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Figure 1. Fast Point Transformer can process large-scale scenes using a local self-attention mechanism. Unlike Point Transformer [49],
our approach can infer the scene at one shot without searching for point-wise neighbors. The average inference time of our network is 0.14
seconds per scene, resulting in 129 times faster than Point Transformer in 3D semantic segmentation on S3DIS dataset [2].

Abstract

The recent success of neural networks enables a better in-
terpretation of 3D point clouds, but processing a large-scale
3D scene remains a challenging problem. Most current
approaches divide a large-scale scene into small regions
and combine the local predictions together. However, this
scheme inevitably involves additional stages for pre- and
post-processing and may also degrade the final output due
to predictions in a local perspective. This paper introduces
Fast Point Transformer that consists of a new lightweight
self-attention layer. Our approach encodes continuous 3D
coordinates, and the voxel hashing-based architecture boosts
computational efficiency. The proposed method is demon-
strated with 3D semantic segmentation and 3D detection.
The accuracy of our approach is competitive to the best
voxel-based method, and our network achieves 129 times
faster inference time than the state-of-the-art, Point Trans-
former, with a reasonable accuracy trade-off in 3D semantic
segmentation on S3DIS dataset.

1. Introduction
3D scene understanding is a fundamental task due to its

importance to various fields, such as robotics, intelligent

agents, and AR/VR. Recent approaches [6, 10, 22, 26, 27,
34, 37] utilize the deep learning frameworks, but processing
a large-scale 3D scene as a whole remains a challenging prob-
lem because it involves extensive computation and memory
budgets. As an alternative, some methods crop 3D scenes
and stitch predictions [18, 26, 27, 34, 35, 41], or others ap-
proximate point coordinates for efficiency [6, 10, 23, 50].
Such techniques, however, typically lead to a substantial in-
crease of inference time and/or degrade the final output due
to the local or approximate predictions. Achieving both fast
inference time and high accuracy is thus one of the primary
challenges in the 3D scene understanding tasks.

The pioneering 3D understanding approaches, Point-
Net [26] and PointNet++ [27] process point clouds
with multi-layer perceptrons (MLPs), which preserve
permutation-invariance of the point clouds. Such point-
based methods introduce impressive results [22, 37] recently,
and Point Transformer [49] shows superior accuracy based
on the local self-attention mechanism. However, it involves
manual grouping of point clouds using k nearest neighbor
search. Furthermore, scene-level inference with the point-
based methods typically requires dividing a large-scale scene
into smaller regions and stitching the predictions on them.
While Voxel-based methods [1, 6, 10, 13, 19, 23, 24, 36, 50]
are alternatives for a large-scale 3D scene understanding due
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to their effectiveness of the network design, they may lose
fine geometric patterns due to quantization artifacts. Hybrid
methods [21, 33, 34] reduce the quantization artifacts by
utilizing both point-level and voxel-level features. However,
approaches in this category require additional memory space
to cache both features.

We propose Fast Point Transformer, which effectively en-
codes continuous positional information of large-scale point
clouds. Our approach leverages local self-attention [29, 38]
of point clouds with voxel hashing architecture. To achieve
higher accuracy, we present centroid-aware voxelization and
devoxelization techniques that preserve the embedding of
continuous coordinates. The proposed approach reduces
quantization artifacts and allows the coherency of dense
predictions regardless of rigid transformations. We also in-
troduce a reformulation of the standard local self-attention
equation to reduce space complexity further. The proposed
local self-attention module can replace the convolutional lay-
ers for 3D scene understanding. Based on this, we introduce
a local self-attention based U-shaped network, which natu-
rally builds a feature hierarchy without manual grouping of
point clouds. As the result, Fast Point Transformer collects
rich geometric representations and exhibits a fast inference
time even for large-scale scenes.

We conduct experiments using two datasets of large-scale
scenes: S3DIS [2] and ScanNet [7]. Our method shows
competitive accuracy in the semantic segmentation task on
various voxel hashing configurations. We also apply the Fast
Point Transformer network as a backbone of VoteNet [25]
to show the applicability in the 3D object detection task. We
use ScanNet [7] dataset for the 3D detection, and our model
shows better accuracy (mAP) than other baselines that use
point- or voxel-based network backbones. Besides, we intro-
duce a novel consistency score metric, named CScore, and
demonstrate that our model outputs more coherent predic-
tions under rigid transformations.

In summary, our contributions are as follows:

1. We propose a novel local self-attention-based network,
called Fast Point Transformer that can handle large-
scale 3D scenes quickly.

2. We introduce a lightweight local self-attention module
that effectively learns continuous positional information
of 3D point clouds while reducing space complexity.

3. We show that our model produces significantly more
coherent predictions than the previous voxel-based ap-
proaches using the proposed evaluation metric.

4. We demonstrate fast inference of our voxel-hashing-
based architecture; our network performs a 129 times
faster inference than Point Transformer does, obtaining
a reasonable accuracy trade-off in 3D semantic segmen-
tation on S3DIS dataset [2].

