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Abstract

Novel contour descriptors, called eigencontours, based
on low-rank approximation are proposed in this paper.
First, we construct a contour matrix containing all object
boundaries in a training set. Second, we decompose the
contour matrix into eigencontours via the best rank-M ap-
proximation. Third, we represent an object boundary by a
linear combination of the M eigencontours. We also in-
corporate the eigencontours into an instance segmentation
framework. Experimental results demonstrate that the pro-
posed eigencontours can represent object boundaries more
effectively and more efficiently than existing descriptors in
a low-dimensional space. Furthermore, the proposed algo-
rithm yields meaningful performances on instance segmen-
tation datasets.

1. Introduction
Contour is one of the most important object descriptors,

along with texture and color. The boundary of an object in

an image is encoded in contour description, which is useful

in various applications, such as image retrieval [4, 31, 32],

recognition [17,25,29], and segmentation [16,19,27,28,34].

It is desirable to represent object boundaries compactly, as

well as faithfully, but it is challenging to design such con-

tour descriptors due to the diversity and complexity of ob-

ject shapes.

Early contour descriptors were developed mainly for im-

age retrieval [4,17,31,32]. An object contour can be simply

represented based on the area, circularity, and/or eccentric-

ity of the object [30]. For more precise description, there

are several approaches, including shape signature [6,18,27],

structural analysis [5,7,10,21,28], spectral analysis [4,31],

and curvature scale space (CSS) [8, 17].

Recently, contour descriptors have been incorporated

into deep-learning-based object detection, tracking, and

segmentation systems. In [35], bounding boxes are replaced

by polygons to enclose objects more tightly. In [3], el-

lipse fitting is done to produce a rotated box of a target

object to be tracked. For instance segmentation, contour-
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Figure 1. Illustration of the eigencontour representation. The

boundary of a vehicle is represented by a linear combination of

four eigencontours: u1, u2, u3 and u4. First, u1 approximates the

object boundary roughly. Next, u2 is used to refine the boundary

by adjusting top and bottom parts, as well as front and rear ones.

To reconstruct more complex parts, such as wheels and bumper,

u3 and u4 should be used as well. These eigencontours were de-

termined by analyzing the boundaries of all objects in the ‘car’

category in the KINS dataset [22].

based techniques have been proposed that represent pixel-

wise masks by contour descriptors based on shape signa-

ture [27] or polynomial fitting [28]. Even though these de-

scriptors can localize an object effectively, they may fail to

reconstruct the object boundary faithfully. Also, they con-

sider the structural information of an individual object only,

without exploiting the shape correlation between different

objects.

In this paper, we propose novel contour descriptors,

called eigencontours, based on low-rank approximation.

First, we construct a contour matrix containing all object

boundaries in a training set. Second, we decompose the

contour matrix into eigencontours, based on the best rank-

M approximation of singular value decomposition (SVD)

[2]. Then, each contour is represented by a linear combina-

tion of the M eigencontours, as illustrated in Figure 1. Also,

we incorporate the eigencontours into an instance segmen-

tation framework. Experimental results demonstrate that

the proposed eigencontours can represent object boundaries

more effectively and more efficiently than the existing con-

tour descriptors [27, 28]. Moreover, utilizing the existing
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framework of YOLOv3 [23], the proposed algorithm yields

promising instance segmentation performances on various

datasets — KINS [22], SBD [12], and COCO2017 [15].

This work has the following contributions:

• We propose the notion of eigencontours — data-driven

contour descriptors based on SVD — to represent ob-

ject boundaries as faithfully as possible with a limited

number of coefficients.

• The proposed algorithm can represent object bound-

aries more effectively and more efficiently than the ex-

isting contour descriptors.

• The proposed algorithm outperforms conventional

contour-based techniques in instance segmentation.

2. Related Work
The goal of contour description is to represent the bound-

ary of an object in an image compactly and faithfully. Sim-

ple contour descriptors are based on the area, circularity,

and/or eccentricity of an object [30], and basic geometric

shapes, such as rectangles and ellipses, can be also used.

