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Abstract

Hands are often severely occluded by objects, which
makes 3D hand mesh estimation challenging. Previous
works often have disregarded information at occluded re-
gions. However, we argue that occluded regions have strong
correlations with hands so that they can provide highly ben-
eficial information for complete 3D hand mesh estimation.
Thus, in this work, we propose a novel 3D hand mesh es-
timation network HandOccNet, that can fully exploits the
information at occluded regions as a secondary means to
enhance image features and make it much richer. To this
end, we design two successive Transformer-based mod-
ules, called feature injecting transformer (FIT) and self-
enhancing transformer (SET). FIT injects hand information
into occluded region by considering their correlation. SET
refines the output of FIT by using a self-attention mecha-
nism. By injecting the hand information to the occluded
region, our HandOccNet reaches the state-of-the-art per-
formance on 3D hand mesh benchmarks that contain chal-
lenging hand-object occlusions. The codes are available in:
https://github.com/namepllet/HandOccNet.

1. Introduction
Despite promising results of 3D hand mesh estimation

from a single RGB image [6, 12, 20, 26–30], making 3D
hand mesh estimation method robust to occlusion is still an
open challenge. One promising approach for the occlusion-
robust system is using a spatial attention mechanism. Al-
though the spatial attention mechanism has not been used
for the occlusion-robust 3D hand mesh estimation, several
2D human body pose estimation methods [8, 39, 40] have
utilized such attention mechanism for the occlusion-robust
results. They estimate a spatial attention map and multiply
it with a feature map to tell the networks where to focus.
The attention map tends to have high scores on human re-
gions and low scores on occluded regions. Therefore, it at-
tenuates the magnitude of features at occluded regions and
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Figure 1. Example of the operation of the proposed HandOcc-
Net. (a) The output feature map of spatial attention mechanism
for the case of severe occlusion, which consists of sparse primary
and secondary features . (b) Our feature injection module finds the
primary features related to the secondary features, and then injects
the information of primary features into the locations of secondary
features.

makes networks focus on human regions.
Although the spatial attention-based methods have

shown noticeable results under the occlusions, there are sev-
eral limitations. First, they are mostly for the 2D human
body pose estimation, which aims to localize 2D body joint
coordinates. Hence, the validity of their spatial attention
mechanism is not proved for the occlusion-robust 3D hand
mesh estimation. In particular, as hands have quite compli-
cated articulations and are often severely occluded by ob-
jects, the widely used spatial attention mechanism might
fail to produce robust results. Unlike the methods [24, 25]
using a depth map, additional depth ambiguity, which arises
from 2D image-to-3D hand estimation, is another bottle-
neck. Second, when the occlusions are severe, activations
of the spatial attention mechanism become sparse because
most of the hand regions are occluded. The sparse regions
contain limited information of hand; hence, relying only on
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such limited information can lead to erroneous results.
To overcome the above limitations, we propose Han-

dOccNet, a novel framework for occlusion-robust 3D hand
mesh estimation. The main component of the proposed
HandOccNet is a feature injection mechanism, shown in
Figure 1. The conventional spatial attention mechanism
disregards the information of features at the occluded re-
gions. On the other hand, our feature injection mechanism
utilizes those features as a secondary role to obtain richer
representation for occlusion-robust 3D hand mesh estima-
tion. The primary features and secondary features repre-
sent features corresponding to high attention scores and low
attention scores, respectively. We leverage information of
secondary features to find relevant primary features and in-
ject the information of primary features into the locations of
secondary features. In this process, we use the term inject
to emphasize that the information of secondary features dis-
appears and the information of primary features is injected
into empty locations.

