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Abstract

We propose Styleformer, a generator that synthesizes im-
age using style vectors based on the Transformer structure.
In this paper, we effectively apply the modified Transformer
structure (e.g., Increased multi-head attention and Pre-
layer normalization) and introduce novel Attention Style
Injection module which is style modulation and demodu-
lation method for self-attention operation. The new gen-
erator components have strengths in CNN'’s shortcomings,
handling long-range dependency and understanding global
structure of objects. We present two methods to generate
high-resolution images using Styleformer. First, we apply
Linformer in the field of visual synthesis (Styleformer-L),
enabling Styleformer to generate higher resolution images
and result in improvements in terms of computation cost and
performance. This is the first case using Linformer to im-
age generation. Second, we combine Styleformer and Style-
GAN?2 (Styleformer-C) to generate high-resolution compo-
sitional scene efficiently, which Styleformer captures long-
range dependencies between components. With these adap-
tations, Styleformer achieves comparable performances to
state-of-the-art in both single and multi-object datasets.
Furthermore, groundbreaking results from style mixing and
attention map visualization demonstrate the advantages
and efficiency of our model.

1. Introduction

Generative Adversarial Network (GAN) [21] is one of
the widely used generative model. Since the appear of DC-
GAN [43], convolution operations have been considered
essential for high-resolution image generation and stable
training. Convolution operations are created under the as-
sumption of the locality and stationarity of the image (i.e.,
inductive bias), which is advantageous for image process-
ing [37]. Through convolution neural networks (CNNi)
with this strong inductive bias, GAN have efficiently gen-
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erated realistic, high-fidelity images.

However, drawbacks of CNNs clearly exist. Local re-
ceptive field of CNNs makes model difficult to capture long-
range dependency and understanding global structure of ob-
ject. Stacking multiple layers can solve this problem, but
this leads to another problem of losing spatial information
and fine details [55]. Moreover, sharing kernel weights
across locations leads to unstable training when the pattern
or styles differ by location in the image [56]. This is also
related to the poor quality of generated structured images
or compositional scenes (e.g., outdoor scenes), unlike the
generation of a single object (e.g., faces)

In this paper, we propose Styleformer, a generator that
uses style vectors based on the Transformer structure. Un-
like CNNs, Styleformer utilizes self-attention operation
to capture long-range dependency and understand global
structure of objects efficiently. Furthermore, we overcome
computation problem of Transformer and show superior
performance not only in low-resolution but also in high res-
olution images. Specifically, we introduce the following
three models:

1) Styleformer - The basic block of Styleformer is based
on Transformer encoder, so we introduce components that
need to be changed for stable learning. Inspired by Mo-
bileStyleGAN [3], we enhance the multi-head attention in
original Transformer by increasing the number of heads, al-
lowing model to generate image efficiently. We also modify
layer normalization, residual connection, and feed-forward
network (Section 3.2). Moreover, we introduce novel atten-
tion style injection module, suitable style modulation, and
demodulation method for self-attention operation (Section
3.3). This design allows Styleformer to generate image sta-
bly, and enables model to handle long-range dependency
and understand global structures.

2) Styleformer-L - We sidestep scalability limitation
arising from the quadratic mode of attention operation
by applying Linformer [50] (Styleformer-L). As such,
Styleformer-L. can generate high-resolution images with
linear computational costs. This paper is the first case to ap-
ply Linformer in the field of visual synthesis (Section 3.4).
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3) Styleformer-C - We further combine Styleformer and
StyleGAN2, applying Styleformer at low resolution and
style block of StyleGAN2 at high resolution (Styleformer-
C). As can be seen from our experiments and analysis (e.g.,
style mixing and visualizing attention map), we show that
Styleformer-C with the structure above can generate com-
positional scenes efficiently, and showing flexibility of our
model. In detail, we prove that Styleformer in low resolu-
tion help model to capture long-range dependency between
components, and style block in high resolution help model
to refine the details of each components such as color or
texture. This novel blending structure enables fast training,
which is the advantage of StyleGAN2, while maintaining
the advantages of Styleformer that can generate structured
images.(Section 4).

