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Abstract

Audio-Guided video object segmentation is a challeng-
ing problem in visual analysis and editing, which automat-
ically separates foreground objects from the background in
a video sequence according to the referring audio expres-
sions. However, existing referring video object segmen-
tation works mainly focus on the guidance of text-based
referring expressions, due to the lack of modeling the se-
mantic representations of audio-video interaction contents.
In this paper, we consider the problem of audio-guided
video semantic segmentation from the viewpoint of end-to-
end denoising encoder-decoder network learning. We pro-
pose the wavelet-based encoder network to learn the cross-
modal representations of the video contents with audio-form
queries. Specifically, we adopt the multi-head cross-modal
attention layers to explore the potential relations of video
and query contents. A 2-dimension discrete wavelet trans-
form is merged into the transformer encoder to decompose
the audio-video features. Next, we maximize mutual infor-
mation between the encoded features and multi-modal fea-
tures after cross-modal attention layers to enhance the au-
dio guidance. Then, a self attention-free decoder network
is developed to generate the target masks with frequency-
domain transforms. In addition, we construct the first large-
scale audio-guided video semantic segmentation dataset.
The extensive experiments show the effectiveness of our
method1.

†Equal contribution.
*Corresponding Author.

1Code is available at: https://github.com/asudahkzj/Wnet.git
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Figure 1. The audio-guided video object segmentation task.

1. Introduction

Referring video object segmentation aims to segment
video objects referred by given language expressions, which
has attracted wide attention due to its applicability to many
practical problems including video analysis and video edit-
ing [33,35,49,50,61]. Currently, most referring video object
segmentation approaches mainly focus on the guidance of
text-guided referring expressions [18, 19, 31, 33, 35, 49, 61,
63], which can learn the multi-modal representation from
the interaction network layer, and then generate the object
masks to the given text references. The existing works have
achieved promising performance in text-based video object
segmentation, but they may still be ineffectively applied to
the audio-guided video object segmentation due to the lack
of modeling the semantic representation of audio-video in-
teraction contents.

The audio-guided video analysis is a simulation of hu-
man cognition, comparing with the text-guided analysis
[44]. Humankind use speech exclusively long before the
invention of writing. People also learn and use language in
the real world, as to collaborate, describe and relate their vi-
sual environment, talk about each other, and so on. Further-
more, in the natural scene, audio interaction is more con-
venient and common than text interaction. Although audio
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inputs can be converted to text inputs through ASR mod-
els [3, 4, 46], the process will produce unavoidable losses.
Since Harwath and Glass’s collection of spoken captions for
Flickr8k [14], more works address cognitive and linguistic
questions [8, 10–12]. Other work addresses applied tasks,
including multi-modal retrieval [22], cross-modality align-
ment [13,27], retrieving speech in different languages using
images as a pivot modality [1,26,39], and speech-to-speech
retrieval [1, 39]. Our work focuses on the audio-guided
video object segmentation tasks, shown as Fig. 1. The au-
dio guidance often contains rich semantic information, such
as the accent, emotion and speed. These extra factors can
facilitate the object segmentation. The same object can cor-
respond to different pronunciations, while the same pronun-
ciation can point to different objects. Thus, the simple ex-
tension of the existing segmentation works based on text-
based guidance is difficult for modeling the semantic rep-
resentation of audio-video interaction contents. Inspired by
MulT [51], we use multi-head cross-modal attention layers
to fuse the video embeddings and audio embeddings. Dif-
ferent from the MulT model [51], we extend dimensions of
inputs and apply it to large-scale natural language datasets.
The cross-modal transformers referred to text embeddings
are all removed.