To inject not only nearby features but also distant fea-
tures, we employ Transformer [35], which has an excel-
lent ability to model correlations between features regard-
less of the distance between features. Here, the distance
between features represents the 2D distance in the pixel
space. We build two Transformer-based modules, feature
injecting transformer (FIT) and self-enhancing transformer
(SET). The FIT injects the information of primary features
into the regions of the secondary features and outputs a sin-
gle feature map by utilizing secondary features as queries
and primary features as key-value pairs. The SET utilizes
a standard self-attention mechanism to refine the output of
the FIT.

Our FIT has two distinctive points compared to the stan-
dard Transformer [35] for the feature injection. First, our
FIT computes a correlation map between queries and keys
through two types of attention modules, sigmoid-based as
well as softmax-based ones, while the standard Transformer
uses only softmax-based one. The softmax-based attention
module normalizes the multiplications of each query and
all elements of the keys using softmax function. As soft-
max considers all elements for the normalization, an un-
desirable high correlation score can be made when abso-
lute values of all the multiplications are very low but some
multiplications are relatively large compared to others. To
prevent such undesirable high correlation scores, we build
an additional sigmoid-based attention module. As the sig-
moid activation function does not consider other elements
for the normalization, it can avoid the undesired high cor-
relations. We obtain the final correlation map by multiply-
ing correlation maps from the softmax-based module and
sigmoid-based module. Second, we remove a residual con-
nection between input queries and output of the attention
module, while the standard Transformer uses such residual

connection. In other words, the FIT uses queries only when
computing correlations between queries and keys and the
output feature of FIT does not contain the information of
the queries. This is because we intend secondary features
(queries) to be replaced with primary features (values).

We demonstrate the effectiveness of our HandOcc-
Net, through extensive experiments on recently published
hand-object interaction datasets, such as HO-3D [13] and
FPHA [11]. These datasets contain various and challeng-
ing occlusions in hand regions which reflects realistic occlu-
sions that occur when hands manipulate objects in our daily
life. The experimental results show that our HandOccNet
achieves significantly better 3D hand mesh estimation ac-
curacy compared to previous state-of-the-art 3D hand mesh
estimation methods.

To summarize, we make the following contributions:

• We propose a HandOccNet, a novel framework for
occlusion-robust 3D hand mesh estimation from a sin-
gle RGB image. The proposed HandOccNet utilizes
feature injection mechanism that makes feature map
robust to occlusion by properly injecting the hand in-
formation into the occluded regions.

• For the feature injection and refinement, we propose
two Transformer-based modules, FIT and SET. The
FIT performs the injection mechanism under the guid-
ance of correlations between primary features and sec-
ondary features, which represent features of hand re-
gions and occluded regions, respectively. The SET re-
fines the output feature map of the FIT using a self-
attention mechanism.

• We show our framework significantly outperforms
state-of-the-art 3D hand mesh estimation methods on
hand-object interaction datasets that contain severe
hand occlusions.

2. Related works
Occlusion-robust human pose estimation. There are three
main approaches for occlusion-robust human pose estima-
tion. The first one adopts occlusion-aware data augmenta-
tion, the second one leverages temporal information, and
the last one utilizes a spatial attention mechanism.

[3, 18, 34] applied occlusion-aware data augmentation
in the training time. Sarandi et al. [34] covered partial re-
gion of the image with black solid shapes or object seg-
ments from Pascal VOC 2012 [10] to mimic the occlusions.
Ke et al. [18] copy background patch of the input image
and paste it to human keypoint region. [3,7] proposed a two
stage approach for the 3D pose estimation. They estimate
2D features for given frames and estimate the 3D pose from
the 2D information. Cheng et al. [3] utilized sequential 2D
features (2D joint heatmaps) to estimate the consecutive 3D
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pose. In training time, [3] randomly mask part of estimated
2D joint heatmaps by setting their values to zero in order to
simulate occlusions. The limitation of their augmentations
is that the occlusions are synthetic.

