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Abstract

Metrics for evaluating generative models aim to measure
the discrepancy between real and generated images. The
often-used Fréchet Inception Distance (FID) metric, for ex-
ample, extracts “high-level” features using a deep network
from the two sets. However, we find that the differences in

“low-level” preprocessing, specifically image resizing and
compression, can induce large variations and have unfore-
seen consequences. For instance, when resizing an image,
e.g., with a bilinear or bicubic kernel, signal processing
principles mandate adjusting prefilter width depending on
the downsampling factor, to antialias to the appropriate
bandwidth. However, commonly-used implementations use
a fixed-width prefilter, resulting in aliasing artifacts. Such
aliasing leads to corruptions in the feature extraction down-
stream. Next, lossy compression, such as JPEG, is commonly
used to reduce the file size of an image. Although designed
to minimally degrade the perceptual quality of an image, the
operation also produces variations downstream. Further-
more, we show that if compression is used on real training
images, FID can actually improve if the generated images
are also subsequently compressed. This paper shows that
choices in low-level image processing have been an under-
appreciated aspect of generative modeling. We identify and
characterize variations in generative modeling development
pipelines, provide recommendations based on signal pro-
cessing principles, and release a reference implementation
to facilitate future comparisons.

1. Introduction

With the proliferation of generative modeling techniques,
such as Generative Adversarial Networks (GANs) [24], ac-
curately discerning which methods are performing better
has become a critical aspect of the field. For visual data,
metrics such as Inception Score (IS) [59], Kernel Inception
Distance (KID) [4], and the ubiquitously-used Fréchet In-
ception Distance (FID) [26] have become standard practice
for developing and adopting models. Under the hood, these
methods evaluate the discrepancy between generated and
natural images, in a deep feature space, to capture relevant
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Figure 1. Downsampling a circle. We resize an input image (left)
by a factor of 8, using different image processing libraries. The
Lanczos, bicubic, and bilinear implementations by PIL (top row)
adjust the antialiasing filter width by the downsampling factor
(marked as ). Other implementations (including those used for
PyTorch-FID and TensorFlow-FID) use fixed filter widths, intro-
ducing aliasing artifacts (marked as ) and resemble naive near-
est subsampling. Aliasing artifacts induce inconsistencies in the
calculation of downstream metrics such as Fréchet Inception Dis-
tance [26], KID [4], IS [59], and PPL [33]. Note that antialias
flag is available in TensorFlow 2, but is set to False (default value)
for the FID calculation.

features of the two distributions. After all, at its core, gener-
ative modeling involves learning and mimicking high-order,
complex statistics of visual data.

However, we find that low-level, seemingly innocuous
operations, can induce surprisingly large discrepancies in
high-level statistics. For example, consider Figure 1. Given
the same input image, different image processing libraries
produce drastically different results. Specifically, the im-
plementations using OpenCV, TensorFlow and PyTorch li-
braries with default flags, contain severe aliasing artifacts.
Similarly, the simple act of saving images as JPEG with the
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Figure 2. Interpolation Filters. We show adaptive filters by PIL
(top) and non-adaptive filter from PyTorch (bottom). The FID
implementations in PyTorch and TensorFlow use a fixed-width bi-
linear interpolation, independent of resizing ratio. In contrast, the
proposed Clean-FID uses an implementation that follows standard
signal processing principles and adaptively stretches the filter to pre-
vent aliasing. The horizontal axes represent the spatial coordinates
and the vertical axes represents the kernel intensity.

default parameters, either when building the training dataset
or collection of generated images, adds quantization and
low-level statistical differences to the underlying data. The
differences induced cause meaningful variations when used
for evaluation protocols. As the Fréchet Inception Distance
(FID) metric [26] is the most ubiquitous [6,26,33,36,56], it is
the focus of our experiments. We offer a standard benchmark,
clean-fid (github.com/GaParmar/clean-fid), and
concrete suggestions on resizing and quantization procedures
to enable clean comparisons in future evaluation protocols.