One other bottleneck is the noise problem, derived from
acquisition noise and fusing noise [7]. For the acquisition
noises, we use a pre-trained MFCC model [5] to extract
acoustic features, which is widely used in automatic speech
and speaker recognition. In this paper, we focus on the pro-
cessing of fusing noise. There is a large gap between video
and audio representations. The joint representations reflect
important information considering multi-modal alignment.
Audio and video features have different redundant parts
(i.e. irrelevant phonemes and pixels), likewise termed as
noise. These noises are difficult to handle only by con-
volution operations and attention mechanisms in the time
domain. As mentioned in [29], noises are likely to con-
centrate at high frequencies. Recently, Fnet [30] has been
proposed to learn the frequency-domain-level representa-
tion with Fourier transforms for recognition tasks, while it
only aims to speed up the encoder architectures but fails
to obtain improvement in performances. Low-pass filter-
ing on Fourier analysis cannot effectively distinguish the
high-frequency parts of the required signal from the high-
frequency interference caused by noise. If the low-pass fil-
tering is too narrow, parts of the required signal are treated
as noise and its morphological information is erased, which
leads to the distortion of the original signal [45].

Motivated by this, we integrate the 2-dimension discrete
wavelet (DWT) transform into the transformer encoder,
which replaces self-attention layers with DWT layers. The
DWT denoising has proved its effectiveness in image de-
noising [25, 45, 52], but has not been used in multi-modal

representation yet to our knowledge. We are the first to de-
vise the DWT-transformer for the audio-visual joint repre-
sentation to filter the noise and outliers, as a priori. The
layers of the whole transformer encoder are reduced, which
obtains a sizable performance boost in terms of speed and
model consumption. Inspired by the AMDIM [2], we maxi-
mize mutual information between the encoded features and
multi-modal features after the cross-modal attention to en-
hance the audio guidance.

The main contributions of this paper are as follows:
(i) Unlike the previous studies, we study the problem of
audio-guided video object segmentation from the viewpoint
of end-to-end denoising encoder-decoder network learning.
(ii) We propose the wavelet-based encoder network to learn
the cross-modal representations of the video contents with
audio-form queries. (iii) We construct a large-scale dataset
for audio-guided video object segmentation and validate the
effectiveness of our proposed method through extensive ex-
periments.

2. Related Work
2.1. Referring Expression object Segmentation

The referring expression segmentation task has attracted
increasing research interest [18, 19, 31, 33, 35, 49, 61, 63]
in recent years. Hu et al. [18] formulate this task as an
image-region-wise classification problem. Li et al. [31]
employ multi-scale image features from multiple convolu-
tional layers. Qiu et al. [41] further enhance visual fea-
tures and introduce an adversarial mechanism. Some works
[33, 35, 49, 50, 61] make more interactions between the im-
age and natural language query. Furthermore, the attention
module [61, 63] is introduced to the segmentation task. To
enhance the accuracy, further works successfully model the
dependencies of cross-modal information [20], informative
words of the expression [21] and localization information
of the referent instances [24]. Moreover, Luo et al. [34]
achieve a joint learning of referring expression comprehen-
sion and segmentation. [28] extends technologies to video
data and incorporated temporal coherency. For the video
data, existing methods commonly employ dynamic convo-
lutions [9,54] to adaptively generate convolutional filters, or
leverage cross-modal attention [38, 55, 62] to compute the
correlations among input visual and linguistic embeddings
However, these works cannot handle the noise problem of
audio-video joint representations.

2.2. Speech-Based Video Analysis

Comparing with the text-guided video analysis, audio-
guided analysis is a more precise simulation of human cog-
nition to the world [44]. Actually, people use speech ex-
clusively long before the invention of writing. Harwath et
al. [14] collect spoken captions for Flickr8k, and then much
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Table 1. The statistics of the AVOS dataset.

RVOS A2D J-HMDB Total

Number of Audio 11,226 6,656 929 18,811

research [7, 12, 17, 47] begins to attach importance to this
task. Some works emphasize the cognitive and linguistic
questions, such as understanding how different learned lay-
ers correspond to visual stimuli [8, 10], learning linguistic
units [11, 12] or how visually grounded representations can
help understand lexical competition in phonemic process-
ing [15]. Ramon Sanabria et al. [44] propose dual encoder
models that can be used for efficient multimodal retrieval.
However, these works take less consideration of video ob-
ject segmentation.

