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Abstract

Correctly classifying adversarial examples is an essential
but challenging requirement for safely deploying machine
learning models. As reported in RobustBench, even the state-
of-the-art adversarially trained models struggle to exceed
67% robust test accuracy on CIFAR-10, which is far from
practical. A complementary way towards robustness is to
introduce a rejection option, allowing the model to not re-
turn predictions on uncertain inputs, where confidence is a
commonly used certainty proxy. Along with this routine, we
find that confidence and a rectified confidence (R-Con) can
form two coupled rejection metrics, which could provably
distinguish wrongly classified inputs from correctly classified
ones. This intriguing property sheds light on using coupling
strategies to better detect and reject adversarial examples.
We evaluate our rectified rejection (RR) module on CIFAR-10,
CIFAR-10-C, and CIFAR-100 under several attacks includ-
ing adaptive ones, and demonstrate that the RR module is
compatible with different adversarial training frameworks
on improving robustness, with little extra computation.

1. Introduction
The adversarial vulnerability of machine learning models

has been widely studied because of its counter-intuitive be-
havior and the potential effect on safety-critical tasks [2, 17,
43]. Towards this end, many defenses have been proposed,
but most of them can be evaded by adaptive attacks [1, 45].
Among the previous defenses, adversarial training (AT)
is recognized as an effective defending approach [30, 53].
Nonetheless, as reported in RobustBench [10], the state-
of-the-art AT methods still struggle to exceed 67% robust
test accuracy on CIFAR-10, even after exploiting extra
data [18, 35, 39, 47], which is far from practical.

An improvement can be achieved by incorporating a rejec-
tion or detection module along with the adversarially trained
classifier, which enables the model to refuse to make predic-
tions for abnormal inputs [7, 23, 25, 42]. Although previous
rejectors trained via margin-based objectives or confidence
calibration can capture some aspects of prediction certainty,
∗Corresponding author.
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Figure 1. PGD-10 examples crafted against an adversarially trained
ResNet-18 on the CIFAR-10 test set. As described in Theorem 1,
these adversarial examples are first filtered by the confidence value
at 1

2−ξ for each ξ. Namely, they pass if the predicted confidence
is larger than 1

2−ξ ; otherwise rejected. Then among the remaining
examples, the R-Con metric can provably separate correctly and
wrongly classified inputs. In Fig. 3 we show that tuning the logits
temperature τ can increase the number of remaining examples.

they may overestimate the certainty, especially on wrongly
classified samples. Furthermore, [44] argues that learning a
robust rejector could suffer from a similar accuracy bottle-
neck as learning robust classifiers, which may be caused by
data insufficiency [38] or poor generalization [49].

To solve these problems, we first observe that the true
cross-entropy loss − log fθ(x)[y] reflects how well the clas-
sifier fθ(x) is generalized on the input x [16], assuming that
we can access its true label y. Thus, we propose to treat true
confidence (T-Con) fθ(x)[y], i.e., the predicted probability
on the true label as a certainty oracle. Note that T-Con is
different from the commonly used confidence, which is ob-
tained by taking the maximum as maxl fθ(x)[l]. As we shall
see in Table 1, executing the rejection based on T-Con can
largely increase the test accuracy under a given true positive
rate for both standardly and adversarially trained models.

An instructive fact about T-Con is that if we first thresh-
old confidence by 1

2 , then T-Con can provably distinguish
wrongly classified inputs from correctly classified ones, as
stated in Lemma 1. This inspires us to couple two connected
metrics like confidence and T-Con to execute rejection op-
tions, instead of employing a single metric.
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Figure 2. Construction of the objective LRR in Eq. (4) for training
the RR module, which is the binary cross-entropy (BCE) loss be-
tween T-Con and R-Con. The RR module shares a main backbone
with the classifier, introducing little extra computation.

The property of T-Con is compelling, but its computation
is unfortunately not realizable during inference due to the
absence of the true label y. Thus we construct the rectified
confidence (R-Con) to learn to predict T-Con, by rectifying
confidence via an auxiliary function. We prove that if R-Con
is trained to align with T-Con within ξ-error where ξ ∈ [0, 1),
then a ξ-error R-Con rejector and a 1

2−ξ confidence rejector
can be coupled to distinguish wrongly classified inputs from
correctly classified ones. This property generally holds as
long as the learned R-Con rejector performs better than a
random guess, as described in Section 4.2.

Technically, as illustrated in Fig. 2, we adopt a two-head
structure to model the classifier and our rectified rejection
(RR) module, while adversarially training them in an end-to-
end manner. Our rejection module is learned by minimizing
an extra BCE loss between T-Con and R-Con. The design
of a shared main body saves computation and memory costs.
Stopping gradients on the confidence fθ(x)[ym] when the
predicted label ym = y can avoid focusing on easy examples
and keep the optimal solution of classifier unbiased.