Styleformer achieves comparable performances to state-
of-the-art in both single and multi-object datasets. We
record FID 2.82 and IS 10.00 at the unconditional setting
on CIFAR-10. These results outperform all GAN-based
models including StyleGAN2-ADA [32] which recently
recorded state-of-the-art. As can be expected, Styleformer
show strength especially in multi-object images or com-
positional scenes generation (e.g., CLEVR, Cityscapes).
Styleformer-C records FID 11.67, IS 2.27 in CLEVR, and
FID 5.99, IS 2.56 in Cityscapes, showing better perfor-
mance than pure StyleGAN2.

2. Related Work

After origion of GAN [21], various methods [2,31,41,
42] have been proposed to enhance its training stability and
performance. As a result, fidelity and diversity of the gen-
erated images have dramatically improved. In addition to
image synthesis task, GAN has been widely adopted in vari-
ous tasks, such as image-to-image translation [27,58], super
resolution [38], image editing [55], and style transfer [7].
In particular, StyleGAN-based architectures have been ap-
plied for various applications [ 16,59,60]. However, since all
of these models are based on convolution backbones, they
have met with only limited success on generating complex
or compositinal scenes [29].

Transformer [49] was first introduced to the natural lan-
guage processing(NLP) domain, achieving a significant ad-
vance in NLP. Recently, there were efforts to utilize Trans-
former in the computer vision field [4, 12,57]. Using huge
amounts of data and a transformer module, ViT [12] ob-
tains comparable result with state-of-the-art model in the
existing CNN based image classification model [35,47]. In-
spired by [12], various models such as [22,39,53] emerges
based on this structure. There have also been attempts to
utilize transformer for tasks such as video understanding [4]
and segmentation [57] as well as image classification. Even
in GAN, there have been attempts to utilize Transformer:
GANformer [26] proposes a bipartite Transformer struc-

Figure 1. High-resolution compositional scenes generated by
Styleformer.

ture and applies it to StyleGAN [33, 34]. With this struc-
ture, GANformer successfully advance the generative mod-
eling of structured images and scenes, which have been
challenging in existing GAN. However, they use a bipartite
attention, differ from the self-attention operation. Trans-
GAN [28] demonstrates a convolution-free generator based
on the structure of vanilla GAN, which doesn’t show good
performance compared to state-of-the-art model.

Unlike these studies, Styleformer generate images with
self-attention operation using style vector and showing
comparable performance state-of-the-art models [33, 34].
Previous methods (TransGAN) mainly use pre-defined
sparse attention patterns for efficient attention mechanism,
but we explore the low-rank property in self-attention. Our
model can generate high resolution images (512 x 512)
with reduced computation complexity, while GANformer
and TransGAN show a maximum of 256 x 256 image syn-
thesis.

3. Styleformer
3.1. Styleformer Architecture

Figure 2a shows the overall architecture of Styleformer,
and in Figure 2b we show Styleformer encoder network,
the basic block of Styleformer. Like existing synthesis net-
work of StyleGAN, our generator is conditioned on a learn-
able constant input. The difference is that the constant input
(8 x 8) is flattened (64) to enter the Transformer-based en-
coder. Then the input which is combined with learnable po-
sitional encoding passes through the Styleformer encoder.
Styleformer encoder is based on Transformer encoder, but
there are several changes to generate an image efficiently,
which will be discussed in Section 3.2.

After passing several encoder blocks in each resolution,
we proceed bilinear upsample operation by reshaping en-
coder output to the form of a square feature map. After
upsampling, flatten process is carried out again to match
the input form of the Styleformer encoder. This process is
repeated until the feature map resolution reaches the target
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Figure 2. (a) Overall Architecture of Styleformer. (b) Styleformer encoder structure, which is the basic block of Styleformer.

image resolution. For each resolution, the number of the
Styleformer encoder and hidden dimension size can be cho-
sen as hyperparameters.