3. Audio-Guided-VOS Dataset (AVOS)
There are previous works that constructed referring seg-

mentation datasets for videos. Gavrilyuk et al. [9] extended
the A2D [58] and J-HMDB [23] datasets with natural sen-
tences. Seo et al. constructed the first large-scale referring
video object segmentation dataset called RVOS [48].

To facilitate audio-based video object segmentation, we
have constructed a large-scale audio-guided dataset, Audio-
Guided-VOS (AVOS)2, with referring audio expressions as
Tab. 1. AVOS is the extension of RVOS [48], A2D [58]
and J-HMDB [23]. We select the three datasets for their
rich scene information. To obtain audio annotations, we
employ 36 speakers to read the sentences totally. To en-
sure the recording quality, all the speakers are required to
read proficiently, do not stammer, stuck and other situations.
The sampling rate is 44,100K or above, the sampling num-
ber is 16 bits, and the speaking speed is 100-150 words per
minute. Speaking speed should be normal speaking speed,
or TV announcer speaking speed. The word accuracy of
text files and audio files is not less than 99% under man-
ual checking. The average length of each recording is 5
to 6 seconds, about 28 hours in total. Moreover, we have
run two rounds of inspections. We not only correct the pro-
nunciation in the recordings, but also correct grammar and
spelling errors in the original texts. The ratio of the training
set, the test set and the validation set is 75 : 15 : 10.

4. Proposed Method
We present a video sequence as v = {vi}ni=1, where

vi is the pre-extracted visual feature of the i-th frame and
n is the frame number of the video. Each video is associ-
ated with an audio query, denoted by q = {qi}mi=1 where
qi is the feature of i-th frame and m is the frame num-
ber of the audio. The goal of the audio-guided video ob-
ject segmentation is to predict binary segmentation masks
S = {Si ∈ {0, 1}Wo×Ho}ni=1.

2https://drive.google.com/drive/folders/Audio-Guide-Segmentation

4.1. Analysis on Wavelet Transform

As to the convolutional neural network, each convolu-
tional layer is composed of several convolutional units, and
the parameters of each convolutional unit are optimized by
back propagation algorithm. Convolution operations aim to
extract different features of inputs, represented as follows.

W (τ) =

∫ ∞

−∞
f(t)g(τ − t)dt. (1)

The convolution kernel in the convolution layer is relatively
fixed. Audio-video joint representations contain rich time-
frequency characteristics, which are more suitable for win-
dow functions that vary in the time-frequency domain. The
wavelet can be represented as follows.

W (a, τ) =
1√
a

∫ ∞

−∞
f(t)ψ(

t− τ

a
)dt, (2)

where scaling function ψa,τ (t) = a−
1
2ψ( t−τ

a ) and a is the
scale, which is inversely proportional to the frequency. The
operation of the traditional convolution layer and wavelet
have the commonality. The difference is g(τ − t) and
ψ( t−τ

a ). Audio and video features have different redundant
parts (i.e. irrelevant phoneme and pixel), termed as noises.
The noises from the video and audio inputs are distributed
among most features after the cross-modal attention. These
noises are difficult to handle only by convolution opera-
tions in the time domain. As mentioned in [29], noises
are likely to concentrate at high frequencies. Fnet [30] pro-
poses to use Fourier sublayers to replace the self-attention
layers. However, low-pass filtering on Fourier analysis can-
not effectively distinguish the high-frequency part of the re-
quired signal from the high-frequency interference caused
by noise. Wavelet can well retain the peak value and muta-
tion part of the useful signal required in the original signal.
It has good time-frequency localization characteristics and
can be expressed linearly as:

Wx =Wf +We, (3)

where We is the wavelet coefficients controlled by noise.
We can use threshold quantization to reconstruct denoising
joint representations. Furthermore, we can obtain improve-
ments by replacing self-attention layers with the DWT lay-
ers in terms of the model consumption and speed.

4.2. Overview

As Fig. 2 illustrated, our model can be divided into five
modules: visual encoder, audio encoder, transformer en-
coder, transformer decoder and segmentation module.
Visual Encoder. We employ ResNet-50 [16] as our back-
bone network to extract visual features from an input frame.
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Figure 2. The whole framework for our segmentation model.

