


multiple emotions are available; hence, enabling to switch
or blend between takes, after perfect synchronization has
been achieved [33]. However, in a more realistic sce-
nario, one would like to make, e.g., a neutral actor look
happy, without using pre-existing footage. Combining per-
formances from unpaired data is much more challenging.

Recently, image-to-image translation has been success-
fully applied to emotion editing by casting the problem in
the image space [7, 9]. These methods deal with static im-
ages, where altering the mouth shape (e.g. opening a closed
mouth to show surprise) is acceptable, if not desired. How-
ever, without placing any specific constraint on the mouth
region, lip synchronization may be lost when they are di-
rectly applied to video sequences.

More related to this task, is the face reenactment prob-
lem, where the facial performance of a source actor is trans-
ferred to a target one, making the latter mimic the expres-
sions of the former. State-of-the-art techniques [13, 23, 51]
achieve compelling photo-realism by training a neural ren-
derer conditioned on a facial representation (e.g. 3DMMs).
Nonetheless, this is substantially different from semanti-
cally controlling the target actor, since the expressions are
merely copied from another subject. Instead, we would like
to edit the actor’s own expressions based on the desired
emotion, while preserving the mouth motion. Recent meth-
ods address only one aspect of this problem. For instance,
DSM [39] generates novel expressions based on emotional
labels without retaining the original speech, while [22] pre-
serves mouth movements, but the proposed manipulation is
limited to matching a single target speaking style.

In this work, we propose a hybrid method, in which a
parametric 3D face representation is translated to different
domains, and then used to drive synthesis of the target face
by means of a video-based neural renderer. Our method,
which we call Neural Emotion Director (NED), achieves
photo-realistic manipulation of the emotional state of actors
in “in-the-wild” videos, see e.g. Fig. 1. It can translate a
facial performance to any of the 6 basic emotions (angry,
happy, surprise, fear, disgust, sadness) plus neutral, using
only as input its semantic label, while retaining the original
mouth motion. It also allows to attach a specific style to the
target actor, without requiring person-specific training. This
means that the reference style can be extracted at test time
from any given video: our system can, for example, make
Robert De Niro yell in the way of Al Pacino, without ever
seeing footage of the latter during training. Our contribu-
tions can be summarized as follows:
• To the best of our knowledge, we propose the first video-
based method for “directing” actors in “in-the-wild” condi-
tions, by translating their facial expressions to multiple un-
seen emotions or styles, without altering the uttered speech.
• We introduce an emotion-translation network, which we
call 3D-based Emotion Manipulator, that receives a se-

quence of expression parameters and translates them to a
given target domain or a reference style and is trained on
non-parallel data. We train this network on 2 large video
databases annotated with emotion labels.
• We design a video-based face renderer, to decode the para-
metric representation back to photo-realistic frames. Build-
ing upon robust, state-of-the-art face editing techniques
(face segmentation, alignment, blending) we modify only
the face area, while the background remains unchanged,
making it possible to manipulate challenging scenes.
• We conduct extensive qualitative and quantitative exper-
iments, user studies and ablation studies to evaluate our
method and compare it with recent state-of-the-art methods.
The experiments demonstrate the effectiveness and advan-
tages of our method, which achieves promising results in
very challenging scenarios as the ones encountered in movie
scenes with moving background objects.
• We release our code and trained models [1].