[4, 5] utilized temporal information to compensate for
the missing information due to the occlusion. Choi et
al. [5] and Cheng et al. [4] leveraged temporal information
for temporally consistent mesh recovery and the occlusion-
robust 3D human pose estimation from a video, respec-
tively. [4] first estimated an incomplete 2D pose sequence,
which means several joints are labeled as occluded and their
coordinates are set to zero, from the input video. Then they
lifted the incomplete 2D pose sequence to complete 3D pose
sequence through successive 2D and 3D temporal convolu-
tional networks.

[8, 39, 40] utilized spatial attention mechanism for the
occlusion-robust system. Chu et al. [8] proposed a multi-
context, multi-resolution and hierarchical spatial attention
scheme for the 2D human pose estimation. They reweighted
the feature map through their spatial attention scheme and
boost 2D human pose estimation performance. Zhu et
al. [40] first estimated a spatial attention map and multiply
it by the feature map to filter out the features of occluded
regions. Then they used inter-feature correlations through
a shared structural matrix in order to recover missing fea-
tures. Zhou et al. [39] also estimated the spatial attention
map to filter out features of occluded regions. Then they
recovered features through dilated convolutions.

Ours is related to the spatial attention mechanism; how-
ever, there are two main differences compared to the above
spatial attention mechanism-based methods. First, the
above methods are mostly designed for 2D human body
pose estimation, which is less ambiguous than 3D hand
mesh estimation that suffers from depth ambiguity and se-
vere occlusions by objects. Second, we propose a new fea-
ture injection mechanism, which produces highly rich fea-
tures even when hands are severely occluded.
3D hand mesh estimation under hand-object interac-
tion scenarios. After hand object interaction benchmark
datasets, such as HO-3D [13] and FPHA [11], had been re-
leased, several studies [13–15, 23] have been conducted on
these datasets. Hasson et al. [15] proposed novel losses to
reflect physical constraints for interacting hand and object.
Hampali et al. [13] detected 2D joint locations and fitted a
hand model (i.e., MANO [33]) parameters by minimizing
their loss function. Hasson et al. [14] leveraged a photo-
metric consistency between neighboring frames. They esti-
mated mesh for hand and object and rendered it to regress
warping flow. Then they applied a pixel-level loss to en-
force photometric consistency between a reference frame
and warped frame by the regressed flow. Liu et al. [23] pro-
posed a contextual reasoning module that enhances object
representations by utilizing interaction between the hand

and object. Most of the above methods focused on mod-
eling interactions between hands and objects. On the other
hand, we firstly introduce a novel feature injection mecha-
nism for the occlusion-robust 3D hand mesh estimation.
Transformers. Transformers [35] showed superior results
on natural language processing (NLP). Recently, vision re-
searchers have applied Transformers to various applica-
tions, such as object detection [1], image classification [9]
and human texture estimation [36]. In the field of 3D hu-
man pose and shape estimation, [17, 21, 37, 38] designed
Transformer-based modules. Huang et al. [17] proposed
Transformer-based networks which estimate 3D hand pose
from 3D hand point cloud. Lin et al. [21] adopted a Trans-
former to model global vertex-to-vertex interactions and re-
constructed 3D human mesh from a single RGB image.
Zheng et al. [38] employed spatial and temporal Transform-
ers for 3D human pose estimation in videos. Yang et al. [37]
utilized a Transformer to capture image-specific spatial de-
pendencies between keypoints and estimated 2D human
pose. Recently, Liu et al. [23] proposed a Transformer-
based contextual reasoning module. When an object is in-
teracting with a hand in the input image, the contextual rea-
soning module enhances object regions’ features by utiliz-
ing hand regions’ features. The enhanced object feature is
used only for the 6D object pose estimation, not for the 3D
hand mesh estimation. Liu et al. [23] is the most relevant
work with ours; however, their contextual reasoning mod-
ule is used only for the 6D object pose estimation. On the
other hand, our injected features are used for the 3D hand
mesh estimation.

3. HandOccNet
In Figure 2, we provide an overall pipeline of our Han-

dOccNet for 3D hand mesh estimation. Our HandOccNet
consists of backbone, FIT, SET and regressor.