However, these simple descriptors cannot preserve the orig-

inal shape of an object faithfully [33], [24]. For more so-

phisticated description, there are four types of approaches:

shape signature [6,18,27], structural analysis [5,10,21,28],

spectral analysis [4, 31], and CSS [8, 17]. First, a shape

signature is a one-dimensional function derived from the

boundary coordinates of an object. For example, a polar

coordinate system is set up with respect to the centroid of

an object. Then, the object boundary is represented by the

(r, θ) graph, called the centroidal profile [6]. Also, an object

shape can be represented by the angle between the tangent

vector at each contour point and the x-axis [18]. Second,

structural methods divide an object boundary into segments

and approximate each segment to encode the whole bound-

ary. In [10], the boundary is represented by a sequence of

unit vectors with a few possible directions. In [21], polyg-

onal approximation is performed to globally minimize the

errors from an approximated polygon to the original bound-

ary. In [5], segments of an object contour are represented

by cubic polynomials. Third, in spectral methods, bound-

ary coordinates are transformed to a spectral domain. In [4],

a wavelet transform is used for contour description. In [31],

the Fourier descriptors are derived from the Fourier series

of centroidal profiles. Fourth, in CSS [17], a boundary is

smoothed by a Gaussian filter with a varying standard de-

viation. Then, the boundary is represented by the curvature

zero-crossing points of the smoothed curve at each standard

deviation.

Recently, attempts have been made to improve the per-

formances of deep-learning-based vision systems. In [35],

a bounding box for object detection is replaced by an oc-

tagon to enclose an object more tightly via polygonal ap-

Contour generation
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Contour representationContour matrix construction Eigencontour construction

SVD

Low-rank approximation

Eigencontours

Training set

Figure 2. Overview of the proposed algorithm.

proximation. In [3], a rotated box for a target object is de-

termined based on ellipse fitting, in order to cope with ob-

ject deformation in a visual tracking system. For instance

segmentation, contour-based approaches [27,28] have been

developed, which reformulate the pixelwise classification

task as the boundary regression of an object. To this end,

these methods encode segmentation masks into contour de-

scriptors. In [27], centroidal profiles are used to describe

object boundaries. In [28], each segment of a boundary is

represented by a few coefficients based on polynomial fit-

ting. Although these methods are computationally efficient

for localizing object instances, they often fail to reconstruct

the boundaries of the object shapes faithfully.

The proposed algorithm aims to represent an object

boundary as faithfully as possible by employing as few co-

efficients as possible. To this end, we develop eigencontours

based on the best low-rank approximation property of SVD.

3. Proposed Algorithm
Instead of deriving contour descriptors based on prior as-

sumptions on object boundaries, such as rectangular, ellip-

tical, or polynomial models, we develop eigencontours by

analyzing boundary data in a training set. In this sense, the

proposed eigencontours are data-driven descriptors. Fig-

ure 2 is an overview of the proposed algorithm. First, we

compose a contour matrix, containing all object boundaries

in a training set. Second, we approximate the matrix, by

performing the best rank-M approximation, to determine

M eigencontours. Third, we represent an object boundary

by a linear combination of the M eigencontours.

3.1. Mathematical Formulation

SVD and principal component analysis (PCA) are used

in various fields to achieve dimensionality reduction and

represent data concisely [2, 13, 14]. In this paper, we use

SVD to represent object boundaries compactly and reli-

ably. More specifically, we adopt a data-driven approach

to exploit the distribution of object contours in a training

set, instead of performing curve fitting [5] or Fourier anal-

ysis [31], in order to represent object boundaries efficiently

in a low-dimensional space.
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(a) (b)
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Figure 3. In (a), the set (or shape) is not star-convex because there

are line segments not wholly contained in the set. In (b), it is

star-convex because the segment from the center O to any point

in the set is contained in the set. In (c), a star-convex contour is

represented by polar coordinates. More examples of star-convex

contours are in (d).

Star-convex contour generation: There is a tradeoff be-

tween accuracy and simplicity of a contour representation

scheme: an accurate representation yields a high-dimen-

sional feature vector, while too simple a representation can-

not describe complicated boundaries precisely. To strike a

good balance, we adopt the star-convexity assumption of

object shapes. A regional set (or shape) is star-convex [26]

if it contains a point such that the line segment from the

point to any point in the set is contained in the set. Then, a

star-convex contour is defined as the set of boundary points

of a star-convex set. For example, Figure 3(a) is not a star-

convex contour, but Figure 3(b) is a star-convex one.