2. Related Work
Face manipulation methods can be divided according to

whether they directly edit face portraits through convolu-
tional architectures, or they rely on a geometric face repre-
sentation:
Image-based emotion editing. The introduction of
GANs [15] has sparked a growing line of research in the
field of image and video synthesis. The vast majority
of works utilise a conditional generator, in the sense that
the synthesized image is conditioned on another image
(e.g. [19]). This enables translating images between dif-
ferent domains (i.e. image-to-image translation) while pre-
serving the content of the source image, even by training on
non-parallel data through the idea of cycle consistency [54].
The use of such techniques on face images enables the al-
tering of facial attributes (e.g. hair color, gender etc.) and
constitutes a major part of the so-called area of deepfakes.
The multi-domain framework of StarGAN [7] demonstrated
the potential of altering the facial emotions in images by
translating them according to the given semantic label (e.g.
happy, angry etc.). Other techniques make use of con-
tinuous emotion labels, such as the intensity [12], or the
Valence-Arousal space [32]. Recently, the proposed method
of GANmut [9] introduced a way of obtaining a 2D inter-
pretable conditional label system even when using a dataset
annotated with solely categorical labels of basic emotions.
However, all the above methods translate static frames with-
out taking into account the dynamic nature of facial perfor-
mance. This is especially essential in the mouth area, as
the conveyed speech may be distorted if such techniques
are applied independently to every frame of a video. More-
over, they are usually trained on large datasets of images,
containing several different identities, which is likely to
cause an identity leakage, e.g. in cases where a closed

18782



mouth is replaced with a smile revealing the teeth of an-
other identity. At the same time, progress in the field
shows the potential of generating diverse versions of a
given image, by conditioning the generator on dense rep-
resentations rather than coarse domain labels [8]. To over-
come the aforementioned limitations, we utilise a GAN-
based domain-to-domain translation method (inspired by
StarGAN v2 [8]), which translates sequences of subject-
agnostic parametric representations of facial expressions in-
stead of images. Then, our person-specific face renderer en-
sures that the manipulated expressions are synthesized in an
identity-preserving way.
Geometry-based face manipulation. In the last years, the
problem of manipulating faces on a parametric space has
attracted increased interest. Face reenactment is the most
typical example, where the target actor is forced to mimic
the expressions of a source subject in a reference video.
Some works utilise 2D facial landmarks for capturing the
expressions and driving the target actor either via image-
warping [2] or neural rendering [51]. 3D Morphable Mod-
els (3DMMs) [3] are a very popular choice, as they offer
a disentangled representation of expressions from identity.
Traditional techniques [40], [41] perform 3D face recon-
struction on the reference video and render the target sub-
ject under the source expressions on top of the original tar-
get footage. Learning-based methods, like DVP [23] and
Head2Head++ [13] use conditional GANs to render the tar-
get subject under the given conditions (expressions, pose,
eye-gaze).
Nevertheless, these methods offer no semantic control over
the generated video, as they directly copy the expressions
from a source actor. ICface [43] and FACEGAN [44]
present a more intuitive animation framework by condition-
ing synthesis on Action Units (AU) values, but setting in-
dividual AU values is a cumbersome process and requires
expertise to achieve the desired emotion. Solanki and Rous-
sos [39] train a decoder network that maps Valence-Arousal
pairs to expression coefficients of a 3D face model, and
synthesize the target actor with a neural renderer. Their
method, however, totally ignores the original expressions
and mouth motion of the actor. Groth et al. [16] try to al-
ter the emotional state of an actor by merely interpolating
between his/her expressions and the MoCap data obtained
from a reference actor. Kim et al. [22] presented a style-
preserving solution to film dubbing, where the expression
parameters of the dubber pass through a style-translation
network before driving the performance of the foreign ac-
tor. Their method preserves the dubber’s speech, but can
only translate between a pair of speaking-styles (dubber-
to-actor). Other methods for generating emotional talking
faces include audio-driven [20] and text-driven [48] tech-
niques. To the best of our knowledge, there is no systematic
way of translating an existing facial performance in a video

to multiple emotions given only semantic information as in-
put, while preserving the original speech. Our method of-
fers an automatic solution to this task through the proposed
3D-based Emotion Manipulator. It does not attempt to han-
dle the specific speaking styles of two predefined actors (as
in [22]), but is able to translate the expressions of any sub-
ject to any basic emotion or a given reference style.

3. Method
Our Neural Emotion Director (NED) framework ad-

dresses the challenging task of emotion-related seman-
tic manipulation of faces in videos while preserving their
speech-related mouth motion. An outline of the proposed
pipeline at test time is presented in Fig. 2. It consists of
three main modules (3D Face Analysis, 3D-based Emotion
Manipulator and Photo-realistic Synthesis “in the wild”)
that are presented in the following sections.