2. Related Work
In this section, we review point-based, voxel-based, and

hybrid methods for 3D scene understanding and then revisit
the attention-based models.
Point-based methods. PointNet [26] introduces a multi-
layer perceptrons (MLP) based approach for understanding
3D scenes. PointNet++ [27] advances the PointNet [26]
by adding hierarchical sampling strategies. Recent studies
attempt to apply convolution on point clouds since the heuris-
tic local sampling and grouping mechanisms used in Point-
Net++ [27] can be represented by the convolution. However,
applying convolution on point clouds is challenging since 3D
points are sparse and unordered. KPConv [37] mimics con-
volution using kernel points defined in the continuous space.
They construct a k-d tree to perform point-wise convolution
on the query points within a certain radius at the inference
stage in exchange for inefficiency at the data preprocessing
stage. Mao et al. [22] adopt discretized convolution kernels
instead of continuous kernels for efficiency and perform con-
volution on every point in a point cloud, which poses a bot-
tleneck when processing large-scale 3D scene point clouds.
More recently, Guo et al. [11] and Zhao et al. [49] utilize
local self-attention operations to learn richer feature repre-
sentations than the fixed kernel-based methods [22, 37]. In
fact, most point-based methods [11, 22, 26, 27, 37, 49] adopt
expensive operations, such as k nearest neighbor search or
k-d tree construction, resulting in heavy computational over-
head when processing large-scale 3D scenes.
Voxel-based methods. Sparse convolution [6, 10] constructs
fully convolutional neural networks using discrete sparse ten-
sors for fast processing of voxel data. The sparse convolution
performs convolution on all valid neighbor voxels that are
efficiently found using a hash table with constant time com-
plexity, i.e., O(1). Mao et al. [23] propose a voxel-based
transformer architecture that adopts both local and dilated
attention to enlarge receptive fields of the model. Despite
the effectiveness of voxel-based work on large-scale point
clouds, they often fail to capture fine patterns of point clouds
due to the quantization artifacts produced during voxeliza-
tion. In other words, the features extracted by voxel-based
methods are inconsistent with respect to the voxel size [46].
Hybrid methods. Another approach to handle point clouds
is to extract both point- and voxel-level features. Recent
work [21, 33, 44, 45] attaches point-based layers, e.g., mini-
PointNet, on top of the voxel-based methods to relieve the
quantization artifacts produced during voxelization. They
take advantage of fast neighbor search of voxel-based meth-
ods and high capability of capturing fine-geometries of point-
based methods. However, the hybrid methods suffer from
larger computation and memory budgets since these ap-
proaches store both point- and voxel-level features.
Attention-based networks. Discussions regarding the at-
tention operation have dominated research in recent years
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Figure 2. Overall architecture. We illustrate the overall architecture of the proposed Fast Point Transformer. The red points are input
points and their features, and the purple points are output points and their features. The colored squares are non-empty voxels produced by
voxelization. The blue and green points are centroids of non-empty voxels with their features.

in natural language processing [8, 28, 39]. Moreover, re-
cent vision work [3, 9, 12, 43] has attempted to exploit
the advantages of attention-based models. Prior research
generally confirms that global self-attention is infeasible to
be adopted in 3D vision tasks due to its costly operations.
Thus, recent work [11, 23, 49] widely utilizes local self-
attention [3, 29, 38] to process 3D point clouds. Guo et
al. [11] and Zhao et al. [49] handle irregularity of point
clouds with k nearest neighbor search, resulting in a remark-
able performance gain.

3. Fast Point Transformer

3.1. Overview

Fast Point Transformer processes the point cloud through
three steps: (Step 1) Centroid-aware voxelization, (Step
2) Lightweight self-attention, and (Step 3) Centroid-aware
devoxelization. Figure 2 shows the overall architecture.

(Step 1) Let P in = {(pn, in)}Nn=1 be an input point
cloud, where pn is the n-th point coordinate and in is
any raw input feature of pn, e.g., color of point. For the
computational efficiency, our approach voxelizes P in into
V = {(vi, fi, ci)}Ii=1, a set of tuples. Each tuple contains
i-th voxel coordinate vi, voxel feature fi, and voxel centroid
coordinate ci. We introduce a centroid-aware voxelization
process that utilizes learnable positional embedding en be-
tween n-th point and its voxel centroid to minimize the loss
from the quantization procedure.

(Step 2) The lightweight self-attention (LSA) block takes
V = {(vi, fi, ci)}Ii=1 and updates the feature fi to the out-
put feature f ′i using local self-attention. In this procedure,
querying neighbor voxels can be done with voxel hashing
having O(1) complexity for a single query.

(Step 3) The output voxels V ′ = {(vi, f
′
i , ci)}Ii=1 from

the attention block are devoxelized into the output point
cloud Pout = {(pn, on)}Nn=1, where on is the output point
feature. We propose to use learnable positional embedding
en to properly assign voxel-wise features to the continuous
3D points for accurate point-level features.

3.2. Centroid-aware Voxel & Devoxelization

Centroid-aware voxelization. Let us consider an input
point cloud P in = {(pn, in)}. We voxelize input points for
fast and scalable querying. The output voxels are denoted by
V = {(vi, fi, ci)}. We introduce a novel centroid-to-point
positional encoding en ∈ RDenc to mitigate the geometric
information loss during voxelization. With an encoding
layer δenc : R3 7→ RDenc , the centroid-to-point positional
encoding en is defined as follows:

en = δenc(pn − ci=µ(n)), (1)

where centroid ci is ci = 1
|M(i)|

∑
n∈M(i) pn, M(i) is a

set of point indices within the i-th voxel, and µ : N 7→ N is
an index mapping from a point index n to its corresponding
voxel index i. We define the voxel feature fi ∈ RDin+Denc

with the input point feature in ∈ RDin and the encoding en:

fi = Ωn∈M(i)(in ⊕ en), (2)

where ⊕ denotes vector concatenation and Ω is a
permutation-invariant operator, e.g., average(·).