Empirically, we evaluate the performance of our RR mod-
ule on CIFAR-10, CIFAR-10-C, and CIFAR-100 [22, 24]
with extensive experiments. In Section 4, we verify the prov-
able rejection options obtained by coupling confidence and
R-Con. To fairly compare with previous baselines, we also
use R-Con alone as the rejector, and report both the accuracy
for a given true positive rate and the ROC-AUC scores in
Section 6. We perform ablation studies on the construction of
R-Con, and design adaptive attacks to evade our RR module.
Our results demonstrate that the RR module is well com-
patible with different AT frameworks, and can consistently
facilitate the returned predictions to achieve higher robust
accuracy under several attacks and threat models, with little
computational burden, and is easy to implement.

2. Related work
In the literature of standard training, [9] first propose to

jointly learn the classifier and rejection module, which is later
extended to deep networks [13, 14]. Recently, [25] and [23]
jointly learn the rejection option during adversarial training

Table 1. Test accuracy (%) on all examples and under given true
positive rate of 95% (TPR-95). The model is ResNet-18 that stan-
dardly or adversarially trained on CIFAR-10.

Inputs All
TPR-95

Confidence T-Con

Standard
Clean 95.36 98.40 100.0

PGD-10 0.22 0.18 100.0

Adversarial
Clean 82.67 87.39 96.55

PGD-10 53.58 57.23 88.75
Availability 3 7

(AT) via margin-based objectives, whereas they abandon the
ready-made information from the confidence that is shown to
be a simple but good solution of rejection for PGD-AT [48].
On the other hand, [42] propose confidence-calibrated AT
(CCAT) by adaptive label smoothing, leading to preciser
rejection on unseen attacks. However, this calibration acts
on the true classes in training, while the confidences obtained
by the maximal operation during inference may not follow
the calibrated property, especially on the misclassified inputs.
In contrast, we exploit true confidence (T-Con) as a certainty
oracle, and propose to learn T-Con by rectifying confidence.
Our RR module is also compatible with CCAT, where R-Con
is trained to be aligned with the calibrated T-Con. [8] used
similarly rectified confidence (R-Con) for failure prediction,
while we prove that R-Con and confidence can be coupled
to provide provable separability in the adversarial setting.

In Appendix B, we introduce more backgrounds on the
adversarial training and detection methods, where several
representative ones are involved as our baselines.

3. Classification with a rejection option
Consider a data pair (x, y), with x ∈ Rd as the input

and y as the true label. We refer to fθ(x) : Rd → ∆L as a
classifier parameterized by θ, where ∆L is the probability
simplex of L classes. Following [14], a classifier with a
rejection moduleM can be formulated as

(fθ,M)(x) ,

{
fθ(x), ifM(x) ≥ t;
don’t know, ifM(x) < t,

(1)

where t is a threshold, andM(x) is a certainty proxy com-
puted by auxiliary models or statistics.

What to reject? The design ofM is principally decided
by what kinds of inputs we intend to reject. In the adversarial
setting, most of the previous detection methods aim to reject
adversarial examples, which are usually misclassified by
standardly trained models (STMs) [6]. In this case, the
misclassified and adversarial characters are considered as
associated by default. However, for adversarially trained
models (ATMs) on CIFAR-10, more than 50% adversarial
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inputs are correctly classified [11]. Hence, it would be more
reasonable to execute rejection depending on whether the
input will be misclassified rather than adversarial.

3.1. True confidence (T-Con) as a certainty oracle

To reject misclassified inputs, there are many ready-made
choices for computingM(x). We use fθ(x)[l] to represent
returned probability on the l-th class, and denote the pre-
dicted label as ym = arg maxl fθ(x)[l], where fθ(x)[ym] is
usually termed as confidence [16]. In standard settings, con-
fidence is shown to be one of the best certainty proxies [13],
which is often used by practitioners. But the confidence
returned by STMs can be adversarially fooled [31].

Different from confidence which is obtained by taking the
maximum as maxl fθ(x)[l], we introduce true confidence
(T-Con) defined as fθ(x)[y], i.e., the returned probability
on the true label y. When classifiers are trained by min-
imizing cross-entropy loss E[− log fθ(x)[y]], the value of
− log fθ(x)[y] can better reflect how well the model is gen-
eralized on a new input x during inference, compared to its
empirical approximation − log fθ(x)[ym], especially when
x is misclassified (i.e., ym 6= y).

As empirically studied in Table 1, we train classifiers
on CIFAR-10 and evaluate the effects of confidence and T-
Con as the rejection metricM, respectively. We report the
accuracy without rejection (‘All’), and the accuracy when
fixing the rejection threshold at 95% true positive rate (‘TPR-
95’) w.r.t. confidence or T-Con1, i.e., at most 5% correctly
classified examples are rejected. As seen, thresholding on
T-Con can vastly improve the accuracy.