3.2. Styleformer Components from Transformer

Increased Multi-Head Attention Modern vision archi-
tectures allow communications between different channels
and different spatial locations (i.e., pixels) [48]. Con-
ventional CNNs perform the above two communications
at once, but these communications can be clearly sepa-
rated like depthwise separable convolutions [24]. We also
separate the pixel-communication (self-attention), channel-
communication operations (multi-head integration) in the
Transformer encoder. However, in depthwise separable
convolutions, distinct convolution kernels are applied to
each channel, unlike the self-attention operation share only
one huge kernel A (i.e., attention map). With same kernel
applied to each channel, diversity in generated image can be
decreased.

We overcome this problem by increasing the number of
heads of multi-head attention (Increased multi-head atten-
tion). Then, the created attention map will be different for
each head, and so the kernel applying operation. Then the
attention maps will be created for each head, making the

channels in each head meet different kernels. However, in-
creasing the number of heads too much may cause atten-
tion map to not be properly created, resulting in poor per-
formance. We demonstrate experimentally that increasing
the number of heads improves performance only when the
depth is at least 32, as shown in Figure 3. Therefore, we fix
the depth to 32 for all future experiment. More details about
increased multi-head attention can be found in Appendix C.

Pre-Layer Normalization We change the position of
layer normalization in Transformer encoder. The layer nor-
malization of the existing Transformer comes after a lin-
ear layer that integrates multi-heads (Post-Layer normaliza-
tion). We hypothesis that the role of layer normalization
in a Transformer is the preparation of generating an atten-
tion map. If we perform layer normalization at the end of
Styleformer encoder (Layernorm B in Figure 4), style mod-
ulation is applied before making query and key, which can
disturb learning attention map. This is supported by ab-
lation study and attention map analysis in Table 1 and Ap-
pendix B, respectively. Therefore, to solve this problem, we
proceed layer normalization before operation making query,
key and value (Pre-Layernorm in Figure 2b)
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Figure 3. It shows FID on CIFAR-10 with one layer Styleformer,
which hidden dimension size is fixed as 256 and 32, respectively.
Both experiments show the best result when the depth is 32.
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Figure 4. Styleformer encoder structure for ablation study, includ-
ing residual connection, layer normalization, attention style injec-
tion.

Modified Residual Connection Unlike the Transformer
encoder, input feature map is scaled by style vector (Mod in-
put in Figure 2b) in Styleformer encoder. We hence find the
residual connection suitable for scaled input. After ablation
study, we apply residual connection like Modified Residual
in Figure 2b. Demodulation operation is additionally per-
formed in residual connection, which will be described in
Section 3.3. Table 1 presents ablation details of residual
connection.

Eliminating Feed-Forward Network As can be seen Ta-
ble 1, we remove the feed-forward structure because elimi-
nating feed forward structure makes the model perform bet-
ter and more efficient.

3.3. Attention Style Injection

Unlike vanilla GAN, StyleGAN generates an image with
layer-wise style vectors as inputs, enabling controllable
generation via style vectors, i.e., scale-specific control.
Specifically, style vector scales the input feature map for
each layer, i.e., style modulation, amplifying certain fea-
ture maps. For scale-specific control, this amplified effect
must be removed before entering the next layer. StyleGAN
allows scale-specific control through a normalization oper-
ation called AdaIN operation [13, 14, 18, 25], which nor-
malizes each feature map separately, then scale and bias
each feature map with style vector. StyleGAN?2 is an ad-
vanced form of StyleGAN and addresses the artifact prob-
lem caused by the AdaIN operation, solving it by demod-
ulation operation. While the AdaIN operation normalize
the output feature map directly, demodulation operation
is based on statistical assumptions about the input feature
map. For details, similar to the goal of normalization oper-
ation, demodulation operation aims to have an output fea-
ture map with a unit standard deviation while assuming that
the input feature maps have a unit standard deviation, i.e.,
statistical assumption. Our goal is to design a Transformer-
based generator that generates images through style vector
while enabling scale specific control. Therefore, we pro-
pose style modulation, demodulation method for the self-
attention operation, i.e., Attention style injection.