We state that some voxel-based methods [31, 32, 45] intro-
duce barycentric interpolation to embed fi into regular grids
vi for voxelization. The proposed centroid-aware voxeliza-
tion is different from those methods in that it encodes the
centroid-to-point position into fi at continuous centroid co-
ordinate ci. The proposed centroid-aware voxeliztion is also
different from other class of voxel-based methods [6, 10, 23]
that apply average- or max-pool voxel features without using
intra-voxel coordinates of points.
Centroid-aware devoxelization. Since the centroid-to-
point positional encoding en has useful information about
the relative position between pn and ci, we can propose
a centroid-aware devoxelization process. Given an output
voxels V ′ = {(vi, f

′
i , ci)} with the output voxel feature

f ′i ∈ RDout , the proposed centroid-aware devoxelization
process is formulated as follows:

on = MLP(f ′i=µ(n) ⊕ en), (3)
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where on ∈ RDout is the n-th output point feature of
the output point cloud Pout = {(pn,on)} and MLP(·) :
RDout+Denc 7→ RDout denotes a multilayer perceptron.

3.3. Lightweight Self-Attention

Local self-attention on centroids. Once an input point
cloud P in = {(pn, in)}Nn=1 is transformed into a set of vox-
els V = {(vi, fi, ci)}Ii=1, we can apply local self-attention
mechanism [29, 47, 51] with V . In this procedure, we can
query neighboring voxels quickly via voxel-hashing, which
requires O(N) complexity. Note that point-based meth-
ods [41, 49] need to build neighbors using k nearest neigh-
bor search having the complexity of O(N logN), which
become burdensome for processing large-scale point clouds.
Given local neighbor indices of ci denoted by N (i), local
self-attention on ci can be formulated as follows:

f ′i =
∑

j∈N (i)

a(fi, δ(ci, cj))ψ(fj), (4)

where f ′i is output feature, a(fi, δ(ci, cj)) is a function of
attention weights using positional encoding δ(ci, cj) ∈ RD

and ψ is the value projection layer.
Although the voxel hashing enables a fast neighbor search

with time complexity of O(1) for a single query, designing
a memory-efficient form of continuous positional encoding
δ(ci, cj) still remains a challenging problem. Specifically,
inspired by MLP(pi − pj) in Point Transformer [49], im-
plementing δ(ci, cj) as MLP(ci − cj) requires O(IKD)
space complexity, where K is the cardinality of neighboring
voxels. This is because there can be O(IK) different rela-
tive positions of (ci − cj) for possible (i, j) pairs due to the
continuity of c as shown in Figure 3.
Reducing space complexity. We introduce a coordinate
decomposition approach to reduce space complexity. Given
a query voxel (vi, fi, ci) and a key voxel (vj , fj , cj), the
relative position of centroids ci − cj can be decomposed as

ci − cj = (ci − vi)− (cj − vj) + (vi − vj). (5)

With Eq. (5), we can decompose the memory-consuming
δ(ci, cj) into two kinds of positional encodings: (1) a con-
tinuous positional encoding δabs(ci − vi) whose space com-
plexity is O(ID) due to continuity of c, and (2) a discretized
positional encoding δrel(vi − vj) whose space complexity
is O(KD). δrel(vi − vj) is memory-efficient because there
can be only K different discretized relative positions of
(vi − vj) ∈ R3 for all possible (i, j) pairs. In addition, it
is due to the fact that the K is significantly smaller than
number of voxels I . δabs(cj − vj) in Eq. (5) does not add
any additional space complexity because we already have
δabs(ci − vi) for every voxel. As a result, space complexity
of δ(ci, cj) goes down from O(IKD) to O(ID +KD) as
illustrated in Figure 3.

Decomp.

: the number of voxels : the max. number of neighbors : the encoding dimension

Broadcasting

Figure 3. Decomposition of relative position. Note that we use
the continuous positional encoding δabs(ci − vi) to transform the
input voxel feature fi to the centroid-aware voxel feature gi.

Given, Eq. (4) and (5), we see that local self-attention
uses continuous positional encoding δabs(ci − vi) and input
voxel feature fi. Therefore, the local self-attention pipeline
has a centroid-aware property that can reduce quantization
artifacts. Based on these insights, we propose to use an
aggregated feature gi = fi + δabs(ci − vi) and name it as
centroid-aware voxel feature. We compute attention weights
with δrel(vi − vj) as

f ′i =
∑

j∈N (i)

a(gi, δrel(vi − vj))ψ(gj). (6)

We illustrate the reduction of the space complexity in
Figure 3, and evaluate the effectiveness of the decomposition
in Table A4 and Table A5 of the supplementary material.
Lightweight self-attention layer. Now, we propose the
new local self-attention layer, named LSA layer, by defining
attention function a(·) in Eq. (6) as

f ′i =
∑

j∈N (i)

ϕ(gi) · δrel(vi − vj)

∥ϕ(gi)∥∥δrel(vi − vj)∥
ψ(gj). (7)

It is worth noting that the LSA layer uses the cosine
similarity between ϕ(gi) and δrel(vi − vj). Instead of us-
ing softmax(ϕ(gi)

⊤δrel(vi − vj)), cosine similarity can
effectively handle the sparsity issue of input voxels V prop-
erly. For example, an issue arises if we use softmax(·) and
|N (i)| is 1. In this case, softmax(·) normalizes the atten-
tion weights into 1.0, and it can make the LSA layer to be a
simple linear layer ψ. In addition, as the LSA layer queries
local neighbor indices, |N (i)| varies from 1 to the number
of neighboring voxels. Therefore, cosine similarity is more
natural choice for handling varying number of voxels than
softmax(·) as shown in Table 6.