To include spatial information of the visual feature, we aug-
ment 3-dimensional spatial coordinates following [56], de-
noted as v = {vi}ni=1. The output of the backbone is
B ∈ Rn×c×H×W. c represents the original video dimen-
sion. A 1×1 convolution is used to reduce the dimen-
sion to Rn×d×H×W. We then flatten the dimensions as
d× (n×H×W).
Audio Encoder. MFCCs are the features widely used in
automatic speech and speaker recognition. Following [37],
we capture information about lower frequencies than higher
frequencies by non-linear scaling and thus acts as a human
ear. A set of MFCCs is encoded as a multi-hot vector and
projected onto an embedding space using the 1D convolu-
tion, denoted as q = {qi}mi=1.
Transformer Encoder and Decoder. We devise a trans-
former encoder-decoder framework for our audio-guided
video object segmentation model. The model is in end-
to-end manners. The transformer encoder is employed to
learn the cross-modal representations of the video contents
with audio-form queries. We first apply the layer normaliza-
tion to the visual features and audio features, respectively.
Next, we devise a wavelet-based cross-modal module to
fuse the two modalities and achieve denoised joint repre-
sentations. Each encoder layer consists of a multi-head at-
tention module [53] and a fully connected feed-forward net-
work. Then, we maximize the mutual information between
the cross-modal representations and the encoded represen-
tations. During this stage, the temporal order is the same as
the order of the initial input.

The transformer decoder aims to generate the top pixel
features that can represent the target object of each frame.
Motivated by Fnet [30], we also replace the self-attention
sublayers with simple linear transformations. The self
attention-free decoder can better handle audio-video encod-
ing. Besides the Fourier layers, we follow the standard ar-

chitecture of the transformer, using multi-headed encoder-
decoder attention mechanisms. Following [56], the decoder
then takes a small fixed number of learned positional em-
beddings (object queries) as inputs, and attends to the en-
coder output. The overall predictions follow the input frame
order. We remove all self-attention layers in the transformer
encoder-decoder framework to reduce model computation.
Details of the transformer are in 4.3 and 4.4.
Object Sequence Segmentation. The module aims to pre-
dict the mask sequence for the target object. We capture
the object predictions O, backbone features B and encoded
feature maps E from the previous layers, shown in Fig. 2.
First, we employ an attention module to calculate the sim-
ilarity map between O and E. Following [56], we only
compute the features of its corresponding frame. Next,
we fuse the similarity map, B and E of the correspond-
ing frames, following the DETR [6]. B ∈ Rn×c×H×W,
E ∈ Rd×n×(H×W), O ∈ Rn×d, where n denotes the frame
numbers, c and d denote the dimension. Then, we use a de-
formable convolution as the last layer of the fusion. Thus,
the mask features for the target object of different frames are
achieved. Finally, the 3D convolution, which three 3D con-
volutional layers and group normalization layers [57] with
ReLU activation function, is employed to obtain the mask
sequence.

4.3. DWT-Based Transformer Encoder

Comparing with the text-guided semantic segmentation,
audio-based segmentation suffers from severe noise prob-
lems [44], derived from acquisition noise and fusing noise.
For the acquisition noises, we use a pre-trained MFCC mod-
els [37] to extract acoustic features. For the fusing noise, we
propose a DWT-based transformer encoder to realize multi-
modal encoding and joint feature denoising.

We consider visual modality and audio modality, with
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two potentially non-aligned sequences from each of them,
denoted as vp ∈ RTv×dv and qp ∈ RTa×dq . T(·) rep-
resents the sequence length (audio or video), and d(·) rep-
resents the dimension, respectively. Inspired by the multi-
modal transformer in MulT [51], we attend to interactions
between multi-modal sequences across distinct time steps
and latently adapt streams from audio modality to visual
modality. We assume the input of the cross-modal attention
is a sequence of queries Q = vpWQ, keys K = qpWK

and values V = qpWV . The cross-modal attention is cal-
culated by

Attentiona→v(Q,K,V) = Softmax(Q
⊤K√
dk

)V⊤, (4)

where dk is the query dimensions and Softmax operation is
performed on every row. We employ multi-head attention
layers [53], which consists of H paralleled cross-modal at-
tention layers. Finally, we obtain cross-modal representa-
tion f ∈ RTv×dv .