Modulation for Self-Attention Just as the input feature
map is scaled by style vector in the style block of Style-
GAN?2, the input feature map in the Styleformer encoder is
also scaled by style vector (Mod Input in Figure 2b). But
unlike convolution operation in StyleGAN2, there are two
steps in self-attention operation: dot product of query and
key to create an attention map (i.e. kernel), weighted sum of
the value with calculated attention map. We hypothesis that
the style vector applied to the operation in each step should
be different. Therefore, we perform style modulation twice
as in Figure 2b (Mod Input, Mod Value). This hypothesis
is supported in Table 1. In Figure 2b, Style Input is a style
vector for input, and Style Value is a style vector only for
value. Two style vectors are created through common map-
ping networks as in StyleGAN but different learned affine
transformations.

Demodulation for Query, Key, Value As shown in Fig-
ure 2b, Styleformer encoder creates query (Q), key (K), and
value (V) through linear operation to the input feature map
scaled with Style Input vector. After that, V' will be mod-
ulated with Style Value vector additionally, so the demodu-
lation operation for removing scaled effect of Style Input is
clearly required. Also, we observe that when an attention
map is created with ), K from input scaled by Style In-
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Method

‘Stylel Style2  Stylel=Style2 Residual A Residual B Residual C Layernorm A Layernorm B Layernorm C = Feed-Forward  FID

Baseline \ o O X X X o X X (0} X 8.56

o X X X (6] X X O X 11.01

Attention Style Injection X (6] - X X (6] X X (6] X 11.40
o (0} O X X (6] X X (0} X 10.27

o O X X X X X X (0} X 19.09

Residual Connection (@] (6] X (6] X X X X (6] X 14.70
o O X X O X X X (0} X 9.94

o o O X X X o O X X X 9.00

Layer Normalization o o % % X o X o X X 10.96
Feed-Forward \ (0] [0} X X X (0] X X [0} (0} 14.75

Table 1. Ablation details of Styleformer components. Ablation study was conducted using small version of Styleformer with CIFAR-10
dataset, trained for 20M images. See Appendix A for further implementation details.

put, specific value in the attention map becomes very large,
demonstrated in Appendix B. This prevents the attention
operation from working properly. We sidestep this prob-
lem with demodulation operation to (), K, before creating
attention map. Eventually, demodulation operation is all re-
quired for @, K, and V.

Let’s first look at the style modulation to the input, i.e.,
Mod Input. Each flattened input feature map is scaled
through a style vector, which is equivalent to scaling the
linear weight:

wi; = i - Wij, (D

where w is original linear weight to make (@, K, V') from
flattened input feature map, and w’ is modulated linear
weight. s; is ith component of style vector, which scales
ith flattened input feature map, and j means the dimen-
sion of (@, K, V). Assuming that flattened input feature
maps have unit standard deviation (i.e., statistical assump-
tion of demodulation), after passing style modulation and
linear operation, a standard deviation of output is as fol-
lows:

2)

We scale output activations for each dimension of @, K,
and V by 1/aj(i.e., demodulation), making @, K, and V'
back to unit standard deviation.

Demodulation for Encoder Output After demodulation
operation to (), K, and V, Styleformer encoder performs
style modulation to V' (Mod Value), weighted sum of V'
with attention map (Increased Multi-head Self-attention),
and then performs linear operation (Multi-Head Integra-
tion), as shown in Figure 2b. Encoder output will be input
for next encoder, so demodulation operation is necessary.
We show in Appendix D that, assuming V has a unit stan-
dard deviation (This can be assumed because of demodula-
tion for V'), the standard deviation of Styleformer encoder

output can be derived as follows:

o = \/Z A2 w2, 3)
: J

where w;k = §; - Wy, 1.e., modulated linear weight. s;
scales jth feature map of V/, and k enumerates the flattened
output feature map. Attention map A is computed same as
existing Transformer: dot products of () and K, divide each
by square root of depth, and softmax function. A;. denotes
attention score vector for [th pixel.