The dynamics of the LSA layer (Eq. (7)) generates
weights using the centroid-aware features ϕ(gi) and rel-
ative voxel features δrel(vi − vj). This design enables LSA
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layer to learn more coherent representation under the rigid
transformations than sparse convolution based approach [6],
as shown in Table 1 and to outperform sparse convolution
on various tasks (e.g., 3D semantic segmentaion, 3D object
detection) as shown in Table 2, Table 3, and Table 8. We also
experimentally show that the reformulation from Eq. (4) to
Eq. (6) works reasonably (as shown in Table 5 and Table 6)
and introduces extra efficiency (as shown in Table 2).

3.4. Network Architecture

We develop Fast Point Transformer for dense predic-
tion on point cloud based on the modules introduced above.
Using coordinate hashing (Sec. 3.2) and decomposed posi-
tional encodings (Sec. 3.3), Fast Point Transformer is less
prone to quantization errors than previous voxel-based meth-
ods [6, 10, 23], while also being significantly faster than
point-based methods [41, 49] in terms of both space and
time. Furthermore, the proposed local self-attention layer
can be easily be integrated to voxel-based downsampling and
upsampling layer without introducing heuristic sampling and
grouping mechanisms that are often used in the point-based
methods [27, 41, 49]. Note that we can build local self-
attention networks by substituting convolution layers with
LSA layers. Therefore, any sparse CNN architecture can be
modified to faciliate local self-attention, e.g., ResNet [14]
and U-Net [30]. We implement our model for semantic seg-
mentation using the U-Net [30] architecture. Further details
are described in the supplementary material.

4. Experiments
In this section, we evaluate our model on two popular

large-scale 3D scene datasets: S3DIS [2] and ScanNet [7].
We have selected the two datasets due to their rich diversity
and densely annotated labels. We first validate the robustness
of our approach to voxel hashing configurations described in
Sec. 4.3. Then, we compare the proposed method with the
state of the art and discuss the results in Sec. 4.4 and Sec. 4.5.
Specifically, we provide stochastic numbers averaged from
three different experiments with the same training configura-
tion except random seed numbers for the comparison tables:
Table 1, Table 2, Table 3, Table 4, and Table 8.

4.1. Datasets

S3DIS is a large-scale indoor dataset which consists of six
large-scale areas with 271 room scenes. We test on Area 5
and utilize the other splits during training. Following [6],
we do not use any preprocessing methods, e.g., cropping
into small blocks, that are widely used in point-based meth-
ods [17, 18, 26, 34, 35, 41].
ScanNet. We use the second official release of ScanNet [7],
which consists of 1.5k room scenes with some rooms cap-
tured repeatedly with different sensors. Following the ex-
perimental settings of prior work [4, 25], our model uses

point-wise RGB colors as input point features {in} both for
3D semantic segmentation task and 3D objection detection.

4.2. Baselines

We have selected PointNet [26], PointWeb [48], SP-
Graph [17], PointConv [40], PointASNL [42], KP-
Conv [37], PAConv [41], Point Transformer [49], SparseCon-
vNet [10], and MinkowskiNet [6] as the baseline approaches.
MinkowskiNet32 and MinkowskiNet42 [6] are compared
as representative voxel-based methods that comprise 32 and
42 U-Net layers, respectively. We reproduce Minkowsk-
iNet42 [6] with the official source code and denote it as
MinkowskiNet42†, with different voxel sizes. PointNet [26],
SPGraph [17], PointWeb [48], KPConv [37], PAConv [41]
and Point Transformer [49] are selected since they are rep-
resentative point-based methods. The main difference be-
tween KPConv [37] and the others is that KPConv [37] uses
a k-d tree to boost its inference time while the others do
not. We follow the official guideline of the methods and
reproduce the results. A more recent method, Point Trans-
former [49] has also been selected due to its superiority on
several datasets. Unlike our method and selected baselines,
other approaches [5, 15, 16] use additional inputs, e.g., 2D
images or meshes. Accordingly, we have excluded these
methods from the comparison.