To represent star-convex contours, we use centroidal pro-

files [6]. Given an object shape, we find the inner-center,

which is the center of the circle of the maximum size wholly

contained in the shape, as done in [28]. Then, with respect

to the inner center, we describe the boundary using polar co-

ordinates (ri, θi), i = 1, 2, . . . , N . The angular coordinates

θi are sampled uniformly, so only the radial coordinates are

recorded to represent the contour

r = [r1, r2, . . . , rN ]�. (1)

As in Figure 3(c), ri is set to be the distance of the farthest

object point from the center along the θi-axis. By construc-

tion, r describes a star-convex contour.

Figure 3(d) shows more star-convex contours. With the

infinite sampling N = ∞, a star-convex contour is guar-

anteed to enclose all object points, since it is the boundary

of the star-convex hull of the object. However, with a finite

N , the star-convex contour may miss some object points,

as well as include some non-object points. However, we

see that the contours in Figure 3(d) represent object shapes

quite faithfully.

Eigencontour space: In general, object shapes are well

structured and thus highly correlated to one another, espe-

cially between objects in the same class. By exploiting this

structural relationship using big data, we design effective

contour descriptors. Specifically, we first construct a star-

convex contour matrix A = [r1, r2, · · · , rL] from L train-

ing objects. Then, we perform SVD of the matrix A,

A = UΣV� (2)

where U = [u1, · · · ,uN ] and V = [v1, · · · ,vL] are or-

thogonal matrices and Σ is a diagonal matrix, composed of

singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0. It is known that

AM = [r̃1, · · · , r̃L] = σ1u1v
�
1 + · · ·+ σMuMv�

M (3)

is the best rank-M approximation of A [2].

In (3), each approximate contour r̃i is given by a

linear combination of the first M left singular vectors

u1, · · · ,uM . In other words,

r̃i = UMci = [u1, · · · ,uM ]ci. (4)

We refer to these vectors u1, · · · ,uM as eigencontours, and

the space spanned by {u1, · · · ,uM} as the eigencontour
space.

Given a contour r, we project it onto the eigencontour

space to obtain the low-rank approximation

r̃ = UMc (5)

where the coefficient vector c is given by

c = U�
Mr. (6)

In (6), an N -dimensional contour r is optimally approxi-

mated by an M -dimensional vector c in the eigencontour

space, where M < N . Also, the approximate r̃ can be re-

constructed from c via (5). Note that eigencontours may

have negative elements. Thus, in rare cases, the approxi-

mate r̃ has negative elements. In such cases, we truncate

the negative elements to 0 to ensure the star-convexity of r̃.

Clustering in eigencontour space: To discover typical

contour patterns in a dataset, contour clustering can be per-

formed. Instead of the original contour space of dimension

N , contours can be grouped more effectively and more ef-

ficiently in the eigencontour space of dimension M . This is

because the original space is transformed to the eigencon-

tour space by an isometry U�
M . Specifically, let r̃1, . . . , r̃L

be object contours, which are approximated via (4). Then,

it can be easily shown that

‖r̃i − r̃j‖ = ‖ci − cj‖. (7)
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Figure 4. The first six eigencontours u1,u2, . . . ,u6 for the KINS

dataset. The top six rows show the eigencontours for separate ob-

ject categories in KINS, while the bottom one shows those for the

universal set of all instances in the six categories.

In other words, the distances between contours in the origi-

nal space are equal to those between the corresponding co-

efficient vectors in the eigencontour space. Hence, the clus-

tering can be performed to yield the same results in both

spaces, but it can be done more reliably and more efficiently

in the eigencontour space because M < N . Note that, as

the dimension of a space gets higher, clustering becomes

more difficult because of the curse of dimensionality [1].

Regression in eigencontour space: Furthermore, it is also

beneficial to find object contours in the eigencontour space.

A contour regressor can be designed to detect object bound-

aries in images. To detect a star-convex contour in (1) in the

original space, we should regress N variables. However,

we can approximate all ground-truth contours of training

objects using the first M eigencontours and train a network

to regress M coefficients of c in (6) in the eigencontour

space. This approach requires the regression of fewer vari-

ables. Hence, the regression network also needs fewer pa-

rameters and is more efficient in both training and inference

stages. The efficacy of the regression in the eigencontour

space is demonstrated in Sections 4.2 and 4.3.