3.1. 3D Face Analysis

Face detection and segmentation: We first perform face
detection, cropping and resizing to 256 × 256 pixels us-
ing [52]. We then apply FSGAN [37] to segment the face
and remove the background.
3D face reconstruction: We harness the power of
3DMMs [3] to estimate the 3D face geometry, while dis-
entangling the expression contributions from the identity-
specific and 3D pose ones. This enables us to map the
emotion translation problem from the image space to the
space of 3D model parameters in a subject-agnostic manner.
We perform deep 3D face reconstruction with the recent
state-of-the-art method of DECA [14] that uses the FLAME
model [31]: For each frame of the input video, DECA re-
gresses the parameters of the camera c ∈ R3, head pose
p ∈ R6 (including 3 jaw articulation parameters), identity
a ∈ R100, expression e ∈ R50, as well as the person-specific
detail vector δ ∈ R128, which adds mid-frequency details to
the face geometry. We use the latter to create detailed shape
images S ∈ R256×256×3 (see 3D facial shapes in Fig. 2).
Landmark detection and face alignment: We use
FAN [4] to obtain 68 facial landmarks for each frame. Af-
terwards, similarly to [13], we estimate eye pupil coordi-
nates based on the inverse intensities of the pixels within
the eye area and create eye images E ∈ R256×256×3 that
provide the face renderer with information about the eye-
gaze. However, in contrast to [13], we only draw two red
disks around eye pupils and not the edges of the outline.
This is because we accurately integrate information about
eye blinking within the NMFC and detailed shape images
(see Sec. 3.3), thanks to the reliable reconstructions in the
eye regions obtained by DECA [14]. We then align all face
frames to a face template, based on the extracted face land-
marks and Procrustes analysis. We found that such face
alignment boosts our face renderer’s generalization ability.
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Figure 2. Overview of our Neural Emotion Director (NED) at inference time. First, we perform 3D facial recovery and alignment on
the input frames to obtain the expression parameters of the face. Then, these parameters are translated using our 3D-based Emotion
Manipulator, where the style vector is computed by either a semantic label (i.e., the emotion), or a driving reference video. Finally, the
produced 3D facial shape is concatenated with the Normalized Mean Face Coordinate (NMFC) and eye images and fed into a neural
renderer (along with previously computed frames), in order to render the manipulated photo-realistic frames.

We apply the same alignment to the NMFC, shape, and eye
images. For more details on the face alignment step, please
refer to the Supp. Material.

3.2. 3D-based Emotion Manipulator

Following the 3D Face Analysis step, information related
to the facial expression in a frame is encoded in the expres-
sion vector e ∈ R50 and the 3 jaw parameters (formed as the
last 3 components of the pose vector p ∈ R6). We expand
the 50 expression parameters e with the jaw opening p4 (the
1st jaw articulation parameter), as this is the main parameter
that describes speech-related mouth motions. Thus, we con-
catenate the two into a single vector, namely the full expres-
sion vector ϵ = (p4; e) ∈ R51, henceforth called expression
vector for simplicity. To cope with the dynamic nature of fa-
cial expressions, we group frames into N -length sequences
s=(ϵn, .., ϵn+N−1), with N=10. Given the set Y of the c=7
emotion labels (neutral, happy, fear, sad, surprised, angry,
disgusted), each denoting a distinct domain, and the set S of
sequences of expression parameters, we design a 3D-based
Emotion Manipulator that translates a sequence of expres-
sion vectors s∈S to a given emotion y∈Y in a realistic way
that preserves the original mouth motion. Inspired by the
StarGAN v2 [8] framework, which offers diversity in the
generated samples by conditioning the generator on a con-
tinuous style vector, we design an architecture with the fol-
lowing four modules:
Expressions Translator: The translator G takes as input a
sequence of expressions s and a style vector d ∈ R16 and
translates s into an output sequence of expression vectors
G(s,d) ∈ S that reflects the speaking style encoded in d.
To inject d into G, we concatenate d with each of the N
vectors of the sequence.
Style encoder: Our style encoder E extracts the emotion-
related style vector d = E(s) of an input sequence s and,
thus, enables the translator G to translate a given sequence