3.1. Backbone

The backbone extracts feature F and necessity map M
from a hand images I ∈ R512×512×3. We first feed the
hand image I to ResNet50 [16]-based FPN [22] and re-
size the output of FPN, which produces a feature map F ∈
R32×32×256. Then, we obtain a necessity map M from the
feature map F. We build three consecutive convolution lay-
ers, followed by the sigmoid function to estimate the neces-
sity map M without supervision so that feature importance
could be predicted from learning. The necessity map M
represents scores according to spatially varying importance,
which is caused by redundant information (i.e.objects and
background) in feature F. Using the necessity map M, we
separate the feature map F into primary feature FP and sec-
ondary feature FS with sum-to-one constraints:

FP = F⊗M,
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Figure 2. The overall architecure of HandOccNet, which consists of backbone, FIT, SET, and regressor. Our HandOccNet extracts primary
feature FP and secondary feature FS using a spatial attention mechanism. Then, it uses FIT to inject the information of the primary
feature FP into the secondary feature FS. SET refines the output of FIT via self-attention machnism. Finally, regressor produces MANO
parameters. The final 3D hand mesh is obtained by forwarding the MANO parameters to MANO layer. The cross mark in a circle represents
an element-wise multiplication.
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Figure 3. The overall pipeline of FIT. FIT injects the primary fea-
ture FP into the secondary feature FS using softmax-based atten-
tion module and sigmoid-based attention module.

FS = F⊗ (1−M).

⊗ denotes element-wise multiplication. Note that FP con-
tains hand regions’ information, which is primarily used for
hand mesh estimation and FS contains occluded regions’
information which is not directly used for hand mesh esti-
mating. FP and FS are utilized as query, key, and value for
the following FIT.

3.2. Feature injecting transformer (FIT)

The illustration of FIT is shown in Figure 3. FIT is a
Transformer-based module which takes two features, FP
and FS, and injects the information of FP into FS by
considering their correlation. We adopt two sub-modules
in the FIT called the softmax-based attention module and
sigmoid-based attention module. The different role of each
module is described as follows.
Softmax-based attention module. The softmax-based at-
tention module finds the most relevant information of the
primary feature FP from the secondary feature FS. This can
be thought as searching for the related hand information in
the primary feature FP from the occlusion. Some object
information, causing occlusion, can have strong correlation

with hand information so that FS can tell where to inject
the primary feature FP. Therefore, while previous works
utilized only FP and suppressed FS to concentrate on hand
information, we use FS as a means of dragging and using
FP.

We extract query qsoft from FS and key ksoft from FP
by two 1× 1 convolution layer. Then we reshape the query
and key to dimension R1024×256, where 1024 represents the
multiplication of width and height of FP and FS. By re-
calling the attention mechanism of the previous Transform-
ers [9,23,35], the softmax-based attention module generates
the correlation map Csoft ∈ R1024×1024 from the softmax
function after the matrix multiplication of query qsoft and
key ksoft:

Csoft = softmax(
qsoftksoft

T√
dksoft

), (1)

where dksoft = 256 denotes the feature dimension of the
key ksoft. The correlation map Csoft indicates how much
information is related between each pixel of query qsoft and
key ksoft. In other words, Csoft can be utilized to find which
information of FP to use to fill the information of FS. How-
ever, using only softmax for the activation is limited in han-
dling correlation when the overall key information is not
related to the specific query pixel. For example, some in-
formation (i.e.background) in secondary feature FS can be
not related to the overall FP as in Figure 4e so that the multi-
plication result before the softmax function might show low
values for all elements of key ksoft as shown in Figure 4f.
Nevertheless, the softmax function approximates an abso-
lutely small number, which is relatively larger than others,
to a high score. Therefore, as shown in Figure 4g, unde-
sired high correlation can occur from some relatively high
elements, which are absolutely low. To use only the advan-
tages seen in Figure 4c, which properly displays the cor-
relation based on high multiplication result 4b, and handle
the problems shown in Figure 4g, we build an additional
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(a) Input image (I) (b) Multiplication
result