First, we investigate the implications of image resizing.
When downsampling, signal processing techniques recom-
mend “prefiltering” the input, to prevent high-frequency ele-
ments from aliasing into the output. When the downsampling
factor is larger, the prefilter kernel should be correspondingly
stretched. However, as shown in Figure 2, the resizing func-
tion used by the FID implementations in TensorFlow and
PyTorch do not prefilter the image, resulting in aliasing arti-
facts shown in Figure 1. Resizing can occur in two locations –
during data preprocessing (training with lower resolution) or
at evaluation time (resizing to 299 resolution to compute the
FID metric). In both cases, inconsistent resizing functions in-
duce variations downstream. If used for data preprocessing,
the training data distribution itself is changed. When used
for the evaluation metric, small variations in resizing can
cause changes in subsequent feature extraction. We quantify
the effects of these inconsistencies and offer standard rec-
ommendations. Specifically, we propose to use a stronger
bicubic filter [35]; more importantly, we propose to adjust
prefiltering width based on the resizing factors, as guided by
signal processing principles.

Secondly, we investigate the implication of image com-
pression. While the JPEG protocol is a lossy compression
scheme, designed to preserve perceptual similarity to the
original [67], it can perturb an image enough to corrupt
downstream feature extraction. This affects performance
drastically and can create mismatches when comparing meth-
ods. Perhaps more surprisingly, when training images are
saved with JPEG compression, modern GANs are unable to
fully mimic the induced artifacts, and large FID improve-
ments can actually be artificially achieved by tweaking the
JPEG compression ratios when storing the generated images.
We quantify the surprising effects of this compression oper-
ation, and again offer a concrete, standardized protocol to
avoid inconsistencies and hindrances to proper evaluation.

In conclusion, we characterize the surprising importance
of low-level image processing steps, resizing and quantiza-
tion, when training and evaluating generative models, such
as GANs. We focus our experiments on the widely adopted
FID metric, and show additional results on the KID met-
ric [4] as well as IS [59] and Perceptual Path Length (PPL)
metrics [33] (in the supplement). Importantly, any metric,
present or future, that derives statistics from images undergo-
ing these processing steps, will be affected by these factors.

2. Related Work
Deep generative models. A wide range of image and
video synthesis applications [41, 50, 61, 77] have been en-
abled, as a result of tremendous progress in deep generative
models such as GANs [7, 24, 30, 33, 54], VAEs [37, 51, 56],
autoregressive models [48], flow-based models [14, 36], and
energy-based models [17, 46, 58]. It is often relatively easier
to evaluate individual model’s performance on downstream
tasks, as they have a clear target for a given input. However,
evaluating unconditional generative models remains an open
problem. It is still an important goal, as most generative
models are not tailored to any downstream task.
Evaluating generative models. The community has intro-
duced many evaluation protocols. One idea is to conduct
user studies on cloud-sourcing platforms for either assess-
ing the samples’ image quality [13, 59, 76] or identifying
duplicate images [1]. Due to the subtle differences in user
study protocols (e.g., UI design, fees, date/time), it is not
easy to replicate results across different papers. Large-scale
user studies can also be expensive, prohibiting its usage
when evaluating hundreds of model variants and checkpoints
during the development stage. Several methods propose
evaluating generative models from a self-supervised feature
learning perspective, by repurposing the learned discrimina-
tors [54] or accompanying encoders [15] for a downstream
classification task. However, the representation power of the
discriminator or encoder does not directly reflect the gener-
ators’ sample quality and diversity. In addition, not every
generative model is trained with a discriminator or encoder.
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Figure 3. Overview of the steps involved in FID. Generative modeling and evaluation involve subtleties in image pre-processing. Top:
First, the dataset may be downsampled before training (e.g., 1024→256 for FFHQ), requiring a resize (ψdata) and possibly compression (Q).
Bottom: Generated images may be saved as an unsigned 8-bit integer, resulting in a quantization and possible further compression (Q̂). FID
aims to measure how well a generative model G(z) mimics the training distribution. The calculation resizes real and generated images to
299 resolution (ψFID and ψ̂FID, respectively), extracts deep features using the Inception network [63], fits Gaussians, and takes the Fréchet
distance between two distributions. We study the effects of resizing the training images ψdata in Section 4.3, resizing to 299×299 ψFID and
ψ̂FID in Section 4.1 and the quantizations/compressions Q̂ and Q in Section 4.2.

To overcome the previous issues, an area of focus is
developing automatic metrics that directly assess the sam-
ples of generative models. Various metrics been proposed,
criticized, and modified. Commonly-used ones include
log-likelihood [24, 37], density estimate with Parzen win-
dow [24], Inception Score [59], Perceptual Path Length [33],
Fréchet Inception Distance (FID) [26], Classification Ac-
curacy Score and its early variants [55, 59], Classifier Two-
sample Tests [40, 43], precision and recall [38, 57], Kernel
Inception Distance (KID) [4], among others. Each metric
has associated pros and cons [5, 66] and none are perfect.