To explain the results, note that STMs tend to return
high confidences, e.g., 0.95 on both clean and adversarial
inputs [32], then if an input x is correctly classified, there
is T-Con(x) = 0.95; otherwise T-Con(x) < 1 − 0.95 =
0.05. Thus it is reasonable to see that thresholding on T-
Con for STMs can lead to TPR-95 accuracy of 100% as in
Table 1. As a result, we treat T-Con as a certainty oracle, and
confidence is actually a proxy of T-Con in inference when
we cannot access the true label y. In Section 4, we propose
a better proxy R-Con to approximate T-Con.

3.2. Coupling confidence and T-Con

Instead of using a single metric, we observe a fact that
properly coupling confidence and T-Con can provably sepa-
rate wrongly and correctly classified inputs, as stated below:

Lemma 1. (Separability) Given the classifier fθ, ∀x1, x2
with confidences larger than 1

2 , i.e.,

fθ(x1)[ym1 ] >
1

2
, and fθ(x2)[ym2 ] >

1

2
. (2)

If x1 is correctly classified as ym1 = y1, while x2 is wrongly
classified as ym2 6= y2, then T-Con(x1) > 1

2 > T-Con(x2).
1Here we assume that the true labels are known when computing T-Con.

Proof. Since x1 is correctly classified, i.e., ym1 = y1,
we have fθ(x1)[y1] = fθ(x1)[ym1 ] > 1

2 . On the other
hand, since x2 is wrongly classified, i.e., ym2 6= y2, we
have fθ(x2)[y2] ≤ 1 − fθ(x2)[ym2 ] < 1

2 . Thus we have
T-Con(x1) > 1

2 > T-Con(x2).
Intuitively, Lemma 1 indicates that if we first threshold

confidence to be larger than 1
2 , then for any x that pass the

confidence rejector, there is T-Con(x) < 1
2 if x is misclas-

sified; otherwise T-Con(x) > 1
2 . Note that there is no con-

straint on how the misclassification is caused, i.e., wrongly
classified inputs can be adversarial examples, generally cor-
rupted ones, or just the clean samples.

4. Learning T-Con via rectifying confidence
In this section, we describe learning T-Con via rectifying

confidence, and formally present the provable separability
and the learning difficulty of rectified confidence. Proofs are
provided in Appendix A.

4.1. Construction of rectified confidence (R-Con)

When the input x is correctly classified by fθ, i.e., ym =
y, the values of confidence and T-Con become aligned. This
inspires us to learn T-Con by rectifying confidence, instead of
modeling T-Con from scratch, which facilitates optimization
and is conducive to preventing the classifier and the rejector
from competing for model capacity. Namely, we introduce
an auxiliary function Aφ(x) ∈ [0, 1], parameterized by φ,
and construct the rectified confidence (R-Con) as2

R-Con(x) = fθ(x)[ym] ·Aφ(x). (3)

In training, we encourage R-Con to be aligned with T-Con.
This can be achieved by minimizing the binary cross-entropy
(BCE) loss (detailed implementation seen in Appendix C.1).
Other alternatives like margin-based objectives [23] or mean
square error can also be applied. The training objective of
our rectified rejection (RR) module can be written as

LRR(x, y; θ, φ)=BCE (fθ(x)[ym]·Aφ(x) ‖ fθ(x)[y]) , (4)

where the optimal solution of minimizing LRR w.r.t. φ is
A∗φ(x) = fθ(x)[y]

fθ(x)[ym] . The auxiliary function Aφ(x) can be
jointly learned with the classifier fθ(x) by optimizing

min
θ,φ

Ep(x,y)
[
LT(x∗, y; θ)︸ ︷︷ ︸

classification

+λ · LRR(x∗, y; θ, φ)︸ ︷︷ ︸
rectified rejection

]
,

where x∗ = arg max
x′∈B(x)

LA(x′, y; θ).
(5)

Here λ is a hyperparameter, B(x) is a set of allowed points
around x (e.g., a ball of ‖x′ − x‖p ≤ ε ), LT and LA are the
training and adversarial objectives for a certain AT method,

2It is also feasible to use R-Con(x) = fθ(x)[y
m]−Aφ(x).
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Figure 3. PGD-10 examples crafted on 10, 000 test samples of CIFAR-10, and filtered by 1
2−ξ confidence threshold for each ξ. Here

log2 τ = 0 (i.e., τ = 1) is the case shown in Fig. 1. Simply tuning the temperature τ enables more samples to pass the confidence rejector.

respectively, where LT and LA can be either the same or
chosen differently [34]. We can generalize Eq. (5) to involve
clean inputs x in the outer minimization objective, which is
compatible with the AT methods like TRADES [53]. The
inner maximization problem can also include φ.