(c) Csoft (d) C

(e) Input image (I) (f) Multiplication
result

(g) Csoft (h) C

Figure 4. (a) and (e): red points represent example locations of
query qsoft overlayed on the input image. (b) and (f): multiplica-
tion between the red points of query qsoft (shown in (a) and (e),
respectively) and all elements of key ksoft. (c) and (g): Csoft cal-
culated from (b) and (f), respectively, by applying a softmax func-
tion. (d) and (h) : C calculated from element-wise multiplication
of sigmoid-based correlation map sig and Csoft.

sigmoid-based attention module to filter the undesired high
correlation score.
Sigmoid-based attention module. The sigmoid-based at-
tention module filters the undesired high correlation by gen-
erating a correlation map between each query pixel and
the global key information. We extract additional key-
query pair, ksig and qsig, with same process of extracting
ksoft and ksoft. Then, the module generates the correlation
map Csig ∈ R1024×1 as follows:

Csig = sigmoid(pool(
qsigksig

T√
dksig

)), (2)

where pool denotes average pooling to aggregate correla-
tion between each query qsig and all elements of key ksig.
dksig = 256 denotes the feature dimension of the key ksig.
The average pooling along the key dimension can make the
correlation map Csig robust to noisy correlations. We ob-
served that removing the pooling in our sigmoid-based at-
tention module makes our HandOccNet diverge during the
training.

Unlike softmax function, which normalizes input ele-
ment to a probability distribution considering the other el-
ements of input, sigmoid only concentrates on normalizing
a single element to a probability. Therefore, the sigmoid
function does not suffer from the undesired high correlation
problem of the softmax function by producing small atten-
tion scores from the small numbers of the multiplication re-
sult. We obtain our final correlation map C ∈ R1024×1024

by using both correlation map from sigmoid and softmax
based module, Csoft and Csig like below:

C = Csoft ⊗ Csig.

Conv. Softmax FC layer ReLU

Dropout
Element-wise

add.
Matrix-matrix

mult.

Figure 5. The overall pipeline of SET. SET refines the feature FFIT

with self-attention mechanism.

Figure 4f, 4g, and 4h show the effectiveness of the corre-
lation map from the sigmoid-based attention module. Fig-
ure 4g shows high correlations although Figure 4f has small
multiplication results, which represents that Figure 4g suf-
fers from the undesired high correlations. By multiplying
Csig to Figure 4g, we fix the undesired high correlations, as
shown in Figure 4h.
Feature injection. Using the correlation map C, we inject
the hand information to the proper occluded region. Please
note that we use the word “injection” because, unlike typi-
cal Transformers [35] that use query information in output
with residual connection, the query information disappears
and the information of value is injected into the empty lo-
cations. We get value v ∈ R1024×256, which represents
the source information indexed by the keys in Transformer,
from FP with a 1x1 convolution and flattening its spatial di-
mension. Then, we inject the value into the low importance
region to obtain a residual feature RFIT ∈ R1024×256 like
below:

RFIT = Cv. (3)

Afterward, we feed RFIT into a feed-forward module. The
feed-forward module consists of a two-layer MLP and layer
normalization with a residual connection between its input
and output. We further add a residual connection between
its output and the primary feature FP, which already con-
tains essential information for hand mesh estimation. FIT’s
output feature FFIT ∈ R32×32×256 is obtained like below:

FFIT = FP + ψ(RFIT) + ψ(MLP(LN(RFIT))),

where ψ denotes a reshaping function that reshapes the in-
put feature to R32×32×256. MLP and LN denote the MLP
module and layer normalization layer, respectively.