Among them, Fréchet Inception Distance (FID) has be-
come the most widely-used metrics, as it can model intra-
class diversity better than Inception Score. FID is also
easy and fast to compute without training additional classi-
fiers [55], and has been shown to be consistent with human
perception [26]. As a result, it has been used in recent GANs
papers [7,33,71] as well as large-scale evaluation study [44],
despite facing criticism about the fact that FID is a biased
estimator and sensitive to the number of samples used in the
evaluation [4, 10]. Our goal here is not to study which one is
a better metric. Instead, we focus our study on the popular
FID metric. Note that the resizing and quantization we study
apply to any evaluation metric that contains such operations.

Antialiasing and robustness. The study of resampling
signals is central in signal processing [49], image process-
ing [23], and computer graphics [19]. In particular, when
downsampling a signal, one must consider the Nyquist sam-
pling criterion [47] and antialias to prevent high-frequency

information from aliasing into the output. Without proper
antialiasing, in the worst case, an adversary can embed a
completely different image in the original, resulting in a
“scaling attack” [53, 69]. In convolutional network design,
antialiasing has taken form in average pooling [39] and Gaus-
sian filtering [45]. While it was replaced by operations
such as max-pooling, based on empirical performance [60],
recent works have demonstrated that antialiasing can be
compatible and improve performance in convolutional net-
works [73,79], transformers [52], NeRFs [3], and GANs [32].
Despite these advances, generative methods continue to be
detectable [8, 68], and discriminative networks continue to
be sensitive to small perturbations, such as shifts [2, 18]
and JPEG compression [25]. Achieving robustness to such
perturbations remains an open problem [65], and the prepro-
cessing steps, such as image resizing, used before feature
extraction remain consequential. We study the effect of such
steps in a generative modeling pipeline and propose a stan-
dardization following signal processing principles, in order
to facilitate easy and fair comparisons.

3. Preliminaries

In this section, we discuss several low-level image pro-
cessing steps using different popular libraries, and show that
these can have a large effect on the FID score being com-
puted. Figure 3 details the step-by-step process for both
dataset preparation and model evaluations.

3.1. Generative Modeling and Evaluation Pipeline
The Fréchet Inception Distance (FID) score aims to mea-

sure the gap between two data distributions [26], such as
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between a training set and samples from a generator.

Dataset pre-processing. We denote the original real im-
age distribution as x ∼ pdata(x), where x ∈ ZH×W×3. Note
that images are saved as 8-bit integers, represented by Z.
Training and developing large-scale GANs at the original
resolution [7,33] is often prohibitively expensive, sometimes
requiring training hundreds of models during development.
As such, developing on lower-resolution versions of the
original dataset is a common practice [42, 72, 75], such as
1024→256 on FFHQ or 256 → 128 on ImageNet.

As shown in the top branch of Figure 3, to prepare a lower-
resolution training set, one must downsample the training
set, denoted by ψdata. Note that downsampling requires an
antialiasing step according to standard textbooks [19, 49, 64]
that converts integers into a floating point number, Z → R.
A quantization step is added afterwards to cast back to Z.
This data preparation step introduces a new data distribution
of low-res real images: x ∼ pdata(x), where x ∈ ZH×W×3.

Evaluating a generator with FID. A generator G that
learns to map a latent code z ∈ N (0, I) to output images
G(z) ∈ RH×W×3 is trained on the lower resolution dataset.
A common evaluation method is passing both real and gener-
ated images through a feature extractor F , fitting a Gaussian
distribution, and measuring the Fréchet distance between
the two distributions. Deep network activations are used as
the statistics of interest, as they have been shown to corre-
spond well with human perceptual judgments [74] and are
often used as training objectives [16, 22, 29]. The feature
extractor F used for this task is an InceptionV3 model [63].
Because this model is trained on 299× 299× 3 ImageNet
image crops [12], the training and generated images are
resized denoted by functions ψFID and ψ̂FID, respectively,
before being processed. As these images may be saved in de-
velopment pipelines, different image compressions may be
applied. These operations are represented by Q for reference
images x and by Q̂ for synthesized images G(z).

f = F(ψFID(Q(ψdata(x)))), (1)

f̂ = F(ψ̂FID(Q̂(G(z)))). (2)

After the images are appropriately resized, and the features
are extracted, the mean (µ, µ̂) and covariance matrix (Σ,
Σ̂) of the corresponding set of features f and f̂ are used to
compute the Fréchet distance shown in the equation below.

