lc2, it is designed and tested as a mea-
sure to suppress false-color artifacts noticed in downsam-
pled LR from bidirectional models like IRN and ours. As
shown in Fig. 8, the LR images from bicubic downsampling
and the learned bidirectional models like IRN and BAIR-
Net are hardly differentiable in normal display resolution.
However, when magnified, there are noticeable moiré-like
and false color artifacts from both models. Comparing to
BAIRNet trained with Lm2 in LR, BAIRNetc trained with
the newly designed Lc2 loss is able to successfully suppress
false color artifacts as shown in Fig. 8, while sacrificing the
overall restoration quality slightly as listed in Table 5.

4.6. Limitations

The main limitation of our method is its lower speed
and large memory consumption for downscaling. Though
it is slightly faster than LIIF in upscaling without using the
feature unfolding option, it slows down both inference and
training for downscaling as the same feature encoder is ap-
plied to a larger number of pixels in the HR inputs. For very
large scale factors though, as demonstrated in Section 4.4,
it is not necessary to use the full resolution as input and
a pre-downscaling could be applied to reduce number of
input pixels and increase efficiency in downscaling feature
encoding. One potential future improvement is to optimize
the feature encoding module in downscaling for higher effi-
ciency while maintaining accuracy. Lastly, only the default
RDN backbone is used in our model. A RCAN backbone is
expected to further improve performance, as demonstrated
in ArbSR, but not tested here as it is slower than RDN.

5. Conclusion
Current deep learning based image SR and arbitrary SR

models are all subject to one or multiple limiting factors in
related to downscaling degradation kernel and scale factors.
Modeling arbitrary downscaling and upscaling as one uni-
fied subpixel splitting and merging process, a bidirectional
arbitrary image rescaling network (BAIRNet) is shown to
improve upscaling accuracy significantly by jointly opti-
mizing arbitrary upscaling and downscaling. Cycle idempo-
tence tests are also used to test robustness of various models
when the downscaling-to-upscaling cycle is applied multi-
ple times, including closed test where the downscaling is
limited to model assumptions or training settings, and open
test where the downscaling is not limited. For closed and
open tests overall, BAIRNet is the best with great perfor-
mance at cycle 1 and no sudden drop in accuracy for fol-
lowing cycles. Additionally, a proxy objective that mini-
mize multi-cycle losses is demonstrated to further improve
model robustness in cycle idempotence. It is also shown
that, even when BAIRNet is only trained for random sym-
metric scales between ×1−4, it achieves impressive results
for rescaling at asymmetric or large scales, outperforming
SOTA methods LIIF and ArbSR with substantial margins.
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