4.3. Consistency Test

We introduce a new evaluation metric to measure the
coherency of predictions under various rigid transformations,
such as translation and rotation. Let us consider a set of
point clouds S = {P in} and a 3D semantic segmentation
model f : P in 7→ C which predicts a semantic class of
each point in P in = {(pn, in)}. Given S and a set of rigid
transformations T = {Tm}, we introduce the consistency
score (CScore(f ;S, T )) as follows:

1

|S|
∑

Pin∈S

1

|P in||T |

|Pin|∑
n

|T |∑
m

I
(
f(pn, in), f(Tmpn, in)

)
,

(8)

where I(·) is the indicator function, and it checks whether
class predictions of the original point and the transformed
point are the same. CScore is an averaged accuracy over S,
P , and T . Similarly, we use the point-wise CScore of f on
P to show which points in P are vulnerable to T . We apply
41 different rigid transformations that consist of 26 transla-
tions and 15 rotations around the gravity axis. For the voxel
size L, 26 translations are set to [0, L/3, 2L/3]3 except zero
translation [0, 0, 0]. Fifteen rotation angles along gravity axis
is set to [0.125π, 0.25π, · · · , 1.875π]. We evaluate CScore
of MinkowskiNet42 and Fast Point Transformer on the Scan-
Net validation split. The evaluation results (Table 1) and
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Table 1. Comparison of consistency score (CScore) and mIoU.
We compare the consistency scores of Fast Point Transformer and
MinkowskiNet42†, which is the reproduced model, on different
transformation sets. The transformation sets are 1) rotation only
(R), 2) translation only (t), and 3) both (R and t). The size of voxel
is set to 10cm, 5cm, and 2cm for 3D semantic segmentation on the
ScanNet validation dataset [7]. Fast Point Transformer reduces the
prediction inconsistency that occurred by voxelization artifact.

Method
CScore (%)

mIoU (%)
R t R and t

Voxel size: 10cm

MinkowskiNet42† 92.2±0.1 92.0±0.1 92.0±0.1 60.5±0.2
FastPointTr. (ours) 94.7±0.3 94.6±0.1 94.6±0.1 65.9±0.6

Voxel size: 5cm

MinkowskiNet42† 94.2±0.1 95.1±0.1 94.8±0.1 66.7±0.2
FastPointTr. (ours) 95.9±0.4 96.4±0.1 96.2±0.2 70.0±0.1

Voxel size: 2cm

MinkowskiNet42† 95.9±0.6 96.9±0.3 96.6±0.1 71.9±0.2
FastPointTr. (ours) 96.9±0.3 97.4±0.4 97.2±0.1 72.1±0.3

0

1

OursMinkowskiNet42Input

Figure 4. Heatmap visualization of consistency score (CScore).
We visualize consistency scores of MinkowskiNet [6] and the pro-
posed Fast Point Transformer with the hot heatmap. Points with
high CScore (consistently predicted with the same class) are col-
ored black, and points with low CScore (the predicted class is not
consistent with arbitrary rigid transformations) are colored white.
Table 1 shows the quantitative evaluation.

the qualitative results (Figure 4) show that Fast Point Trans-
former outputs more coherent feature representations than
MinkowskiNet42 [6]. Moreover, the coherent predictions
indicate that the Fast Point Transformer successfully relieves
quantization artifacts.

4.4. 3D Semantic Segmentation

We compare our approach with the state of the art in
3D semantic segmentation on S3DIS [2] and ScanNet [7].
We use the mean of class-wise IoU scores as the primary
evaluation metric for both datasets.
S3DIS. We compare the computational complexity, the mean
accuracy, and the mean IoU of Fast Point Transformer
with the state of the arts on the S3DIS Area 5 test split.
Since Choy et al. [6] reported results with a lightweight
network (MinkowskiNet32), we utilize the official code
of MinkowskiNet42 and reproduce the results denoted by
MinkowskiNet42† with voxel size 4cm. We also provide
the performance of MinkowskiNet42† and Fast Point Trans-

former with voxel size 5cm in the supplementary material.
Table 2 theoretically analyzes the time complexity and

reports the average wall-time latency of each method when
processing S3DIS Area 5 scenes. We measure the inference
time of MinkowskiNet42†, PointNet [26], SPGraph [17],
PointWeb [48], KPConv [37], PAConv [41], and Point Trans-
former [49] using the official codes. We use the same ma-
chine with Intel(R) Core(TM) i7-5930K CPU and a single
NVIDIA Geforce RTX 3090 GPU to measure the latency of
methods. Detailed information about the time complexity
analysis is included in the supplementary material.

Due to the preprocessing stage and stitching the mul-
tiple local predictions [17, 26, 41, 48] or multiple infer-
ences [37, 49], the point-based methods take much more
time to inference a single scene than our approach. Note
that KPConv [37] constructs k-d tree, but we do not include
this process into inference time. Our Fast Point Transformer
processes a large-scale scene at least 83 times faster than
point-based methods [17, 26, 37, 41, 48, 49] as shown in
Table 2. Specifically, PointNet [26] takes 18.16 seconds for
processing a scene on average because it crops the scene into
1m×1m×1m blocks, predicts on the blocks, and stitches the
predictions for the scene-level prediction (denoted by ‘Crop-
and-stitch’ in Table 2). Moreover, Fast Point Transformer
outperforms MinkowskiNet42† by 1.4 absolute percentage
score in mean IoU (%) with a comparable speed. Given
the reported results by Zhao et al. [49], Point Transformer
shows the best accuracy. However, Point Transformer [49]
shows 129 times slower inference speed than our approach.
This is because it grid-subsamples points and inferences the
sampled points multiple times with the expensive k near-
est neighbor search to cover the whole scene (denoted by
‘Multi-shot’ in Table 2), while our approach can handle the
whole scene with a single feed-forward operation (denoted
by ‘Single-shot’ in Table 2).
ScanNet. We evaluate the models on the ScanNet validation
split due to strict submission policies of ScanNet online
test benchmark, where one method can be tested at most
once. Our proposed method outperforms MinkowskiNet42†