FID = ||µ− µ̂||22 + Tr(Σ + Σ̂− 2(ΣΣ̂)1/2), (3)

The Tr operation calculates the trace of the matrix.The dif-
ferent choices for the resizing (ψdata, ψFID, ψ̂FID) and quanti-
zation (Q, Q̂) add potential sources of inconsistencies.
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Figure 4. Reconstruction after downsampling and upsampling.
To illustrate the differences between resizing functions, we down-
sample images with the different functions and upsample with
PIL-Lanczos, and compute similarity to the original with PSNR.
The implementation that adjusts prefilter size (PIL) reconstructs the
original more accurately than the implementations that used a fixed
filter size (PyTorch). This is especially apparent for larger resizing
ratios (64×), where performance is closer to naive nearest.

3.2. Image Resizing
Depending on the dataset and training size, the resizing

operations (ψFID, ψ̂FID) in Figure 3 can either be downsam-
pling or upsampling. Downsampling is the primary focus of
this investigation, as it involves throwing away information.
Methods for downsampling is a common study in the fields
of signal and image processing [23, 49].

Antialiasing by prefiltering. The most naive approach is
to simply subsample (taking every Nth element if performing
downsampling by an integer factor N), sometimes referred
to as nearest. This corresponds to filtering the input image
with Kronecker delta function, as only a single value is
drawn. Such an approach leads to aliasing, as high-frequency
elements of the input alias to the output.

A central principle in signal processing, graphics, and
vision [20, 21, 23, 49, 64] is to blur or “prefilter” before sub-
sampling, as a means of removing high-frequency informa-
tion (thus preventing its misrepresentation downstream). For
linear filters, this corresponds to a “depth-wise convolution”,
using deep learning parlance [27, 62]. We explain two im-
portant ways in which prefiltering implementations can vary.

Filter size adaptation to downsampling factor. First, ac-
cording to signal processing principles, the size of the filter
should be adjusted, in accordance with the downsampling
factor. Widening the low-pass filter in the spatial domain
corresponds to reducing its bandwidth and filtering more
aggressively in frequency space. As a larger downsampling
factor means a lower bandwidth can be represented on the
output signal, widening the filter accordingly is necessary
to prevent aliasing. However, in many common implemen-
tations, this is not implemented (or is not used by default);
instead, a filter of fixed, non-adaptive size is used.
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Figure 5. Differences in Inception features induced by inconsistent resizing. We resize full resolution 1024× 1024 FFHQ [33] image
(left) to 299× 299 using PIL-bicubic (top), TensorFlow-bilinear (used by TF-FID) (middle), and PyTorch-bilinear (used by PyTorch-FID)
(bottom). The resizing functions using current FID implementations (middle and bottom rows) introduce artifacts; for example, the hair and
glasses appear noisier and aliased, as compared to the top row. We observe similar behavior on other commonly-used datasets - AFHQ-Cats
(512× 512) and MetFaces (1024× 1024). Furthermore, these resizing implementations are inconsistent with each other, inducing different
activation maps when passed through the Inception-V3 network [63]. We propose to resolve this inconsistency and also reduce the aliasing,
by standardizing bicubic downsampling as the preprocessing function for a “Clean-FID” (using filtering that adjusts to the downsampling
factor, adhering to signal processing principles).

Choice of filters. Secondly, there is a choice of different
convolutional filters. The idealized low-pass filter is a sinc,
requiring infinite support. As such, approximate filters with
different subtle tradeoffs in runtime and behavior are used
instead. The box, also known as area filter, corresponds to
a rectangular filter, computing the average of values within
a neighborhood. The bilinear filter is a triangular filter,
bicubic [35] is a stronger cubic function, and the lanczos
filter is an enveloped sinc. All perform a weighted average
and have stronger antialiasing, closer to the idealized sinc.

Practical implications of implementation variations.
We investigate inconsistencies that arise, when these two fac-
tors are varied, and show a toy example in Figure 1. While
the choice of filter is largely constant across libraries (lanc-
zos, bicubic, bilinear are shown in each column), the choice
of whether the filter adapts to the downsampling factor is
not. While the PIL library adapts the filter (top row), other
libraries do not by default, leading to aliased results. In
particular, FID implementations of TensorFlow-FID and
PyTorch-FID, use bilinear downsampling implementations
that exhibit aliasing, and thus are the focus of our study.