according to the speaking style extracted from a reference
sequence. In contrast to [8], our style encoder does not re-
quire any knowledge about the ground truth emotion label
y of the reference sequence s.
Mapping network: The mapping network M learns to
generate style vectors d = My(z) ∈ R16 related to a tar-
get emotion y ∈ Y , by transforming a latent code z ∈ R4

sampled from a normal distribution. Here, My(·) denotes
the output branch of M that corresponds to the emotion y.
This network allows the translator to translate a sequence of
expressions to a target emotion, by merely sampling random
noise, and specifying the desired semantic emotion label.
Expressions Discriminator: Our discriminator D has c =
7 branches (similarly to M ) and learns to discriminate be-
tween real s and fake G(s,d) sequences of each domain y
by outputting a scalar value Dy(s) for each branch.
The network M follows a simple MLP architecture,
whereas G,E and D use recurrent architectures with LSTM
units [18].

3.2.1 Training and testing of the Emotion Manipulator

Given a dataset of sequences of expression vectors s ∈ S
and their corresponding ground truth labels of emotions
y ∈ Y , we train our networks in 2 alternating steps: 1) first
we sample z ∈ R4 from a normal distribution, we randomly
pick a target domain ỹ ∈ Y , and employ our mapping net-
work for generating the speaking style d̃ = Mỹ(z). 2) then
we directly extract the style from a reference sequence s̃
with our style encoder d̃ = E(s̃) and store the reference
label ỹ. In both cases, the translator combines an input se-
quence s (belonging to domain y) with the style vector d̃
and produces an output sequence G(s, d̃) belonging to the
target domain ỹ and resembling the speaking style in d̃. The
networks are then updated using the following objectives.
Adversarial loss: We use LSGAN [34] with labels b=c=1
for real samples and label a=0 for fake ones. This way the
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mapping network M learns to output the speaking styles
that belong to the emotional domain ỹ and the translator to
produce sequences of the target domain that are indistin-
guishable from the real ones.
Style reconstruction loss: As in [8], we make sure the out-
put sequence reflects the given style by using a loss that
enforces the style vector of the translated sequence, as ex-
tracted by the style encoder E, to match the desired one.
Cycle consistency loss: We use the cycle consistency
loss [7, 54], which encourages the translator to produce se-
quences that preserve the content of the input sequence, so
that the input sequence can be reconstructed by translating
the output sequence back to the original style d̂ = E(s), as
extracted by E.
Speech-preserving loss: As observed in [22], the cycle
consistency loss does not always guarantee that the original
mouth motion related to speech is preserved by the transla-
tor. To this end, we leverage our carefully selected FLAME
model [31], which explicitly controls the mouth opening
through the 1st jaw parameter. Thus, we add an extra con-
straint to the total objective, that takes into account only this
mouth related parameter, instead of the whole expression
vector as in [22]. By properly defining this objective as the
maximization of the correlation between the original and
the translated jaw opening variable, we manage to balance
our challenging and contradictive goal of altering the emo-
tion without distorting the perceived speech (see Fig. 3).
Overall objectives: The objective for G,E and M corre-
sponds to a weighted summation of the Adversarial, Style
reconstruction, Cycle consistency and Speech-preserving
losses. The objective for D corresponds to the discrimi-
nator loss. More details and mathematical formulas for the
adopted loss functions can be found at the Supp. Material.

We train our 3D-based Emotion Manipulator on two
video databases with annotations of the 6 basic emotions
plus neutral: the Aff-Wild2 database [24–30,50] of “in-the-
wild” videos and the MEAD database [46] (we exclude con-
tempt for MEAD to match the emotions in Aff-Wild2). We
recover the expression parameters for every frame of the
videos and extract sliding windows of length N . To get the
best of the two databases, we pre-train our networks in Aff-
Wild2 and then fine-tune them on a subset of MEAD.