Noise problem can be derived from acquisition (pause,
environment noise, etc.) and alignment. For the acquisi-
tion noises, we use a pre-trained MFCC model [5] to extract
acoustic features, which is widely used in automatic speech
and speaker recognition. There is a large gap between video
and audio representations. The joint representations reflect
important information considering multi-modal alignment.
Attention is an importance estimate in the time domain,
while the frequency domain can reflect another granularity
of importance estimate. For multi-modal tasks, the impor-
tance of the frequency band requires consideration of inter-
active alignment information, and the high frequency part is
more likely to be noisy information unrelated to alignment.
For example, the noise can be parts of the audio irrelevant to
the content of the video, or parts of the video irrelevant the
audio features. To deal with the noise problem, we adopt 2d

Discrete Wavelet Transform (DWT) for the joint representa-
tion. The reason for using DWT instead of DFT is that DFT
is more likely to lose useful information at high frequencies,
resulting in a decrease in actual performance.

The proposed algorithm is a hybrid approach that uses
spatial and transform-domain information. Wavelet trans-
form decomposes a signal into its sub-bands using a series
of high-pass and low-pass filters. As noise is generally cate-
gorized as a high-frequency component, it is easier to sepa-
rate it from the signal using wavelet transform. The decom-
position of frequency content depends on the number of lev-
els of DWT. The cross-modal representations f ∈ RTv×dv

serve as the input signal. The DWT separates filtering op-
erations on rows and columns. Aj,u and Ck

j,u denote scal-
ing and wavelet coefficients at scale j for the given signal
f where k = 1, 2, 3. We’ll be working with separable or-
thonormal filters so 2D filters can be expressed as a product
between low pass filter h and high pass filter g. The coef-
ficients at scale j can be obtained from coefficients at scale
j + 1. We can obtain Aj,u and Ck

j,u as follows.

Aj,u =
√
2
∑
u

hh(l − 2u)Aj+1,l;

C1
j,u =

√
2
∑
u

hg(l − 2u)Aj+1,l;

C2
j,u =

√
2
∑
u

gh(l − 2u)Aj+1,l;

C3
j,u =

√
2
∑
u

gg(l − 2u)Aj+1,l.

(5)

To implement the filter bank, we use two-stage filter banks.
In the first stage, rows of two-dimensional signal are con-
volved with h, g filters and then we downsample columns
by 2. In the next stage, columns are convolved with the fil-
ters h, g and we keep only even indexed rows. A n × dv
cross-modal signal is transformed into four n

2 × dv

2 signal
after the two stages.

Next, we perform threshold quantization on the high-
frequency coefficients Ck

j,u of wavelet decomposition. For
the high-frequency coefficients (in three directions) of each
layer from layer 1 to layer N , a threshold value is selected
for threshold quantization. We adopt VisuShrink thresh-
old α with a soft threshold function. For ϕ = max |C′k

j,u|,
the filter operations can be represented as follows (k ∈
[1, 2, 3]).

C′k
j,u[x, y] = sgn(Ck

j,u[x, y])(
∣∣Ck

j,u[x, y]
∣∣− αϕ)+ (6)

Then, we perform the wavelet reconstruction of the sig-
nal. The wavelet is reconstructed according to the low fre-
quency coefficients of the N -th layer of wavelet decompo-
sition and the high-frequency coefficients from the 1st layer
to the N -th layer after quantization.

fn = DWTInverse(Aj,u,C
′k
j,u), (7)
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where fn is the denoised joint representation. The fn serves
as the input of the following feed-forward layers and layer
norm. Finally, we obtain the encoded representation E.