An implication of aliasing is a suboptimal representa-
tion of the original image. In Figure 4, we show the result
of downsampling and upsampling 300 FFHQ images, and
comparing it to the original with PSNR. The methods with
fixed filters achieve worse reconstruction than a method that
adapts the filter. This effect is accentuated by larger down-
sampling factors, where high-frequency aliasing dominates

when using non-adaptive filters. Figure 5 shows how the
Inception features are affected by aliased resizing functions.

Recommendation. Above, we have established that the
implementations of FID are inconsistent and aliased. Ideally,
the community can (a) use a consistent pipeline to facilitate
fair comparisons across papers, and (b) follow signal pro-
cessing principles and antialias, in order to best represent
the underlying data being characterized. We propose to use
an adaptive filter (and thus produce consistently antialiased
results). Second, we propose to use a bicubic, instead of
bilinear filter, which offers stronger reconstruction. While
such an implementation is currently found in PIL, future
equivalent and efficient implementations would be of use.

3.3. Quantization and Image Compression
8-bit Quantization. While images are represented by 8-
bit integers Z, operations such as resizing and data augmenta-
tion, as well as the raw generator output will provide floating
point numbers R. Post-processing the results introduces
more subtleties and affects standard metrics such as FID.
Most simply, an image can be quantized by clipping the
output between [0, 255] and rounding to produce integers.
This is a lossy step and only done when images need to be
saved. Additionally, we observe that performing this step
has a minor effect on the FID score (< 0.01).
Image compression. Saving the image as a raw matrix of
values is data-intensive. However, an image contains redun-
dant information that can be exploited. For example, the
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Figure 6. Effects of JPEG compression on an image. We show
a sample FFHQ [33] image, saved with lossless PNG and different
JPEG compression ratios. The FID scores under the images are
calculated between FFHQ images saved using the corresponding
JPEG format and the PNG format. PSNR is computed with 1000
images. While the images are perceptually similar, this induces
changes in the Inception-V3 activations, resulting in large FID.

PNG format compresses an image losslessly. To further save
storage, images are commonly saved using the JPEG codec.
While JPEG is a lossy compression technique, it aims to
make changes that the human visual system is less sensitive
to, namely reducing information in higher frequencies and
chroma (color) components [67]. JPEG converts an image
into a YCbCr space, subsamples the chroma components, di-
vides images into 8×8 blocks, computes the Discrete Cosine
Transform (DCT), and performs quantization. The quan-
tization step facilitates a trade-off between the fidelity of
the original image and the amount of the storage saved. In
the PIL implementation [11], this is done using a “quality”
option (0-100), which linearly scales the quantization tables
(which controls which frequencies are quantized to what
granularity). Note that setting the quality flag to 100 is not a
lossless operation. Even when the quantization tables are not
scaled, the DCT coefficients are quantized to integer values
and the chroma components are subsampled.

Image compression changes deep network activations.
In Figure 6, we show a real FFHQ [33] image at a resolution
of 256, saved with lossless PNG and lossy JPEG (quality
set to 100, 90, and 75). Despite being perceptually indistin-
guishable (with high PSNR values of ≥ 39), the FID scores
increases. The PIL default of 75 results in a high score (21),
for example. Note that this FID score is far higher than the
score from a powerful generative model, StyleGAN2 [34]
(around 3). Also, variations across recent methods are typi-
cally within 1 FID on FFHQ. We investigate the implications
of using JPEG compression in the experiments below.

4. Experiments
As outlined in Section 3 and depicted in Figure 3, varia-

tions in FID arise from three distinct steps: resizing in the

PIL–bicubic(Real Images) vs.

Resize function
Resize(Real Images) Resize(StyleGAN2)

FID
↓

KID PSNR FID
↓

KID
×103 ↓×103 ↓ [db] ↑

PIL–bicubic ( ) 0 0 ∞ 2.98 0.51
PIL–bilinear ( ) 0.64 0.61 45.7 4.03 1.52
TensorFlow–bilinear ( ) 4.34 4.32 37.66 7.45 5.12
PyTorch–bilinear ( ) 4.36 4.31 37.66 7.45 5.15
Naive nearest ( ) 7.43 7.54 35.16 10.67 8.47

Table 1. Deviations induced by varying resizing implementa-
tions. We measure the discrepancy between real images downsam-
pled with PIL–bicubic (1024 → 299) vs. other functions (ψ̂FID) on
the left. If all downsampling functions were equivalent, the metrics
(FID & KID) should be 0 and PSNR ∞. PIL–bilinear and bicubic
adjust antialiasing to the downsampling factor ( ) and produce
relatively low neural metric scores and high PSNRs. Functions
using fixed width filters ( ) produce higher discrepancies. Naive
nearest does not antialias at all. A similar trend holds on synthetic
StyleGAN2 [34] images.