3.2. Examples and Analysis

Eigencontours: In this example, we use the KINS dataset

[22], the instances of which are divided into seven cate-

(a)

Ground-truthRank-3Rank-2Rank-1

(b)

(c)

Figure 5. Illustration of linear combination of eigencontours.

gories. We determine the eigencontours for the six cate-

gories of ‘cyclist,’ ‘pedestrian,’ ‘tram,’ ‘car,’ ‘truck,’ and

‘van,’ respectively, except for ‘misc’ containing miscella-

neous instances with unspecified classes. We also obtain the

eigencontours for the universal set of all instances in the six

categories. Each object boundary is represented by a 360-

dimensional star-convex contour vector, by uniformly quan-

tizing the 360-degree with an interval of 1◦, i.e. N = 360.

Figure 4 shows the first six eigencontours u1, . . . ,u6.

For each category, the first eigencontour u1 describes rough

outlines of typical instances. For example, most pedestrians

stand or walk on sidewalks, as implied by the vertical shape

of u1 for ‘pedestrian.’ By weighting u1, the size of the

shape can be controlled. Next, u2 is more complicated to

represent detailed parts of instances. For ‘pedestrian,’ u2 is

used to reconstruct a pair of legs, as shown in Figure 5(a).

Also, u2 for ‘car’ generates a streamlined shape by refining

the four sides of a car in Figure 5(b). The coefficient for

u2 affects the horizontal and vertical sizes of the car. Simi-

larly, u2 for ‘cyclist’ recovers bike wheels in Figure 5(c). In

general, the coefficients for u1 and u2 are larger than those

for the other eigencontours, and they are major factors for

determining overall shapes. To represent those shapes more

precisely, more eigencontours are required. Note that, for

the three related categories of ‘car,’ ‘truck,’ and ‘van,’ u1

and u2 are similar to one another. Also, u1 for the universal

set is a round shape to describe various instances in different

categories.

Rank-M approximation: Figure 6 shows two object

boundaries in the COCO2017 dataset [15] and their rank-

M approximations. In this test, the eigencontours are de-

termined for all training instances in all categories. The

rank-1 approximations are not good enough; they represent

the overall sizes of the objects only. The rank-2 approxi-

mations better reconstruct object shapes, but only roughly.

As M gets larger, more faithful contours are restored. In

this example, the objects have relatively complex shapes.
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Image (a) (b) (c) (d) (e) Star-convex contour Original contour

Figure 6. Object boundaries can be approximated using the first M eigencontours. As M gets larger, the rank-M approximations get

closer to the star-convex conversions of the original contours.
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Figure 7. Visualization of contour centroids in the 16-dimensional

eigencontour space, according to object categories. Although the

centroids are determined by grouping training data in the lower-

dimensional space, each centroid represents the structure of the

corresponding object category faithfully.

Hence, to represent their boundaries well, the rank-20 ap-

proximations are required, which are almost identical to

the 360-dimensional star-convex contours. Although they

cannot reconstruct the original contours perfectly, it is not

because of the low-rank approximation, but because of the

star-convex conversion. Note that, compared to the 360-

dimensional star-convex contours, the rank-20 approxima-

tions reduce the dimensionality by a factor of 18.

Clustering in eigencontour space: For each of the six cat-

egories in the KINS dataset, we cluster the object bound-

aries in the 16-dimensional eigencontour space (M = 16)

using the K-means algorithm, where K is set to 100. Fig-

ure 7 shows examples of contour centroids. We see that the

centroids represent typical object shapes in the categories

from different views. This indicates that eigencontours are

effective not only for representing individual contours faith-

fully, but also for clustering contours into typical patterns in

a lower-dimensional space.

4. Experiments

4.1. Datasets

We use three datasets: KINS, SBD, and COCO2017. All

these datasets were approved by institutional review boards.

KINS [22]: It is a dataset for amodal instance segmentation,

built on the KITTI dataset [11]. It consists of 7,474 training

and 7,517 test images. All instances are classified into seven

categories, and an amodal segmentation mask is annotated

for each instance.

SBD [12]: It is a semantic boundary dataset, re-annotated

from the PASCAL VOC dataset [9]. Its 11,355 images are

split to 5,623 training and 5,732 validation images. All in-

stances are classified into 20 object categories. Each in-

stance is annotated with its shape boundary without holes.

COCO2017 [15]: It is a large dataset for various tasks,

such as object detection and segmentation. It contains 118K

training images, 5K validation images, and 41K test im-

ages. The instance segmentation masks for objects in 80

categories are provided.