at voxel sizes of 2cm, 5cm, and 10cm by 0.2, 3.3, and 5.4
absolute percentage point gain in mean IoU (%) respectively.
The experimental results in Table 1 and Table 3 indicate that
the proposed method can represent a large-scale point cloud
as features that are more robust to quantization error.
mIoU vs. model size. We compare the accuracy of both
Fast Point Transformer and MinkowskiNet with the different
number of parameters. We build small network models by re-
ducing the number of building blocks as MinkowskiNet [6]
does and maintaining the number of channels. Detailed
illustration about network architecture is shown in the sup-
plementary material. Table 4 shows the evaluation results.

Interestingly, we observe that Fast Point Transformer
is more resilient to the network parameter reduction, and
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Table 2. 3D semantic segmentation on S3DIS [2] Area 5 test. We mark the reproduced models using the official source codes with †. We
analyze the theoretical time complexity of neighbor search algorithms and evaluate the per-scene wall-time latency of each network. We
denote N as the number of dataset points, M as the number of query points (or voxel centroids), and K as the number of neighbors to
search. Both M and N are much larger than K in a large-scale point cloud.

Method
Neighbor Search Large-scale

Inference
Latency

(Seconds)
Latency

(Normalized) mAcc (%) mIoU (%)
Preparation Inference

PointNet [26] ✗ ✗ Crop-and-stitch 18.16 129.71 49.0 41.1
SPGraph [17] ✗ ✗ Crop-and-stitch 18.28 130.57 66.5 58.0
PointWeb [48] O(1) O(MNK) Crop-and-stitch 11.62 83.00 66.6 60.3
MinkowskiNet32 [6] (5cm) O(N) O(M) Single-shot 0.08 0.57 71.7 65.4
KPConv deform [37] O(N logN) O(KM logN) Multi-shot 105.15 751.07 72.8 67.1
PAConv [41] O(1) O(MN logK) Crop-and-stitch 28.13 200.93 73.0 66.6
PointTransformer [49] O(1) O(MN logK) Multi-shot 18.07 129.07 76.5 70.4

Voxel size: 4cm

MinkowskiNet42† O(N) O(M) Single-shot 0.08 0.57 74.4±0.8 67.1±0.1
+ rotation average O(N) O(M) Multi-shot 0.66 4.71 75.0±0.7 68.4±0.1

FastPointTransformer (ours) O(N) O(M) Single-shot 0.14 1.00 76.5±0.6 68.5±0.2
+ rotation average O(N) O(M) Multi-shot 1.13 8.07 77.3±0.7 70.1±0.3

Table 3. 3D semantic segmentation on ScanNet [7] validation.
We make the reproduced models using the official codes with †.

Method mIoU (%)

PointNet [26] 53.5
PointConv [40] 61.0
PointASNL [42] 63.5
KPConv deform [37] 69.2

Voxel size: 2cm

SparseConvNet [10] 69.3
MinkowskiNet42 [6] 72.2
MinkowskiNet42† 71.9±0.2
FastPointTransformer (ours) 72.1±0.3

Fast Point Transformer models outperform their counterpart
models of MinkowskiNet. We can observe that the most
lightweight Fast Point Transformer with voxel size 10cm
outperforms the most lightweight MinkowskiNet [6] with
voxel size 5cm. MinkowskiNet [6] requires lots of parame-
ters to overcome voxelization artifacts, whereas Fast Point
Transformer shows a consistent accuracy even with 71.5%
fewer network parameters.

These results imply that the proposed lightweight self-
attention (LSA) layer can learn a 3D geometry more effec-
tively than an over-parameterized sparse convolutional layer
thanks to its dynamic kernel weights.
Ablation study. We conduct ablation studies on (1) the
proposed positional encodings, (2) attention types, and (3)
the local window size. We have followed the same setup
with the main experiments with a voxel size of 10cm using
a fixed random seed on ScanNet [7] validation dataset.

Table 5 shows ablation results on the proposed positional
encodings, i.e., δenc and δabs. Models with full positional en-
codings achieved the best mIoU score. When removing δabs

Table 4. mIoU vs. model size. Under reduced number of network
parameters, Fast Point Transformer shows little performance drop
while MinkowskiNet [6] gradually degrades. We color green for
the positive changes and red for the negative changes w.r.t. the base
model. We use ScanNet [7] validation set for the experiment.