3.3. Self-Enhancing transformer (SET)

The illustration of SET is shown in Figure 5. SET re-
fines the feature FFIT by referencing the distant information
from feature FFIT with self-attention. Different from the
FIT which concentrates on injecting primary feature FP into
secondary feature FS, SET utilizes self-attention of FFIT by
extracting the query q′, key k′, and value v′ from the same

1500



feature FFIT with three 1x1 convolution layers. As SET per-
forms self-attention, there is no existence of case that over-
all key information is not related to the query pixel because
each query pixel is at least correlated to itself. Therefore, in-
stead of using the sigmoid-based attention module which is
used to filter the undesired high correlation, we only adopt
the softmax-based attention module to obtain a correlation
map in SET. SET follows the same pipeline of the softmax-
based attention module in FIT except a residual connection
between query q′ and the multiplication of correlation map
and value v′. The module in FIT does not have the resid-
ual connection as its goal is to “replace” the query with the
value for the feature injection. On the other hand, as the
goal of SET is enhancing the input feature, not the injection,
we add the residual connection, following previous Trans-
formers [35]. The output of SET is denoted by FSET. Two
or more SET do not have much effect in our experiment be-
cause sufficient enhancement is already occurred in the first
SET; therefore, we use one SET after the FIT.

3.4. Regressor

The regressor produces MANO pose and shape parame-
ters, and the final 3D hand mesh is obtained by forwarding
the MANO parameters to MANO layer. First, a single block
of hourglass network [31] takes enhanced feature FSET as
input and outputs 2D heatmaps for each joint H. Then, four
residual blocks [16] takes a concatenation of the enhanced
hand feature FSET and the 2D heatmap H. Finally, the out-
put of the residual blocks are vectorized into a 2048 dimen-
sional vector and passed to fully-connected layers, which
predict MANO pose parameters θ ∈ R48 and shape param-
eters β ∈ R10. We multiplied the joint regression matrix to
a 3D mesh in rest pose and applied the forward kinematics
to get the final 3D hand joints coordinates and obtained the
final 3D hand mesh V ∈ R778×3.

To train our HandOccNet, we minimize a loss function,
defined as a combination of L2 distances between the pre-
dicted and ground truths H, θ, β, V, and J3D. J3D denotes
a 3D hand joint coordinates, obtained by multiplying a joint
regression matrix to 3D hand mesh V, where the matrix is
defined in MANO.

4. Experiments

4.1. Implementation details

All implementations were done with PyTorch [32]. We
use Adam optimizer [19] with batch size 24 for our training.
On HO-3D and FPHA, each model was trained with anneal-
ing the learning rate at every 10th from the initial learning
rate 10−4. All other details will be available in our codes.

Architectures Joint Mesh F@5 F@15

Identity 10.6 10.0 52.5 94.9
Residual blocks 10.2 9.8 51.0 95.3

FIT 9.4 9.2 54.3 96.0
SET 9.8 9.6 52.6 95.3

FIT + SET (Ours) 9.1 8.8 56.4 96.3

Table 1. Comparison of models with various architectures on HO-
3D.

(a) Input image (I) (b) Wo. FIT and SET (c) W. FIT and SET
(Ours)

Figure 6. Comparisons between models without and with FIT and
SET on HO-3D.

4.2. Datasets and evaluation metrics

HO-3D. The HO-3D dataset [13] is a hand-object interac-
tion dataset which contains challenging occlusions. This
dataset provides RGB images with MANO-based hand
joints and meshes, and camera parameters. The results on
the test set can be evaluated via an online submission sys-
tem.

First-Person Hand Action (FPHA). The FPHA
dataset [11] contains egocentric RGB-D videos cap-
turing a wide range of hand-object interactions. While 3D
hand pose annotations are available in all frames, 6D object
pose annotations are available in a small subset of the entire
dataset. For the fair comparison, we follow the same train
and test set split as previous works [14, 23].