4.2. Comparative Assessment

Contour descriptors: It is desirable for contour descriptors

to represent an object boundary compactly, as well as to re-

construct it faithfully. We compare the proposed eigencon-

tours with the conventional contour descriptors [27,28]. For

contour description, centroidal profiles are used in Polar-

Mask [27], while polynomial fitting is performed to approx-

imate the shape signature of a boundary in ESE-Seg [28]. In

this test, the proposed eigencontours are determined for all

instances in all categories in a training dataset.

For the quantitative assessment of contour descriptors,

we employ the F-measure (F) [20]. Specifically, bipartite

matching is performed between the boundary points of a

ground-truth contour and its approximated version. Then,
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Figure 8. The F score curves of the proposed eigencontours and the conventional contour descriptors in PolarMask [27] and ESE-Seg [28]

according to the dimension M of the descriptors.
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Figure 9. Qualitative comparison of boundary representations at M = 16. The left three images are from KINS, the middle three from

SBD, and the remaining four from COCO2017.

the F score is defined as the harmonic mean of the precision

(P) and the recall (R) of the matching results.

Figure 8 compares the F curves of the proposed eigen-

contours with those of the conventional descriptors ac-

cording to the dimension M of the descriptors. In Polar-

Mask, M radial coordinates in a centroidal profile are sam-

pled to describe a contour. In ESE-Seg, M is the num-

ber of Chebyshev polynomial coefficients for approximat-

ing a contour. For all three datasets of KINS, SBD, and

COCO2017, the proposed algorithm outperforms both Po-

larMask and ESE-Seg at every M . For KINS, the proposed

algorithm achieves an F score higher than 0.9 at M = 24,

while the conventional ones need approximately double the

dimension to yield a similar F score. For SBD, similar

tendencies are observed. For COCO2017, containing di-

verse instances with complicated shapes, the instances re-

quire higher-dimensional description than those in KINS

and SBD. However, the proposed algorithm is still superior

Table 1. AUC-F performances on KINS, SBD, and COCO2017.

KINS SBD COCO2017

PolarMask [27] 75.47 76.23 74.05

ESE-Seg [28] 77.37 76.86 70.21

Proposed 89.17 86.51 76.92

to the conventional ones.

Table 1 compares the area under curve performances of

the F curves (AUC-F) in Figure 8. The proposed algorithm

outperforms the conventional algorithms by significant mar-

gins on all datasets. In other words, the proposed algorithm

represents object boundaries more faithfully than the con-

ventional algorithms, when the same number of coefficients

are used for the contour description.

Figure 9 compares object boundaries approximated by

the contour descriptors at M = 16. PolarMask fails to

reconstruct curved parts. ESE-Seg provides better results,
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Figure 10. Comparison of instance segmentation results on the SBD dataset

Table 2. Comparison of the clustering performances on the

COCO2017 dataset at M = 16 and K = 500.

P R F
PolarMask [27] 28.59 22.67 25.13

ESE-Seg [28] 30.31 24.31 26.82

Proposed 30.88 24.90 27.40

but it blurs complicated parts, especially the leg bound-

aries in the second and third columns. In contrast, the pro-

posed eigencontour descriptors represent the object bound-

aries more accurately and more reliably.

Clustering in low-dimensional space: As mentioned in

Section 3.1, it is possible to cluster object contours in a

lower-dimensional descriptor space and obtain contour cen-

troids there. To validate the effectiveness of the cluster-

ing in the proposed eigencontour space, we compare the

clustering performances of the proposed algorithm on the

COCO2017 dataset with those of PolarMask and ESE-Seg.

To this end, we employ each algorithm to approximate all

training boundaries into M -dimensional descriptors and ob-

tain K centroids via K-means. Then, each contour in the

dataset is matched with the nearest centroid, and the match-

ing performance is computed in terms of P , R, and F .

Table 2 compares the performances at M = 16 and

K = 500. The proposed algorithm yields the best results

in all three metrics, which indicates that the proposed algo-

rithm can process object contours more reliably in a low-

dimensional space. Qualitative comparison results of the

Table 3. Comparison of the AP50, AP75, and APF performances

on the SBD validation dataset.

AP50 AP75 APF

PolarMask [27] 50.11 14.50 25.78

ESE-Seg [28] 52.14 20.48 27.37

Proposed 56.47 29.35 35.30

clustering are available in the supplemental document.