Method
# Param. (M) mIoU (%)

Rel. (%) ∆

Voxel size: 10cm

MinkowskiNet42† 37.9 ±0.0 60.5±0.2 ±0.0
MinkowskiNet (small) 21.7 ↓ 42.7 59.9±0.6 ↓ 0.6
MinkowskiNet (smaller) 11.6 ↓ 69.4 58.2±0.9 ↓ 2.3

FastPointTrans. (ours) 37.9 ±0.0 65.9±0.6 ±0.0
FastPointTrans. (small) 20.2 ↓ 46.7 66.0±0.3 ↑ 0.1
FastPointTrans. (smaller) 10.8 ↓ 71.5 65.7±0.1 ↓ 0.2

Voxel size: 5cm

MinkowskiNet42† 37.9 ±0.0 66.7±0.3 ±0.0
MinkowskiNet (small) 21.7 ↓ 42.7 66.0±0.1 ↓ 0.7
MinkowskiNet (smaller) 11.6 ↓ 69.4 64.2±0.4 ↓ 2.5

FastPointTrans. (ours) 37.9 ±0.0 70.0±0.1 ±0.0
FastPointTrans. (small) 20.2 ↓ 46.7 70.3±0.2 ↑ 0.3
FastPointTrans. (smaller) 10.8 ↓ 71.5 69.7±0.2 ↓ 0.3

from our model, we have observed a large performance drop
since the model does not adopt continuous position infor-
mation. Removing either positional encodings of centroid-
aware voxelization or devoxelization from our network also
degrades the performance. These results indicate that the two
proposed voxelization and devoxelization effectively main-
tain continuous geometric information of the input point
cloud. Moreover, the proposed positional encodings also
improve the performance of MinkowskiNet42† although the
total number of parameters becomes much bigger than Fast
Point Transformer. However, additional usage of δabs does
not improve the performance of MinkowskiNet42 [6], which
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Table 5. Ablation study on the proposed positional encodings.
Note that Mink42† and FastPointTrans. denote MinkowskiNet42†

and Fast Point Transformer, respectively. We use ScanNet valida-
tion dataset [7] with voxel size 10cm.

# Param. (M)
δenc

δabs mIoU (%)
Vox Devox

M
in

k4
2†

37.9 60.4
38.0 ✓ 63.2
38.0 ✓ ✓ 65.1
51.6 ✓ ✓ ✓ 65.0

Fa
st

Po
in

tT
ra

ns
. 27.3 59.1

27.3 ✓ 61.3
37.8 ✓ 62.1
27.3 ✓ ✓ 62.7
37.8 ✓ ✓ 63.4
37.9 ✓ ✓ ✓ 65.3

Table 6. Ablation study on attention types. Note that ϕ(gi) and
ξ(gj) denote a query and its neighboring key, respectively. We use
ScanNet validation dataset [7] with voxel size 10cm.

a(·) in Eq. (6) mIoU (%)

softmax(ϕ(gi), δrel(vi − vj)) 61.0
cosine(ϕ(gi), ξ(gj) + δrel(vi − vj)) 62.1
cosine(ϕ(gi), δrel(vi − vj)) 65.3

Table 7. Ablation study on the local window size. Note that k is
the local window size used to find the neighbors, N (i), in Eq. (7).
We use ScanNet validation dataset [7] with voxel size 10cm.

k Latency (sec) mIoU (%)

3 0.106 65.3
5 0.127 62.4
7 0.168 61.9

means that the self-attention mechanism is a more proper
way to use δabs than sparse convolution.

Table 6 shows the effects of attention types used in the
proposed LSA layer. cosine(·) handles the varying number
of neighbors more effectively than softmax(·) as shown in
Table 6. However, as reported in local self-attention litera-
ture [3, 29], additional usage of the similarity between query
ϕ(gi) and key ξ(gj) does not enhance the LSA layer.

In Table 7, we show the effect of the local window size
in the proposed LSA layer. Since we currently use learnable
tokens for δrel(vi − vj), increasing the local window size
degrades the performance due to the sparsity of 3D data.
Introducing an inductive bias, such as concatenating the
positional encodings [29] or a shared mapping layer [49] can
be one of the possible solutions.

4.5. 3D Object Detection

We have conducted experiments on the ScanNet 3D object
detection dataset, where a fine-grained point cloud represen-
tation is essential to detect and localize 3D objects.
Setups. For a fair comparison of Fast Point Transformer

Table 8. 3D object detection on ScanNet [7] validation. We
report two mAP scores of VoteNet [25] with different backbones
on ScanNet [7] dataset. Numbers except that of MinkowskiNet†

and Fast Point Transformer are taken from Chaton et al. [4].

Backbone mAP@0.25 mAP@0.50

PointNet++ [27] 54.2 30.1
RS-CNN [20] 51.6 29.5
KPConv [37] 48.9 29.2
MinkowskiNet [6] 53.8 30.2

MinkowskiNet† 55.3±0.2 33.0±0.5
FastPointTransformer (ours) 59.1±0.1 35.6±0.4

with previous methods [6, 27], we use Torch-Points3D, an
open-source library implemented by Chaton et al. [4] for
reproducible deep learning on 3D point clouds. Torch-
Points3D sub-samples a fixed number of points from an
input point cloud, which is widely used for PointNet++ [27]
to process a scene-level point cloud-like ScanNet. We notice
that the library also sub-samples points for the voxel-based
methods, such as MinkowskiNet [6], which is not a suit-
able experimental configuration. Therefore, we reproduce
VoteNet with the MinkowskiNet backbone, which is de-
noted by MinkowskiNet† in Table 8, without input point
sub-sampling, and we use the original experimental config-
urations. Additionally, we train a new VoteNet [25] with
the Fast Point Transformer backbone without any change of
detection network (e.g., voting module).
Results. As shown in Table 8, the VoteNet [25] model with
Fast Point Transformer as a backbone outperforms other
baselines with a large margin. The results show that the
proposed continuous positional encodings that Fast Point
Transformer uses can effectively encode point cloud repre-
sentation and help the 3D detection task.