During testing, to transform the expressions of a whole
input video, we slide the N -length window by 1 frame at a
time, translate the sequence through G, and use a weighted
averaging of Gaussian type to handle overlaps. The condi-
tional style vector is either generated by M by choosing a
target emotion or extracted from a reference video of arbi-
trary length by E. In the latter case, we process the whole
reference video sequentially, extracting a sequence of style
vectors adopting the same sliding pattern. We then take the
geometric median [45] of them as the style vector repre-
senting the whole reference video and feed it to G.

Figure 3. Effect of our speech-preserving loss. Without this loss
(middle row), the result does not preserve the mouth movement
from the input video. In contrast, our full model (bottom row)
translates the expression of the actor to happy while preserving his
mouth movements and speech. Please zoom in for details.

3.3. Photo-realistic Synthesis “in the wild”

3D Face Synthesis & Rendering: Having modified the
expression parameters through our 3D-based Emotion Ma-
nipulator, we synthesize a manipulated 3D face geometry
under the new emotion. We then render it (using conven-
tional 3D graphics) to a convenient representation for neural
rendering, the so-called Normalized Mean Face Coordinate
(NMFC) image [13], and concatenate it with the similarly-
rendered detailed shape image S and eye image E.
Neural Face Renderer: We feed our neural renderer with
the NMFC, S and E images as conditional input. We build it
upon the publicly available Head2Head++ [13] implemen-
tation and train it on the training footage of a target actor
in a self-reenactment fashion (i.e. with the original face ge-
ometry). We follow the recurrent scheme of [13] by feeding
the generator with the conditional inputs of both the cur-
rent as well as the two previous frames, along with the two
previously generated images. However, in contrast to [13],
we include S as additional conditional input, as described
above, and constrain image synthesis to the aligned and
masked faces, since we account for changing background.
As in [13] we employ a dedicated mouth discriminator to
enhance realism in the mouth area.
Blending: Face alignment is reversed by transforming the
generated images according to the inverse of the previously
stored alignment matrix. We then carefully blend the syn-
thesized face with the original background, enabling the
manipulation of “in-the-wild” videos. For this, we use
multi-band blending [5], as we found it to perform bet-
ter than soft-masking or Poisson editing [38] in terms of
smooth boundary transition.
For more details on this module, please refer to the
Supp. Material.

4. Experimental Results
We conduct comprehensive qualitative and quantitative

evaluations of our method and comparisons with recent
state-of-the-art methods. Additional results and visual-
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Realism Accuracy
Ours GANmut DSM Real Videos Ours GANmut DSM Real Videos

happy 17% 3% 8% 80% 63% 90% 42% 90%
fear 32% 7% 10% 67% 33% 75% 13% 25%
sad 30% 18% 12% 55% 13% 78% 25% 65%
surprised 22% 8% 7% 82% 17% 82% 5% 82%
angry 25% 10% - 78% 50% 98% - 80%
disgusted 40% 20% - 67% 33% 40% - 60%
avg. 28% 11% 9% 71% 35% 77% 21% 67%

Table 2. Realism ratings (percentage of users that rated the videos
with 4 or 5) and classification accuracy of the user study on MEAD
(c.f. Supp. Material for detailed scores).

Ours GANmut [9] Real Videos
1 2 3 4 5 ‘real’ 1 2 3 4 5 ‘real’ 1 2 3 4 5 ‘real’

McDormand 32 32 52 21 13 23% 59 23 16 28 24 35% 0 2 3 21 124 97%
Pacino 19 45 53 25 8 22% 40 41 26 24 19 29% 0 3 6 29 112 94%
Tarantino 70 29 23 17 11 19% 72 20 26 19 13 21% 1 5 9 43 92 90%

McConaughey 37 63 33 13 4 11% 88 43 12 7 0 5% 0 4 18 33 93 85%
Roberts 34 60 39 12 5 11% 88 27 17 13 5 12% 0 0 3 24 123 98%
Foxx 26 35 39 34 15 33% 79 43 18 6 4 7% 0 0 7 31 111 95%
avg. 36 44 40 20 9 20% 71 33 19 16 13 18% 1 4 8 30 109 93%

Table 3. Realism ratings of the user study on 6 YouTube actors.
Columns 1-5 show the number of times that users gave this rating.
The column “real” shows the percentage of users that rated the
videos with 4 or 5. Bold values denote the most frequent user
rating for each method and actor.