4.4. Self Attention-Free Decoder

Due to the fusion between the audio and video signal,
joint representations are more suitable for processing in the
frequency domain. We adopt the decoder without the self-
attention layers to achieve speedups. Inspired by [30], each
layer consists of a Fourier mixing sublayer followed by a
feed-forward sublayer. We replace the self-attention sub-
layer of each transformer decoder layer with a Fourier sub-
layer. A 2D DFT is applied to its embedding input. One
1D DFT is along the sequence dimension, Fseq , and one 1D
DFT is along the hidden dimension Fhidden.

y = R(Fseq(R(Fhidden(x)))), (8)

We only keep the real part of the result. After the Fourier
layers, we employ the multi-head attention layers. The ob-
ject prediction O is obtained.

4.5. Training of Wnet

Among the whole model, the loss function includes the
mask loss, the box loss and the mutual loss.

L = λ1Lmask + λ2Lbox + Lmutual, (9)

where λ1, λ2 aim to adjust the three losses. The mask loss
for supervising the predictions is defined as a combination
of the Dice [36] and Focal [32] loss:

Lmask(mi,mσ(i)) =

1

T

T∑
t=0

[LDice(mi,t,mσ(i),t) + LFocal(mi,t,mσ(i),t)],

(10)
where m is the predicted mask, mσ is the target mask and
T is the number of frames in the video. Lbox scores the
bounding boxes. We use a linear combination of the se-
quence level L1 loss and the generalized IOU [43] loss.

Lbox(bi, bσ(i)) =

1

T

T∑
t=0

[Liou(bi,t, bσ(i),t) + ||bi,t − bσ(i),t||1],
(11)

We use KL divergence [60] to maximize the mutual in-
formation between the cross-modal representation f and the
encoded representation E.

Lmutual(E(i, j)||f(i, j)) =
∑

E(i, j)(log
E(i, j)

f(i, j)
),

(12)
where i stands for the sequence and j stands for the di-
mension. E and f are sent to the softmax function before

Table 2. The comparison of different method for audio-guided
semantic segmentation on AVOS.

Model J F J&F
URVOS+ [48] 37.1% 39.2% 38.2%
PAM+ [38] 38.6% 38.9% 38.8%
VisTR+ [56] 38.0% 39.5% 38.8%
Wnet (Ours) 43.0% 45.0% 44.0%

Table 3. The results of different datasets in the AVOS dataset. In
this table, we use the same dataset for training and testing.

Dataset J F J&F
RVOS 43.0% 44.1% 43.6%
A2D 49.8% 55.1% 52.5%
J-HMDB 65.6% 56.7% 61.2%

Note: JHMDB-Sentences is only for evaluation, not training, so it is directly evalu-
ated using the checkpoint trained on A2D-Sentences.

computing KL divergence. The KL divergence is used to
pull in the distance between the cross-modal representation
and the encoded representation. Thus, the audio guidance is
strengthened, which avoids the DWT operation filtering too
many audio factors.

5. Experiments
5.1. Performance Criteria

We evaluate the performance of our Wnet method based
on two widely-used evaluation criteria for audio-guided
video semantic segmentation following [40]. Given the test-
ing video sequence v and audio query q with the ground-
truth masks G, we denote the generated masks from our
Wnet method by S. We employ the Jaccard index J de-
fined as the intersection-over-union of the generated seg-
mentation and the ground-truth mask (J =

∣∣S∩G
S∪G

∣∣). From
a contour-based perspective, one can interpret S as a set
of closed contours c(S) delimiting the spatial extent of the
mask. Therefore, one can compute the contour-based pre-
cision and recall Pc and Rc between the contour points of
c(S) and c(G). We adopt F-measure as a trade-off between
the two (F = 2PcRc

Pc+Rc
).