However, there are two problems with demodulation by
simply scaling each flattened output feature map k with
1/ 02 « (Equation 3). First, scaling output feature map &k with
1/ Ullk will normalize each pixel as a unit, different from
AdalN operation which normalizes each feature map as a
unit. Second, the attention map, which is a matrix derived
from () and K, is dependent on the input. With input depen-
dent variables, demodulation operations based on statistical
assumptions can not be applied as in [19]. Therefore we
scale the flattened output feature map k with 1/ O’; where

"

_ ! 2 . . .
o, = 4/ > Wik normalizing each feature map as a unit,

and excluding input dependent variables A;. Then the stan-
dard deviation of output activations will be

0./
o = —% = /ZA1-2~ 4
Oy )

However in this way, standard deviation of output is not
unit, rather approaching to zero when the numbers of pixels
increase, as detailed in Appendix D. To prevent this effect,
we have applied modified residual connection like Modified
Residual in Figure 2b. More specifically, we perform linear
operation to Mod Value, then perform demodulation oper-
ation (same as demodulation for query, key, value). With
these modulation and demodulation operations in residual
connection, variables with unit standard deviation are added
to the output. Therefore it helps to keep the final output ac-
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tivation having unit standard deviation, when oy, is close to
Zero.

3.4. High Resolution Synthesis with Styleformer

The main problem in applying Transformer to image
generation is the efficiency problem with image resolution.
In this section, we introduce two different techniques in
Styleformer that can generate high resolution images. We
show a method of applying Linformer, making computa-
tion complexity to linear. Then, we introduce a method of
combining Styleformer and StyleGAN2, which can obtain
the advantages of both models.

Applying Linformer to Styleformer For high-resolution
images, input sequence length of the Styleformer encoder
increases quadratically, and the standard self-attention
mechanism requires a complexity of O(n?) with respect
to the sequence length. It means attending to all pixels
for each layer is almost impossible for high-resolution im-
age generation. Therefore, we apply Linformer [50] to our
model, which projects key and value to the k& dimension
when applying self-attention, reducing the time and space
complexity from O(n?) to O(nk). We fix k to 256 and
apply Linformer to the encoder block above 32 x 32 resolu-
tion, only when n is 1024 or higher. We call this model as
Styleformer-L.

[50] explains that this new self-attention mechanism
succeeds because the attention map matrix is low-rank. We
observe this can be applied equally to the attention map
matrix in the image: in the case of images, the pixel that
needs to attend is often in a particular location, not all pix-
els(e.g. where objects are located in the image), which re-
sults in low-rank attention map matrix. Applying Linformer
creates a more dense attention map, and also reduces com-
putation. This is proved by spectrum analysis of attention
map in Section 4.2. See Appendix E for more details about
Styleformer-L.

Combining Styleformer and StyleGAN2 Even with ap-
plying Linformer, it is difficult to generate an image for ex-
tremely high resolution like 512 x 512 using only Trans-
former. We solve this problem by combining Styleformer
and StyleGAN?2 to generate a high-resolution image, and
we call this model Styleformer-C. Styleformer-C is com-
posed of Styleformer at low resolution, and style block of
StyleGAN2 at high resolution. As demonstrated in 4.1,
Styleformer encoder in low resolution help model to cap-
ture long-range dependency between components or global
shape of object, and style block in high resolution help
model to refine the details of each components or objects.
In other words, model can capture global interactions ef-
ficiently using Styleformer only at low resolution, which

leads to fast training speed. The overall architecture and
details of Styleformer-C are described in Appendix F.

4. Experiments

We only change the architecture of the generator in
StyleGAN2-ADA, i.e., synthesis network, while maintain-
ing the discriminator architecture and loss function. We use
Fréchet Inception Distance (FID) [23] and Inception Score
(IS) [44], evaluation metrics mainly used in the field of im-
age generation. We compare our model with top GAN mod-
els such as StyleGAN2-ADA [32], and model related to our
research such as TransGAN. In Section 4.1, we show per-
formance results of Styleformer in low-resolution dataset.
Section 4.2 provide evidence for a successful application of
Linformer, including performance of Styleformer-L. In Sec-
tion 4.3, we show high performance of Styleformer-C and
prove the advantage and efficiency of our model by style
mixing, and attention map visualization.