Architecture of Aφ. We consider the classifier with a
softmax layer as fθ(x) = S(Wz+b), where z is the mapped
feature, W and b are the weight matrix and bias vector, re-
spectively. We apply an extra shallow network to construct
Aφ(x) = MLPφ(z), as detailed in Appendix D.1. This
two-head structure incurs little computational burden. Other
more flexible architectures for Aφ can also be used, e.g.,
RBF networks [40, 50] or concatenating multi-block fea-
tures that taking path information into account. Note that
we stop gradients on the flows of fθ(x)[y] → BCE loss,
and fθ(x)[ym] → R-Con when ym = y. These operations
prevent the models from concentrating on correctly classi-
fied inputs, while facilitating fθ(x)[y] to be aligned with
pdata(y|x), as explained in Appendix C.1.

How well is Aφ learned? In practice, the auxiliary func-
tion Aφ(x) is usually trained to achieve the optimal solution
A∗φ(x) within a certain error. We introduce a definition on
the point-wise error between Aφ(x) and A∗φ(x), which ad-
mits two ways of measuring, either geometric or arithmetic:

Definition 1. (Point-wisely ξ-error) If at least one of the
bounds holds at a point x:

Bound (i):

∣∣∣∣∣log

(
Aφ(x)

A∗φ(x)

)∣∣∣∣∣ ≤ log

(
2

2− ξ

)
;

Bound (ii):
∣∣Aφ(x)−A∗φ(x)

∣∣ ≤ ξ

2
.

(6)

where ξ ∈ [0, 1), then Aφ(x) is called ξ-error at input x.

Remark. We can show that given any Aφ trained to
be better than a random guess at x, we can always find
ξ ∈ [0, 1) satisfying Definition 1. Specifically, assuming
that Aφ simply performs random guess on x, i.e., Aφ(x) =
1
2 . Since A∗φ(x) ∈ [0, 1], there is

∣∣∣Aφ(x)−A∗φ(x)
∣∣∣ =∣∣∣ 12 −A∗φ(x)

∣∣∣ ≤ 1
2 , which means even a random-guess Aφ

can satisfy Bound (ii) in Definition 1 with ξ = 1.

4.2. Coupling confidence and R-Con

Recall that in Lemma 1 we present how to provably distin-
guish wrongly and correctly classified inputs, via referring
to the values of confidence and T-Con. However, in practice
we cannot compute T-Con without knowing the true label
y. To this end, we substitute T-Con with R-Con during in-
ference, and demonstrate that a 1

2−ξ confidence rejector and
a R-Con rejector with ξ-error Aφ can be coupled to achieve
separability, similar as the property shown in Lemma 1.

Theorem 1. (Separability) Given the classifier fθ, for any
input pair of x1, x2 with confidences larger than 1

2−ξ , i.e.,

fθ(x1)[ym1 ] >
1

2− ξ , and fθ(x2)[ym2 ] >
1

2− ξ , (7)

where ξ ∈ [0, 1). If x1 is correctly classified as ym1 = y1,
while x2 is wrongly classified as ym2 6= y2, andAφ is ξ-error
at x1, x2, then there must be R-Con(x1) > 1

2 > R-Con(x2).

Namely, after we first thresholding confidence by 1
2−ξ and

obtain the remaining samples, any misclassified input will
obtain a R-Con value lower than any correctly classified one,
as long as Aφ is trained to be ξ-error at these points. This
property prevents adversaries from simultaneously fooling
the predicted labels and R-Con values. As argued in Sec-
tion 4.3, training Aφ to ξ-error could be easier than learning
a robust classifier, which justifies the existence of wrongly
classified but ξ-error points like x2. In Fig. 1, we empirically
verify Theorem 1 on a ResNet-18 [21] trained with the RR
module on CIFAR-10. The test examples are perturbed by
PGD-10 and filtered by a 1

2−ξ confidence rejector for each
ξ. The remaining correctly and wrongly classified samples
are separable w.r.t. the R-Con metric, even if we cannot
compute ξ-error in practice without knowing true label y.

The effects of temperature tuning. It is known that
for a softmax layer fθ(x) = S(Wz+b

τ ) with a temperature
scalar τ > 0, the true label y and the predicted label ym

are invariant to τ , but the values of confidence and T-Con
are not guaranteed to be order-preserving with respect to τ
among different inputs. For instance, if there is fθ(x1)[y1] <
fθ(x2)[y2] under τ = 1, it is possible that for other values of
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Table 2. TPR-95 accuracy (%) and ROC-AUC scores evaluated by PGD-100 attacks (10 restarts) on CIFAR-10. The model architecture is
ResNet-18, trained by different AT methods and applying different rejectors. GDA∗ indicates using class-conditional covariance matrices.