5.2. Implementation Details

Visual Feature Extraction. We use a ResNet-50 backbone
to extract visual features, which has the same settings as
DETR [6]. And it is then fed into a 2D convolution with
kernel size 1 to map the model dimension and each frame is
concatenated to form the clip level feature.
Acoustic Feature Extraction. We use a 39-dimensional
MFCC to represent its acoustic feature. Then, we use 1D
convolution to further extract features and map them to the
corresponding dimensions of the model following the im-
plementation by Tsai et al. [51]. The kernel size of 1D con-
volution is 1.
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Wnet (Ours) VisTR+

A fish in distress with its head out of the water swimming.

A brown turtle is swimming up in the water.

An atv being ridden down a path.
Figure 4. Visualization of Wnet and VisTR+ on the AVOS.
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Figure 5. Visualization of DWT-based denoised features.

Dataset Processing. Our dataset (AVOS) contains three
parts (RVOS, A2D and J-HMDB). For the RVOS part, we
use the same videos in Youtube-VIS [59], as VisTR [56].
The mask annotations in validation and test set are unavail-
able, so we divide the training set into the training, valida-
tion and test set in our experiments. However, we also offer
the audio queries for original validation and test set.
Model Setting. We adopt a 2-layer, 8-head multi-head
cross-attention [51] module with the width of 3 to fuse vi-
sual and audio features. Between the attention layer and the
feed-forward layer, a wavelet transform filter layer is used
to remove noise from joint representations.For the trans-
former decoder, we use Fourier transform [30] instead of
the self-attention layer. After obtaining the prediction of
the decoder and the encoder, for each corresponding frame,
we send them to an attention module to obtain the attention
map, which is not multiplied by the value. Then it will be
fused with the backbone features and the memory to get the
mask features for each instance of each frame, following
the same practice with VisTR [56]. We expand the num-

ber of frames per video to 36 for end-to-end training, and
applied 36 query slots for 36 objects throughout the video.
Finally, we use three Conv3d layers and GroupNorm lay-
ers [57] with ReLU activation. The Conv3d layers have the
kernel size of 3, padding of 2 and dilation of 2. And we use
a last Conv3d layer with the kernel size of 1 to obtain the
mask. More details are in supplementary material.

5.3. Performance Comparisons

We compare our proposed method with other existing
methods for the problem as follows:
VisTR+ is the extension of the transformer-based video in-
stance segmentation algorithm [56], where the cross-modal
attention layer is added to fuse the two modalities. For the
VisTR+, we use the Hungarian loss as [56]. For our Wnet,
we use the box and mask loss.
URVOS+ is the extension of the unified referring video seg-
mentation network [48], where the MFCC layer [5] is added
to encode the audio inputs.
PAM+ is the extension of the polar relative positional en-
coding mechanism [38], where the MFCC layer [5] is added
to encode the audio inputs.

Tab. 2 and Tab. 3 presents the performance on AVOS.
We exceed VisTR+, URVOS+ and PAM+ with 5.0%, 5.9%
and 4.4% in the region similarly. Wnet has an absolute im-
provement of 5.5%, 5.8% and 6.1% for the contour accu-
racy. These comparisons mean that the audio-guided video
object segmentation is quite different from the text-guided
task. There is also a vast difference between the recordings
collected from the natural environment and those generated
from text-to-speech model. Therefore, it is not suitable to
treat audio-guided segmentation as the combination of au-
tomatic speech recognition and text-based segmentation.

The visualization of Wnet on the AVOS test dataset is
shown in Fig. 4, with each row containing images sampled
from the same video. The comparison between Wnet and
VisTR+ shows our efficiency in the audio-guided models.
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Table 4. The results for different components.

Model J F J&F
Base 39.3% 41.6% 40.4%
Base + AFD 41.2% 42.5% 41.8%
Base + AFD + MIM 41.8% 43.0% 42.4%
Base + AFD + MIM + DWT 42.9% 44.0% 43.5%

Note: We use self-attention layers to replace DWT layers in Base, Base+AFD and
Base+AFD+MIM.

Table 5. The results for different wavelet basis, mentioned in [42].

Wavelet Basis Daubechies Symlets Coiflets Meyer

J 42.9% 41.9% 41.7% 40.7%
F 44.0% 42.6% 42.9% 42.7%

Table 6. The results for DWT. [a, b] means the retained coefficients
(value is in interval [a ·max value, b ·max value]) after filters.
For the low pass and high-low pass, we use the hard threshold
function. For the high pass, we use the soft threshold function.