5. Conclusion
We have introduced the Fast Point Transformer and

demonstrated its speed and accuracy on 3D semantic segmen-
tation and 3D detection tasks. The experimental results on
large-scale 3D datasets [2, 7] show that our approach is com-
petitive to the best voxel-based method [6], and our network
achieves 129 times faster inference time than the state-of-the-
art, Point Transformer, with a reasonable accuracy trade-off
in 3D semantic segmentation [2]. However, there is room for
improvement of the Fast Point Transformer at a small voxel
size. In the future, we will explore architectures for Fast
Point Transformer rather than U-shaped architectures [30]
that are initially designed for convolutional layers. Our code
and data are going to be publicly available.

Acknowledgement. This work was supported by Qualcomm and
the IITP grant (2021-0-02068: AI Innovation Hub and 2019-0-
01906: AI Grad. School Prog.) funded by the Korea government
(MSIT) and the NRF grant (NRF-2020R1C1C1015260).

16956



References
[1] Dan A Alcantara, Andrei Sharf, Fatemeh Abbasinejad, Shub-

habrata Sengupta, Michael Mitzenmacher, John D Owens,
and Nina Amenta. Real-time parallel hashing on the gpu. In
ACM SIGGRAPH Asia 2009 papers, pages 1–9. 2009. 1

[2] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis
Brilakis, Martin Fischer, and Silvio Savarese. 3d semantic
parsing of large-scale indoor spaces. In CVPR, pages 1534–
1543, 2016. 1, 2, 5, 6, 7, 8

[3] Irwan Bello. Lambdanetworks: Modeling long-range interac-
tions without attention. In ICLR, 2021. 3, 8

[4] Thomas Chaton, Nicolas Chaulet, Sofiane Horache, and Loic
Landrieu. Torch-points3d: A modular multi-task framework
for reproducible deep learning on 3d point clouds. In 3DV,
pages 1–10. IEEE, 2020. 5, 8

[5] Hung-Yueh Chiang, Yen-Liang Lin, Yueh-Cheng Liu, and
Winston H Hsu. A unified point-based framework for 3d
segmentation. In 3DV, pages 155–163. IEEE, 2019. 5

[6] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d
spatio-temporal convnets: Minkowski convolutional neural
networks. In CVPR, pages 3075–3084, 2019. 1, 2, 3, 5, 6, 7,
8

[7] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber,
Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In CVPR,
pages 5828–5839, 2017. 2, 5, 6, 7, 8

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In NAACL, pages 4171–
4186, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. 3

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 3

[10] Benjamin Graham, Martin Engelcke, and Laurens Van
Der Maaten. 3d semantic segmentation with submanifold
sparse convolutional networks. In CVPR, pages 9224–9232,
2018. 1, 2, 3, 5, 7

[11] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang
Mu, Ralph R. Martin, and Shi-Min Hu. Pct: Point cloud
transformer. Computational Visual Media, 7(2):187–199, Apr
2021. 2, 3

[12] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu,
and Yunhe Wang. Transformer in transformer. In A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors,
NeurIPS, 2021. 3

[13] Lei Han, Tian Zheng, Yinheng Zhu, Lan Xu, and Lu Fang.
Live semantic 3d perception for immersive augmented reality.
IEEE TVCG, 26(5):2012–2022, 2020. 1

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, pages
770–778, 2016. 5

[15] Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, and Tien-
Tsin Wong. Bidirectional projection network for cross di-
mension scene understanding. In CVPR, pages 14373–14382,
June 2021. 5

[16] Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian
Brewington, Thomas Funkhouser, and Caroline Pantofaru.
Virtual multi-view fusion for 3d semantic segmentation. In
ECCV, pages 518–535. Springer, 2020. 5

[17] Loic Landrieu and Martin Simonovsky. Large-scale point
cloud semantic segmentation with superpoint graphs. In
CVPR, pages 4558–4567, 2018. 5, 6, 7

[18] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on χ-transformed
points. In NeurIPS, pages 828–838, 2018. 1, 5

[19] Yuchen Li, Qiwei Zhu, Zheng Lyu, Zhongdong Huang, and
Jianling Sun. Dycuckoo: dynamic hash tables on gpus. In
ICDE, pages 744–755. IEEE, 2021. 1

[20] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan.
Relation-shape convolutional neural network for point cloud
analysis. In CVPR, pages 8895–8904, 2019. 8

[21] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-
voxel cnn for efficient 3d deep learning. In NeurIPS, 2019.
2

[22] Jiageng Mao, Xiaogang Wang, and Hongsheng Li. Interpo-
lated convolutional networks for 3d point cloud understanding.
In ICCV, October 2019. 1, 2

[23] Jiageng Mao, Yujing Xue, Minzhe Niu, Haoyue Bai, Jiashi
Feng, Xiaodan Liang, Hang Xu, and Chunjing Xu. Voxel
transformer for 3d object detection. In ICCV, pages 3164–
3173, October 2021. 1, 2, 3, 5

[24] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and
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A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, edi-
tors, NeurIPS, volume 32. Curran Associates, Inc., 2019. 2,
3, 4, 8

[30] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In MICCAI, pages 234–241. Springer, 2015. 5, 8

[31] Radu Alexandru Rosu, Peer Schütt, Jan Quenzel, and Sven
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