AT Rejector Clean `∞, 8/255 `∞, 16/255 `2, 128/255
TPR-95 AUC TPR-95 AUC TPR-95 AUC TPR-95 AUC

PGD-AT

KD 82.59 0.618 53.12 0.588 31.97 0.535 64.60 0.599
LID 84.02 0.712 54.92 0.660 32.75 0.621 66.07 0.663
GDA 82.35 0.453 52.67 0.461 31.89 0.454 64.13 0.459
GDA∗ 84.51 0.664 53.88 0.589 31.94 0.527 65.71 0.605
GMM 85.44 0.703 54.35 0.607 31.96 0.532 66.54 0.635

CARL Margin 85.54 0.682 51.67 0.539 30.41 0.516 65.98 0.645
ATRO Margin 73.42 0.669 36.04 0.654 21.37 0.644 41.52 0.655
TRADES Con. 86.07 0.837 57.62 0.774 37.55 0.739 67.88 0.781
CCAT Con. 92.44 0.806 51.68 0.637 45.12 0.683 67.07 0.772
PGD-AT Con. 86.52 0.857 57.30 0.768 34.77 0.685 69.10 0.783
PGD-AT SNet 84.19 0.796 56.41 0.730 35.25 0.692 67.49 0.741
PGD-AT EBD 85.34 0.832 57.04 0.763 34.96 0.690 67.82 0.774

TRADES RR 86.47 0.849 58.52 0.786 38.06 0.748 68.97 0.793
CCAT RR 94.12 0.909 53.89 0.662 48.02 0.688 67.98 0.785
PGD-AT RR 86.91 0.861 58.21 0.776 35.32 0.705 70.24 0.796
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Figure 4. Performances under adaptive attacks on CIFAR-10. We design five adaptive objectives to evade both classifier and rejector. Each
attack runs for 500 steps (10 restarts). Our model is ResNet-18 trained by PGD-AT+RR. The performances of baselines are on the bottom.

τ the inequality is reversed (detailed in Appendix C.2). As
seen in Fig. 3, after we lower down the temperature τ during
inference, more PGD-10 examples can satisfy the conditions
in Theorem 1, on which R-Con can provably distinguish
correctly and wrongly classified inputs.

4.3. The task of learning a ξ-error Aφ(x)

[44] advocates that learning a rejector is nearly as hard
as learning a classifier against adversarial examples. So it
would be informative to estimate the difficulty of training
a ξ-error R-Con rejector. As Aφ(x) is bounded in [0, 1] by
model design, we can convert the regression task of learning
ξ-error Aφ(x) to a substituted classification task as:

Theorem 2. (Substituted learning task of Aφ(x)) The task
of learning a ξ-error Aφ(x) can be reconstructed into a
classification task with number of classes as Nsub, where

N1 =
log ρ−1

log
(

2
2−ξ

)+1, N2 =
2

ξ
, and Nsub = dmin(N1, N2)e.

Here d·e is the ceil rounding function, and ρ is a preset
rounding error for small values of A∗φ(x).

Intuitively, Theorem 2 provides a way to approximate
how many test samples are expected to satisfy ξ-error condi-
tions. Under the similar data distribution, the classification
problems with a larger number of classes are usually (not
necessarily) more challenging to learn [37]. For example, the
same model that achieves 90% test accuracy on CIFAR-10
may only achieve 70% test accuracy on CIFAR-100. Accord-
ing to Theorem 2, if we want to obtain a 0.1-error Aφ on
the CIFAR datasets, then this task can be regarded as a 20-
classes classification problem, whose learning difficulty is
expected to be between 10-classes one (e.g., CIFAR-10 task)
and 100-classes one (e.g., CIFAR-100 task) [52]. Thus, the
test accuracy of a 20-classes task is expected to be between
90% and 70% on the CIFAR datasets, i.e., about 70%∼90%
test samples may satisfy ξ-error conditions with ξ = 0.1.

Similarly, Theorem 2 can also approximate the difficulty
of learning a robust ξ-error Aφ, e.g., for any x′ in `∞-ball
around x, we have x′ satisfy ξ-error conditions. This task
can be converted into training a certified classifier [46], and
the ratio of test samples that achieve robust ξ-error Aφ can
be approximated by the performance of certified defenses.
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Table 3. TPR-95 accuracy (%) under common corruptions in CIFAR-10-C. The model architecture is ResNet-18, trained by different AT
methods and applying different rejectors. The reported accuracy under each corruption is averaged across five severity.