Model J F J&F

Low Pass
[0, 0.9] 41.8% 43.3% 42.5%
[0, 0.8] 42.1% 43.3% 42.7%
[0, 0.7] 40.3% 41.3% 40.6%

High-Low Pass [0.008, 0.9] 42.1% 43.7% 42.9%

High Pass
[0.01, 1] 42.8% 43.2% 43.1%
[0.008, 1] 42.9% 44.0% 43.5%
[0.006, 1] 42.3% 43.8% 43.1%

Table 7. The results for threshold function selection. Take high
pass [0.008, 1] for example.

Function Selction for High Pass J F J&F
Hard Function 42.1% 41.8% 42.0%
Soft Function 42.9% 44.0% 43.5%

Table 8. The results for J selection. For different J, the number of
the high frequency coefficient matrix is 3J.

J Number of Coefficient Matrix J F J&F
1 3 (Ck

1,u) 42.9% 44.0% 43.5%
2 6 (Ck

1,u; Ck
2,u) 41.0% 41.7% 41.4%

Table 9. The comparison of average inference latency among
Wnet and audio-text-segmentation model. The evaluation is con-
ducted on a server with 1 NVIDIA 3090Ti GPU, 12 Intel Xeon
CPU. The batch size is set to 1.

Method J Latency Speedup

Wnet 42.9% 0.0014s 2.10×
ASR+RVOS 38.4% 0.0032s 1.00×

Wnet can segment small objects from the nature environ-
ment, while the VisTR+ performs poorly under this circum-
stance. Furthermore, the visualization of the DWT process
in Fig. 5 shows the denoising performance.

5.4. Ablation Study

In the ablation study, we fine-tune parameters on the val-
idation set. We take the audio-guided RVOS dataset (parts

of AVOS dataset) as the example.
About the model components. As shown in Tab. 4, we
conduct the experiments to verify the effectiveness of our
model design, including the DWT-Based denoising (DWT),
mutual information maximum (MIM) and self attention-
free decoder (AFD). We use the self-attention layers in the
models without the DWT layers. The full model achieves
better results than the model (w/o. DWT). It suggests that
the DWT layers can filter the noise generated in the audio-
video fusion and improve subsequent segmentation results.
About the wavelet basis. Tab. 5 shows the comparison of
different wavelet bases. Results verify that the Daubechies
wavelet basis is proper for the discrete joint representations.
About the threshold parameter selection. We conduct the
experiments under high-pass filters and low-pass filters with
different threshold parameter selections. Results in Tab. 6
shows that we can get the best performance under the low-
pass filters (0.008) with the soft function.
About the threshold function selection. Two common
threshold functions are the hard and the soft function. The
hard threshold method can preserve the local features such
as the edge of the signal well, while the soft threshold
method is relatively smooth. As Tab. 7 shown, we choose
the soft function for our model.
About the J selection. Tab. 8 shows the results for the J
selection. The performance will be worse when the order
is increasing. We select J = 1 for our model, with 1 low
frequency and 3 high-frequency coefficients.
About the audio-text-segment model. The audio-text-
segment model means that we use an ASR model first and
then employ the latter referring segmentation model. Tab. 9
shows the results for comparison of Wnet and audio-text-
segment model, in terms of speed and quality. We achieve
the better performance in these two factors.

6. Conclusion
In this paper, we present the problem of open-ended

audio-guided video semantic segmentation, which can be
applied in video analysis, video editing, virtual human and
so on, from the viewpoint of end-to-end denoising encoder-
decoder network learning. We propose the wavelet-based
encoder network to learn the cross-modal representations
of the video contents with audio-form queries. Then, a self
attention-free decoder network is developed to generate the
target masks with frequency-domain transforms. In addi-
tion, we construct the first large-scale audio-guided video
semantic segmentation dataset. The extensive experiments
show the effectiveness of our method.
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