Evaluation metrics. For HO3D, we report the standard
metrics, such as mean joint error and mesh error in mm and
F-scores, returned from the official evaluation server. For
FPHA, we report the mean joint error in mm. All metrics
are obtained after the procrustes alignment. Furthermore,
as results before procrustes alignment are also important,
we also show joint error before procrsutes alignment on the
HO3D dataset in the supplementary material.
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(a) Input image (I) (b) Primary feature (FP)

(c) Output of FIT (FFIT) (d) Output of SET (FSET)

Figure 7. Visualization of the feature map. Our FIT successfully
injects information into the occluded region and SET makes richer
information in the occluded region by self-enhancing.

4.3. Ablation study

FIT and SET. Table 1 shows that using our FIT and SET
consistently improves all metrics, which demonstrates their
benefits. Figure 6 further shows that FIT and SET improve
the accuracy of 3D hand mesh when severe occlusions are
included in the input image. For the comparison, we de-
sign four variants. All the variants have the same backbone
and regressor, shown in Figure 2, and different components
between the backbone and regressor. The first and second
ones have a similar pipeline with that of conventional spa-
tial attention mechanism. The first one passes the primary
feature directly to the regressor, and the second one passes
the primary feature to six residual blocks [16] without in-
troducing any Transformer-based modules. They produce
worse results than ours, which indicates that our newly in-
troduced feature injection mechanism using two Transform-
ers is highly beneficial. The third and fourth variants solely
use one of FIT and SET, which produce worse results than
ours. This demonstrates the efficacy of architecture of our
HandOccNet using a combination of both FIT and SET.

Figure 7 shows how our FIT enhances the feature of oc-
cluded regions. Initially, red boxes in Figure 7b lack hand
information due to the occlusion. Then, FIT injects hand
information into the occluded region, which results in solid
activation at the occluded region (red boxes), as shown in
Figure 7c. Furthermore, SET enhances the information to
obtain richer representation for occlusion-robust 3D hand
mesh estimation, as shown in Figure 7d.
Architecture of FIT. Table 2 shows that our combination
of softmax-based and sigmoid-based attention modules in
FIT achieves the best results in all metrics. The sigmoid-

FIT architectures Joint Mesh F@5 F@15

Softmax attn. 9.5 9.1 54.5 95.9
Softmax attn. + Softmax attn. 9.6 9.2 53.6 95.9

Softmax attn. + Sigmoid attn. (Ours) 9.1 8.8 56.4 96.3

Table 2. Comparison of models with various FIT architectures on
HO-3D.

Settings Joint Mesh F@5 F@15

Residual connection with qsoft 9.5 9.1 55.0 96.0
Residual connection with qsig 9.7 9.3 53.3 95.7

Without residual connections (Ours) 9.1 8.8 56.4 96.3

Table 3. Comparison between models that have and do not have
residual connections with query in FIT on HO-3D.

SET architectures Joint Mesh F@5 F@15

Identity 9.4 9.2 54.3 96.0
Residual blocks 9.6 9.2 54.4 95.9

Single Transformer (Ours) 9.1 8.8 56.4 96.3
Two Transformers 9.2 8.9 56.2 96.3

Table 4. Comparison of models with various SET architecture on
HO-3D.