AT Rejector CIFAR-10-C
Glass Motion Zoom Snow Frost Fog Bright Contra Elastic JPEG

PGD-AT SNet 77.74 75.52 78.72 79.77 75.81 61.32 81.75 42.97 78.59 82.08
PGD-AT EBD 78.47 77.92 80.47 81.17 79.14 61.16 83.98 42.10 80.86 83.34
CARL Margin 77.45 74.94 78.00 79.86 74.16 56.09 81.28 40.33 78.17 82.64
ATRO Margin 55.36 53.74 54.59 50.84 41.12 42.82 50.13 33.54 54.48 56.82
CCAT Con. 83.04 85.47 89.33 89.38 88.21 76.32 92.71 55.99 89.34 91.94
TRADES Con. 79.89 78.48 80.92 78.75 71.61 63.53 80.97 45.22 80.53 84.50

PGD-AT RR 80.87 79.42 81.90 81.89 76.95 63.49 84.02 44.03 82.18 85.12
CCAT RR 85.03 86.26 89.83 89.22 88.41 77.45 92.62 58.95 89.59 92.06
TRADES RR 80.03 79.15 81.00 80.16 74.18 63.55 82.13 45.99 80.98 84.64
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Figure 5. The effects of temperature τ . The model is adversarially trained on CIFAR-10 (no RR module used) and evaded by PGD-10. Left:
TPR-95 accuracy w.r.t. confidence and T-Con. Right: Averaged confidence / T-Con value on correct / misclassified PGD-10 inputs.

5. Further discussion
The value of ξ is unknown in inference. Note that ex-

plicitly computing the value of ξ-error requires access to
T-Con, which is not available in inference. This may raise
confusion on how the provable separability helps to promote
robustness in practice? The answer is that even though we
cannot point-wisely know the value of ξ, the mechanism
in Theorem 1 still implicitly works in population. To be
specific, if we preset a confidence threshold γ as the first
rejector, the input points with ξ < 2− 1

γ (i.e., γ > 1
2−ξ ) will

implicitly obtain provable predictions after using R-Con as
the second rejection metric.

Rectified rejection vs. binary rejection. In the lim-
iting case of τ → 0, the returned probability vector will
tend to one-hot, i.e., fθ(x)[ym] always equals to one, and
the optimal solution A∗φ becomes binary as A∗φ(x) = 1 if
x is correctly classified; otherwise A∗φ(x) = 0. In this
case, learning Aφ degenerates to a binary classification
task, which has been widely studied and applied in previous
work [13–15, 23]. However, directly learning a binary rejec-
tor abandons the returned confidence that can be informative
about the prediction certainty [13, 48]. Besides, since a
trained binary rejectorM usually outputs continuous values
in [0, 1], e.g., after a sigmoid activation, its returned values
could be overwhelmed by the optimization procedure under

binary supervision [27]. For example, two wrongly classi-
fied inputs x1, x2 may haveM(x1) <M(x2) only because
M is easier to optimize on x1 during training. This trend
deviatesM from properly reflecting the prediction certainty
of fθ(x), and induces suboptimal reject decisions during
inference. In contrast, our RR module learns T-Con by rec-
tifying confidence, where T-Con provides more distinctive
supervised signals. A ξ-error R-Con metric is approximately
order-preserving concerning the T-Con values, enabling R-
Con to stick to the certainty measure induced by T-Con and
make reasonable reject decisions.

Rectified confidence vs. calibrated confidence. An-
other concept related with T-Con and R-Con is confi-
dence calibration [20]. Typically, a classifier fθ with
calibrated confidence satisfies that ∀c ∈ [0, 1], there is
p
(
ym = y

∣∣fθ(x)[ym] = c
)

= c, where the probability
is taken over the data distribution. For notation compact-
ness, we let qθ(c) , p (fθ(x)[ym] = c) be the probability
that the returned confidence equals to c. Then if we ex-
ecute rejection option based on the calibrated confidence,
the accuracy on returned predictions can be calculated by∫ 1

t
c · qθ(c)dc

/∫ 1

t
qθ(c)dc, where t is the preset threshold.

On the positive side, calibrated confidence certifies that the
accuracy after rejection is no worse than t. However, since
there is no explicit supervision on the distribution qθ(c), the
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Table 4. TPR-95 accuracy (%) on CIFAR-10, under multi-target
attack and GAMA attacks. The model architecture is ResNet-18,
and the threat model is (`∞, 8/255).

AT Rejector Multi- GAMA GAMA
target (PGD) (FW)

PGD-AT SNet 55.02 55.79 51.37
PGD-AT EBD 55.40 56.15 53.24
CARL Margin 46.17 48.49 44.78
ATRO Margin 32.53 31.74 28.31
CCAT Con. 34.21 49.78 38.01
TRADES Con. 53.69 56.89 50.88

PGD-AT RR 56.18 57.57 54.08
CCAT RR 36.48 51.30 40.72
TRADES RR 54.83 57.93 51.48

final accuracy still relies on the difficulty of learning task.
In contrast, rejecting via T-Con with a 0.5 threshold will al-
ways lead to 100% accuracy, whatever the learning difficulty,
which makes T-Con a more ideal supervisor for a generally
well-behaved rejection module, as also discussed in [8].