4.3. Ablation Study

In order to experimentally confirm our design choices
for our face renderer, we performed an ablation study in a
pure self-reenactment setting, without any manipulation of
the expressions with our 3D-based Emotion Manipulator.
Specifically, we randomly chose 3 actors from our YouTube
dataset and trained 4 different variations of our renderer
from scratch (i.e. without the meta-renderer): First, we
omitted the detailed shape images S as extra conditioning
input. Second, we omitted the face alignment step. Third,
we trained our full model, but without the meta-renderer
stage as in all previous variations. Finally, we also consid-
ered our full model including the meta-renderer.

The performance of each variation in relation to the
ground truth frames was calculated by means of the FAPD
and FID (as defined above), as well as 2 more metrics,
namely the APD (same as FAPD but calculated on the entire
image) and Mouth-APD (MAPD, same as FAPD but calcu-
lated only on a 72×72 pixel area around the mouth center).
The results for all metrics, as shown in Tab. 4, demonstrate
the contribution of both the detailed shape images and the
face alignment, especially in the highly challenging mouth
area. Finally, the metrics of the fourth row reveal that the
meta-renderer improves the results even further.

5. Discussion

We have shown promising results in various scenarios
for a novel application of neural rendering. As expected,
there are still limitations in our approach, which can pave
the way for future work. For example, our renderer pro-

Variations APD FAPD MAPD FID
w/o detailed shape images 5.01 12.57 13.27 5.06

w/o face alignment 5.01 12.64 14.59 4.77
full model 4.63 11.35 12.20 4.53

full model with meta-renderer 4.49 10.89 11.66 4.38

Table 4. Ablation study results under the self reenactment setting,
averaged across three YouTube actors from our dataset. For all
metrics, lower values indicate better performance. Bold and un-
derlined values correspond to the best and the second-best value
of each metric, respectively.

duces images of medium resolution which may lead to
blurry faces when blending them with high-resolution back-
grounds. This may explain some of the low realism scores
reported in our user studies. Extending the method to a
higher resolution could facilitate the integration of such
techniques to the film industry. Successful approaches
have already been shown for face swapping via progres-
sive training [36]. Also, to further improve the realism of
emotion manipulation, the audio content should be modi-
fied in a similar way. However, state-of-the-art results in
emotional voice conversion [53] are still far from matching
the quality of synthetic visual content.
Note on social impact. Despite their positive impact, deep
learning systems for video manipulation have raised con-
cerns related to the distribution of fake news and other neg-
ative social impact [6, 11, 21, 47]. While our goal of speech
preservation is inherently opposite to most deepfakes where
the output combination of a person and its utterances is
entirely fake, our method could also be misused in cases
where the conveyed meaning heavily depends on the appar-
ent emotion (e.g. political speeches). We believe that scien-
tists working in the relevant fields need to seriously take into
account these risks and ethical issues. Some of the counter-
measures include contributing in raising public awareness
about the capabilities of current technology and developing
systems that detect deepfake videos [35, 42, 49].

6. Conclusion

We proposed Neural Emotion Director (NED), a novel
approach for photo-realistic manipulation of the emotions
of actors in videos. Our new 3D-based Emotion Manipula-
tor translates facial expressions by carefully preserving the
speech-related content of the source performance, while our
Photo-realistic Synthesis module faithfully synthesizes the
target actor’s face and composites it onto the original video.
Our extensive experimental results demonstrate the advan-
tages of our framework over recent state-of-the-art methods
and its effectiveness under “in-the-wild” conditions.
Acknowledgments. A. Roussos was supported by the Hel-
lenic Foundation for Research and Innovation (HFRI) under
the “1st Call for HFRI Research Projects to support Faculty
members and Researchers and the procurement of high-cost
research equipment” Project I.C.Humans, Number: 91.
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