Instance segmentation: Both PolarMask and ESE-Seg

were proposed for instance segmentation. To localize each

instance, these methods reformulate the pixelwise classifi-

cation as the regression of an object contour. The proposed

eigencontours are more effective for this instance segmenta-

tion task as well. To demonstrate this, as done in ESE-Seg,

we adopt YOLOv3 [23] as an object detector and modify

its components. Given an input image, we predict an output

map, in which each element contains an M -dimensional co-

efficient vector as well as the original YOLOv3 vector for

bounding box regression and object classification. Then, we

use the coefficient vector to linearly combine eigencontours

to reconstruct the contour and shape mask of an object. The

supplemental document describes the implementation de-

tails and the training procedure.

Table 3 compares the instance segmentation results on

the SBD validation dataset at M = 20. The average pre-

cision (AP) performances, based on two intersection-over-

union (IoU) thresholds of 0.5 and 0.75 and an F score

threshold of 0.3, are reported. The proposed algorithm per-
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Figure 11. Instance segmentation results of the proposed algo-

rithm on the SBD dataset.

forms better than PolarMask and ESE-Seg in terms of all

three metrics. Figure 10 shows boundary regression results.

PolarMask and ESE-Seg fail to reconstruct object bound-

aries reliably. In contrast, the proposed algorithm repre-

sents the boundaries more faithfully. Figure 11 shows more

instance segmentation results.

4.3. Analysis

Dimension of eigencontour space (M ): Table 4 lists the

AUC-F performances of the proposed algorithm on the

SBD validation dataset according to the dimension, M , of

the eigencontour space. At M = 10, the proposed algo-

rithm yields poor scores, since object boundaries are too

simplified and not sufficiently accurate. At M = 20, it

provides the best results. At M = 30, it yields similarly

good results. However, at M = 40, the performances are

degraded further, which indicates that a high-dimensional

space does not always lead to better results. It is more chal-

lenging to regress more variables reliably. There is a trade-

off between accuracy and reliability. In this test, M = 20
achieves a good tradeoff.

Categorical eigencontour space: The proposed eigencon-

tours are data-driven descriptors, which depend on the dis-

tribution of object contours in a dataset. Thus, different

eigencontours are obtained for different data. Let us con-

sider two options for constructing eigencontour spaces: cat-

egorial construction and universal construction. In the cat-

egorial construction, eigencontours are determined for each

category in a dataset. In the universal construction, they are

determined for all instances in all categories.

For the two options, F score curves are presented ac-

cording to the dimension M in the supplemental document.

Table 5 compares the area under curve performances of the

F curves up to M = 18. The categorial construction pro-

Table 4. The instance segmentation performances of the proposed

algorithm on the SBD validation dataset according to the dimen-

sion of the eigencontour space (M ).

M AP50 AP75 APF

10 49.96 26.19 30.27

20 56.47 29.35 35.30

30 55.85 28,89 36.15
40 54.45 22.42 32.21

Table 5. Comparison of the AUC-F performances of categorical

and universal eigencontours, M ∈ [3, 18].

KINS SBD COCO2017

Universal 64.65 60.22 47.19
Categorical 67.67 62.37 48.77

vides better performances than the universal construction,

because it considers similar shapes in the same category

only. In COCO2017, the gap between the two options is

the smallest. This is because some object shapes are not

properly represented due to occlusions and thus COCO2017

objects exhibit low intra-category correlation. In contrast,

in KINS, whole contours are well represented because oc-

cluded regions are also annotated. Hence, the gap between

the two options is the largest.

Limitations: The proposed eigencontours represent typical

contour patterns in a dataset. Thus, if object contour pat-

terns differ among datasets, the eigencontours for a dataset

may be effective for that particular dataset only. To assess

the dependency of eigencontours on a dataset, we conduct

cross-validation tests between datasets in the supplemental

document.

5. Conclusions
We proposed novel contour descriptors, called eigencon-

tours, based on low-rank approximation. First, we con-

structed a contour matrix containing all contours in a train-

ing set. Second, we approximated the contour matrix, by

performing the best rank-M approximation. Third, we rep-

resent an object boundary by a linear combination of the

M eigencontours. Experimental results demonstrated that

the proposed eigencontours can represent object boundaries

more effectively and more faithfully than the existing meth-

ods. Moreover, the proposed algorithm yields meaningful

instance segmentation performances.
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