6. Experiments
Our experiments are done on the datasets CIFAR-10,

CIFAR-100, and CIFAR-10-C [22]. We choose two com-
monly used model architectures: ResNet-18 [21] and WRN-
34-10 [51]. Following [33], for all the defenses, the default
training settings include batch size 128; SGD momentum
optimizer with initial learning rate of 0.1; weight decay
5 × 10−4. The training runs for 110 epochs with learning
rate decaying by a factor of 0.1 at 100 and 105 epochs. We re-
port the results on the checkpoint with the best 10-steps PGD
attack (PGD-10) accuracy [36]. Code is available at https:
//github.com/P2333/Rectified-Rejection.

AT frameworks used in our methods. We mainly apply
three popular AT frameworks to combine with our RR mod-
ule, involving PGD-AT [30], TRADES [53], and CCAT [42].
For PGD-AT and TRADES, we use PGD-10 during training,
under `∞-constraint of 8/255 with step size 2/255. The
trade-off parameter for TRADES is 6 [53], and the imple-
mentation of CCAT follows its official code. In the reported
results, ‘RR’ refers to the model adversarially trained by
Eq. (5) with different AT frameworks, and using R-Con as
the rejection metric; We set λ = 1 in Eq. (5) without tuning.

Baselines. We choose two kinds of commonly compared
baselines [3]. The first kind constructs statistics upon the
learned features after training the classifier, including kernel
density (KD) [12], local intrinsic dimensionality (LID) [29],
Gaussian discriminant analysis (GDA) [26], and Gaussian
mixture model (GMM) [54]. The second kind jointly learns
the rejector with the classifier, which involves SelectiveNet
(SNet) [14], energy-based detection (EBD) [28], CARL [25],
ATRO [23], and CCAT [42]. We emphasize that most of

Figure 6. Confidence values w.r.t. ξ-error values of ResNet-18
trained by PGD-AT+RR on CIFAR-10. Here ξ is calculated as the
minimum value satisfying Definition 1, black line is Con. = 1

2−ξ .
The settings are the same as in Fig. 3, with different temperatures.

these baselines are originally applied to STMs, while we
adopt them to ATMs as stronger baselines by re-tuning their
hyperparameters, as detailed in Appendix D.2.

Adversarial attacks. We evaluate PGD [30], C&W [6],
AutoAttack [11], multi-target attack [19], GAMA attack [41],
and general corruptions in CIFAR-10-C [22]. More details
on the attacking hyperparameters are in Appendix D.3.

6.1. Performance against normal attacks

We report the results on defending normal attacks, i.e.,
those only target at fooling the classifiers.

PGD attacks. The results on CIFAR-10 are in Table 2
(results on CIFAR-100 are in Appendix D.4). ‘All’ accuracy
indicates the case with no rejection. As for ‘TPR-95’ accu-
racy, we fix the thresholds to 95% true positive rate, which
means at most 5% of correctly classified examples can be
rejected. We evaluate under PGD-100 (`∞, ε = 8/255), and
unseen attacks with different perturbation (ε = 16/255),
threat model (`2), or more steps (PGD-1000 in Table 8). We
apply untargeted mode with 10 restarts.

More advanced attacks. In Table 4, we evaluate under
multi-target attack and GAMA attacks. As to AutoAttack, its
algorithm returns crafted adversarial examples for successful
evasions, while returns original clean examples otherwise.
By using RR to train a ResNet-18, the All (TPR-95) accuracy
(%) under AutoAttack is 48.62 (84.32) and 25.20 (70.99) on
CIFAR-10 and CIFAR-100, respectively.

Common corruptions. We also investigate the perfor-
mance of our methods against the out-of-distribution corrup-
tions on CIFAR-10-C, as summarized in Table 3.

As seen, our RR module can incorporate different AT
frameworks, which outperform previous baselines. Besides,
the improvement on CIFAR-100 is more significant than it
on CIFAR-10, which verifies our formulation on learning
difficulty in Section 4.3.
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Table 5. Ablation studies on the effect of temperature τ for RR.
Note that in the objective Eq. (5), τ is only tuned in the term of
LRR, while the temperature for LT is kept to be 1.

log2 τ
Clean inputs PGD-10 inputs

TPR-95 AUC TPR-95 AUC

−1 86.86 0.866 59.11 0.770
−2 86.62 0.865 60.63 0.762
−3 85.18 0.868 61.12 0.741
−4 80.22 0.836 55.15 0.740

Table 6. Ablation studies on rectified construction of R-Con in
Eq. (3). Here ‘fθ(x)[ym]’ and ‘Aφ(x)’ indicate using confidence
and auxiliary function to substitute R-Con in LRR, respectively.