4.1. Low-Resolution Synthesis with Styleformer

Styleformer achieves comparable performance to state-
of-the-art in various low-resolution single-object datasets,
including CIFAR-10 (32 x 32) [36], STL-10 (48 x 48) [9],
and CelebA (64 x 64) [40].

As shown in Table 2, Styleformer outperforms prior
GAN-based models, in terms of FID and IS. Especially
in CIFAR-10, Styleformer records FID 2.82, and IS 10.00,
which is comparable to current state-of-the-art and outper-
forming StyleGAN2-ADA-tuning. These results indicates
that the Styleformer encoder has been modified to generate
image successfully. Implementation details are in Appendix
A.

4.2. Applying Linformer to Styleformer

We experiment our method at Section 3.4 which ap-
plies Linformer to Styleformer (Styleformer-L) on CelebA,
64 x 64 resolution, and LSUN-Church [54] dataset resized
to 128 x 128 resolution. As shown in Table 3, we find signif-
icant improvements in speed and memory and better perfor-
mance than conventional Styleformer on CelebA. Memory
performance is approximately three times more effective
and speed performance is 1.3 times better in Styleformer-L.
We also succeed in generating images of 128 x 128 resolu-
tion with the LSUN-Church dataset, which is difficult with
pure Styleformer due to expensive memory.

In addition, in the CelebA dataset, Styleformer-L shows
higher performance in terms of FID than Styleformer, im-
proving FID scores from 3.92 to 3.36. To analyze this phe-
nomenon, we extract an attention map from Styleformer for
generated CelebA images. As in [50], we apply singular
value decomposition into attention map matrix, and plot the
normalized cumulative singular value averaged over 1k gen-
erated images. As shown in Figure 6, most of the informa-
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LSUN-church and results generated by Styleformer-C on AFHQ-Cat. For more generated samples, please see Appendix G.

Cifar-10 STL-10 CelebA

Method FID | ISt Method FID | ISt Method FID |
Progressive-GAN [31] 1552 8.80+0.05 SN-GAN [42] 40.1  9.16 £0.12 PAE [5] 49.2
AutoGAN [20] 1242 855+ 0.10 | Improving MMD-GAN [51] 37.64 9.23 £+ 0.08 BEGAN-CS [6] 34.14
StyleGAN V2 [34] 11.07 9.18 AutoGAN [20] 31.01 9.16 £0.12 PeerGAN [52] 13.95
Adversarial NAS-GAN [20]  10.87  8.74 £0.07 | Adversarial NAS-GAN [17] 2698  9.63 £ 0.19 | TransGAN-XL [28] 12.23
TransGAN-XL [28] 926  9.02+0.11 TransGAN-XL [28] 18.28 1043 +£0.17 HDCGAN [11] 8.77
StyleGAN2-ADA [32] 292 9.83+£0.04 SNGAN-DCD [46] 17.68 9.33 NCP-VAE [1] 5.25
Styleformer 2.82  10.00 +0.12 Styleformer 1517 11.01 £ 0.15 Styleformer 3.92

Table 2. Comparison results between Styleformer and other GAN models on low-resolution datasets. Results of other GAN models are
collected from papers that reports their best results. We compute FID, IS in the same way as StyleGAN2-ADA, generating 50k images
and compare their statistics against the 50k images from the training set for FID, computing the mean over 10 dependent trials using 5k

generated images per trial for IS.

Dataset Model FID| Memory per GPU| Speed | Method CLEVR | Cityscapes

FID|, ISt FID| ISt
Styleformer 3.92 14668MiB 6.46

CelebA | gt e rmercL, | 3.36 <3 1MIB 193 GAN [21] 25.02 | 2.17 | 11.57 | 1.63

oo Y k-GAN [45] | 28.09 | 2.21 | 51.08 | 1.66

LSUN church y-etormer . ) p SAGAN [56] | 26.04 | 2.17 | 12.81 | 1.68
Stylef -L | 7.99 8118MiB 9.81

ylelormer ! StyleGAN2 [34] | 16.05 | 2.15 | 835 | 1.70

VQGAN [15] | 32.60 | 2.03 | 173.80 | 2.82

Table 3. Results on Styleformer-L which applies Linformer. Styleformer-C 11.67 | 227 | 599 | 256

“Memory” is measured on 4 Titan-RTX with 16 batch size per
GPU and “Speed” means seconds for processing 1k images
(sec/lkimg). We use the same hidden dimension and the num-
ber of layers in Styleformer and Styleformer-L.