based one filters the undesired high correlation, as shown
in Figure 4. Compared to ours, using only softmax-based
one like standard Transformer suffers from the undesired
high correlation, which results in worse results. We also
report the results of a combination of two softmax-based
ones. This combination produces worse results than using
a single softmax-based one, which indicates simply stack-
ing the softmax-based ones cannot fix the undesired high
correlations.
Feature injection in FIT. Table 3 shows that removing the
two residual connections achieves the best results. The first
residual connection is a connection between the query of
the softmax-based attention module qsoft and the residual
feature RFIT. The second one is a connection between the
query of the sigmoid-based attention module qsig and the
residual feature RFIT. Unlike standard Transformers, our
FIT does not have the residual connection between a query
and residual feature, which is a multiplication of the corre-
lation map and value (see Eq. 3). This is because our FIT is
designed to “inject” the information of value into the loca-
tion of query; therefore, query is used only for the correla-
tion map computation (see Eq. 1 and 2). The comparisons
show that the residual connections are harmful for the fea-
ture injection, which results in worse performance.
Architecture of SET. Table 4 shows that designing SET as
a single Transformer achieves the best results, which vali-
dates our design choice of SET. For the demonstration, we
design three variants that have different SET architectures.
The first one does not introduce any learnable modules in
SET and just set its input feature FFIT to the output feature
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Figure 8. Qualitative comparison of the proposed HandOccNet and state-of-the-art 3D hand mesh estimation methods [14, 23] on HO-3D.

Methods Joint Mesh F@5 F@15

Pose2Mesh [6] 12.5 12.7 44.1 90.9
Hasson et al. [14] 11.4 11.4 42.8 93.2
I2L-MeshNet [26] 11.2 13.9 40.9 93.2
Hasson et al. [15] 11.1 11.0 46.0 93.0

Hampali et al. [13] 10.7 10.6 50.6 94.2
METRO [21] 10.4 11.1 48.4 94.6
Liu et al. [23] 10.2 9.8 52.9 95.0

HandOccNet (Ours) 9.1 8.8 56.4 96.3

Table 5. Comparison with state-of-the-art methods on HO-3D. PA
denotes Procrustes Alignment.

FSET. The comparison with ours shows that the absence of
learnable modules in SET produce worse results than ours,
which indicates that additional feature processing is neces-
sary. The second one uses a series of local feature extractor,
which consists of three residual blocks [16]. The compari-
son shows that adding such local feature extractors produces
worse results than ours and even worse than the first variant
that does not introduce any learnable modules. This is be-
cause the newly injected features in the input feature FFIT
are not locally associated. As the feature injection is per-
formed by Transformers in FIT, distant features can be in-
jected. Therefore, the injected features can have very differ-
ent information from features of nearby pixels. Due to such
locally non-associated features, the local feature extractors
can have difficulty in learning local patterns, which results
in worse performance. The third one uses two Transform-
ers, which achieves slightly worse results than our single
Transformer-based module. This is because a single Trans-
former already enhances the feature sufficiently so that the
additional Transformer has a marginal effect on enhancing
the input feature.

4.4. Comparisons with the state-of-the-art methods

Table 5 and 6 show that our HandOccNet achieves the
best results on HO-3D and FPHA, respectively. Figure 8
shows that our HandOccNet produces much better results
than state-of-the-art methods on HO-3D. As shown in the

Methods 3D joint error

I2L-MeshNet [26] 21.2
Hasson et al. [14] 18.0

Liu et al. [23] 16.0
Hasson et al. [15] 14.9

HandOccNet (Ours) 10.8
Table 6. Comparison with state-of-the-art methods on FPHA.

figure, our HandOccNet estimates global rotation of the
hand accurately, even under the severe occlusion. Over-
all, our HandOccNet outperforms state-of-the-art methods
on HO-3D and FPHA, which contain diverse hand-object
occlusions. The results are consistent with the ablation
study, which shows the proposed feature injection mecha-
nism. Moreover, we show comparisons on larger dataset,
Dex-YCB [2], to justify the efficacy of our HandOccNet in
supplementary material.

5. Conclusion
We present HandOccNet, a novel 3D hand mesh esti-

mation framework that is robust to occlusions. Our Han-
dOccNet utilizes a feature injection mechanism that makes
feature map robust to occlusion by properly injecting the in-
formation of primary features into the location of secondary
features. To this end, we design two successive Trans-
formers: FIT and SET. Our experimental results show that
our method achieves the state-of-the-art performance on 3D
hand mesh benchmarks that contain severe occlusions.
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