Rejector Clean inputs PGD-10 inputs
TPR-95 AUC TPR-95 AUC

Aφ(x) 85.77 0.844 56.97 0.765
RR 86.91 0.861 58.39 0.776

fθ(x)[ym] 86.76 0.865 57.42 0.768
RR (Con.) 87.12 0.868 58.49 0.777

Table 7. Minimal perturbations required by successful evasions, searched by
CW attacks. Here ‘Normal (Nor.)’ refers to fooling the classifier, and ‘Adaptive
(Ada.)’ refers to adaptively fooling both the classifier and rejector.

Rejector
CIFAR-10 CIFAR-100

CW-`∞ CW-`2 CW-`∞ CW-`2
Nor. Ada. Nor. Ada. Nor. Ada. Nor. Ada.

SNet 14.30 30.48 0.84 2.70 8.20 23.05 0.56 2.37
EBD 14.70 37.54 0.85 2.42 8.58 25.69 0.60 1.81
RR 14.99 38.58 0.87 3.28 8.53 28.67 0.61 3.21

Table 8. Classification accuracy (%) and ROC-AUC
scores under PGD-1000 attacks (10 restarts), where
the step size is 2/255 and the perturbation constraint
is 8/255 under `∞ threat model.

Rejector CIFAR-10 CIFAR-100
TPR-95 AUC TPR-95 AUC

SNet 55.83 0.725 32.69 0.744
EBD 56.12 0.763 33.35 0.769
RR 57.57 0.773 34.48 0.776

6.2. Performance against adaptive attacks
Following the suggestions in [4], we design adaptive at-

tacks to evade the classifier and rejector simultaneously.
Evaluate adaptive accuracy. In the first adaptive attack,

we consider the mostly commonly used threat model of
(`∞, 8/255), and explore five different adaptive objectives,
including LCE + η · LR-Con, LCE + η · LRR, LCon. + η · LRR,
LCon.+η·LR-Con, andLCon.+η·LRR(multi), whereLCon. is to
directly optimize the confidence, LR-Con = log R-Con(·) and
multi refers to multi-target version. The results are in Fig. 4,
where we also report the TPR-95 accuracy of baselines for
reference. As seen, under adaptive attacks, applying our RR
module still outperforms the baselines. We also tried using
LR-Con = R-Con(·) without log, the conclusions are similar.

Find the minimal distortion. The second one follows
[5], where we add the loss term of maximizing R-Con into
the original CW objective, and find the minimal distortion for
a per-example successful evasion if the classifier is fooled
and the rejector value is higher than the median value of
the training set. The binary search steps are 9 with 1,000
iteration steps for each search. As in Table 7, adaptive attacks
require larger minimal perturbations than normal attacks, and
successfully evading our methods is harder than baselines.

6.3. Ablation studies
Empirical effects of temperature τ . In addition to the

effects described in Section 4.2, we show the curves of TPR-
95 accuracy and averaged confidence / T-Con values in Fig. 5
w.r.t. the temperature scaling, while in Fig. 6 we visualize the
sample distributions of ξ-error vs. confidence values. We can
observe that the T-Con values become more discriminative
for a lower temperature on rejecting misclassified examples,

but numerically provide less supervised information and re-
quire smaller error ξ to make R-Con order-preserving w.r.t.
T-Con. On the other hand, as the temperature τ gets larger
above one, the discriminative power of confidence becomes
weaker, making R-Con harder to distinguish misclassified
inputs from correctly classified ones. In practice, we can
trade off between the learning difficulty and the effectiveness
of R-Con by tuning τ . In Table 5 we study the effects of tun-
ing temperature values for fθ(x)[y] and fθ(x)[ym] in LRR.
We find that moderately lower down τ can benefit model
robustness but sacrifice clean accuracy, while overly low
temperature degenerates both clean and robust performance.

Formula of R-Con. In Table 6, we investigate the cases
if there is no rectified connection (i.e., only use Aφ(x))
or no auxiliary flexibility (i.e., only use fθ(x)[ym]) in the
constructed rejection module. As shown, our rectifying
paradigm indeed promote the effectiveness.

7. Conclusion
We introduce T-Con as a certainty oracle, and train R-Con

to mimic T-Con. Intriguingly, a ξ-error R-Con rejector and a
1

2−ξ confidence rejector can be coupled to provide provable
separability. We also empirically validate the effectiveness
of our RR module by using R-Con alone as the rejector,
which is well compatible with different AT frameworks.
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