32x32 Resolution 64x64 Resolution

Normalized cumulative

0 22 2 2 2 2 7 2 2 oW [
Eigenvalue index

2 2 20 2% 20 20 20 20 20 gw gn =
Eigenvalue index

Figure 6. Spectrum analysis of attention map matrix at 32, 64
resolution.We use pretrained Styleformer with CelebA dataset.

tion in the attention map matrix can be recovered from the
few large singular value, which means that the rank of at-
tention map matrix is low. With low rank attention map,

Table 4. Comparison between popular CNN based GAN models
and Styleformer-C on CLEVR and Cityscapes. We use the results
in [26] for the performance of other models.

Linformer can be applied more efficiently [50].

Therefore, we show the possibility that when applying a
self-attention operation for high-resolution images, it is not
necessary to apply attention to all pixels and provide scala-
bility to generate high-resolution images using Styleformer-
L. See Appendix E for implementation details.

4.3. Styleformer can Capture Global Interaction

We experiment our method at Section 3.4 which com-
bines Styleformer and StyleGAN2 (Styleformer-C) on
CLEVR(256x256) [30] and Cityscapes (256 x 256) [ 10] for
multi-object images and compositional scenes, AFHQ CAT
(512 x 512) [8] for high-resolution single-object images.
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StyleGAN2 source

Styleformer source

Figure 7. Style mixing experiment with Styleformer-C on CLEVR dataset. The images on the x-axis and y-axis were generated from their
respective latent codes (StyleGAN2 source and Styleformer source, respectively); the rest of the images were generated by applying styles
from Styleformer source to Styleformer at low resolution and applying styles from StyleGAN2 source to StyleGAN?2 at high resolution [33].

Figure 8. Visualizing attention map in generated CLEVR images.

As shown in Table 4, Styleformer-C records FID 11.67,
IS 2.27 in CLEVR, and FID 5.99, IS 2.56 in Cityscapes
which is comparable performance to current state-of-the-
art, and showing better performance than StyleGAN2 in
multi-object images and compositional scenes. This indi-
rectly shows that Styleformer helps model to handle long-
range dependency between components.

To show more solid evidence that Styleformer cap-
tures global interaction, We conduct style mixing [33] in
Styleformer-C. In detail, when generating new image from
CLEVR dataset, we use two different latent codes z1, 25 and
applying z; to Styleformer at low resolution and 25 to Style-
GAN?2 at high resolution. As shown in Figure 7, style cor-
responding to Styleformer (low-resolution) brings the ba-
sis for structural generation such as the location and struc-
ture of objects, while all colors or textures remain same.
On the contrary, style corresponding to StyleGAN2 (high-

resolution) brings the color and texture change, while main-
taining location and shape of objects. This results directly
prove that Styleformer controls global structure between
objects, and handles long-range dependency.

In addition, we visualize the attention map to provide
more insight into the model’s generating process. Figure 8
shows the concentration of attention to the position where
the object exists. These visualizations show that the self-
attention operation worked efficiently, enabling the model
to perform long-range interaction, overcome the shortcom-
ing of convolution operation.

5. Conclusion

We propose Styleformer, a Transformer-based genera-
tive network that is novel and effective. We propose a
method to efficiently generate images with self attention op-
eration and achieve SOTA performance on various datasets.
Furthermore, we propose Styleformer-L, which reduces
the complex computation to linear, enabling to generate
high-resolution images. We also present a method of ef-
ficiently generating a compositional scene while capturing
with long-range dependency through Styleformer-C. There
still seems to be room for improvement, such as reducing
computation cost, but we hope that our work will speed up
the application of Transformers to the field of computer vi-
sion, helping the development of the computer vision field.
However, development of the generative model can create
fake media data using synthesized face images (e.g. deep-
fake), so particular attention should be paid in the future.
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