FID evaluation step (ψFID, ψ̂FID), resizing in the data prepro-
cessing step (ψdata), and quantizing of images (Q, Q̂). We
introduce sources of variation at these steps and investigate
their impacts in Sections 4.1, 4.2, and 4.3 respectively.

4.1. Variation due to FID Resizing

Here we investigate the effects of different resizing meth-
ods (ψFID, ψ̂FID) used in the FID calculation step.

Variation induced by resizing functions on real images.
We start with two sets of full-resolution 1024 × 1024 face
images - from the FFHQ dataset, and from a pre-trained
StyleGAN2 generator. Each of the sets of images is re-
sized from 1024→299 using different methods. In Table 1
(left), we compare the set of real images resized with the
antialiased resizing operation (PIL bicubic) to the same set
of real images, resized using other aliased functions that use
a fixed width prefiltering kernel. As we compare the same
set of images, we anticipate all FID and KID scores to be
close to 0 and the PSNR values to be very high. However, as
shown in Figures 1, 2, and 5, only a subset of the commonly
used resizing operators adjust the filter width and antialias
the images. These differences in resizing operations cause
drastic changes in the Inception-V3 [63] activation maps.

Filters that antialias are more consistent, even with differ-
ent filter types – PIL-bilinear has FID 0.64 when compared to
PIL-bicubic. On the other hand, implementations that ignore
the downsampling factor (PyTorch and TensorFlow) show
much larger deviation (FID 4.3), with scores nearing naive
nearest (FID 7.4), that does not filter at all. This indicates
that whether the filter adapts to the downsampling factor can
change the modeled data distribution by non-trivial amounts.

Variation induced by resizing functions on generated im-
ages. After studying the effects on real images, we evaluate
how different resizing function ψ̂FID choices affect the metric
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Resize function
Resize(Dataset Images) vs. Resize(StyleGAN2)

FFHQ MetFaces AFHQ-Cats AFHQ-Dogs
FID ↓ FID ↓ FID ↓ FID ↓

PIL–bicubic ( ) 2.98 65.32 5.13 20.16
PIL–bilinear ( ) 2.99 64.31 5.01 19.60
TensorFlow–bilinear ( ) 2.75 57.45 4.93 19.45
PyTorch–bilinear ( ) 2.75 57.46 4.94 19.46
Naive nearest ( ) 2.68 55.09 4.80 18.25

Table 2. Resizing functions affect FID scores. Here, both resiz-
ing functions on real and synthetic images (ψFID, ψ̂FID) are the
same. If all resizing functions were consistent, all rows would be
equal. Interestingly, the downsampling methods that alias result in
lower scores; the lowest score is achieved by naive nearest subsam-
pling. Methods that adjust the prefilter size to downsampling factor
(implemented by PIL) better preserve information of the original
images. This indicates that antialiasing enables subsequent FID to
more sensitive to differences in the distributions.

when used in a full generative modeling pipeline. Here, we
evaluate a pretrained StyleGAN2 generator [34] trained on
FFHQ (1024), MetFaces (1024), and AFHQ (512) dataset
images, and compute the FID with 50,000 images. In Table 1
(right), we consider the asymmetric case, where features for
the real images and generated images use different resizing
functions. This case arises when features for real images
are pre-computed and shared by one group of authors, while
generated features may be calculated on the fly with a dif-
ferent library. Here, we observe that using the same resizing
function as the reference dataset (PIL-bicubic) achieves the
lowest performance. Using a different resize function, such
as PIL-bilinear increases the score to 4. Using an aliased
function increases the score drastically to 7, close to naive
subsampling (> 10).

Next, in Table 2, we show a comparison when the same
resizing function is used for the real dataset images and the
StyleGAN2 generated images. Interestingly, we observe
that the aliased resizing functions result in lower FID scores
across multiple commonly used datasets - FFHQ (1024),
MetFaces [31] (1024), and AFHQ [9] (512). This indicates
that using the antialiased function as preprocessing makes
the downstream FID calculation more sensitive at measuring
the discrepancies between distributions.

4.2. Variation due to Dataset Resizing
Previously, we considered scenarios where the dataset

was not downsampled. However, as discussed in Section 1
and illustrated in Figure 3, dataset downsampling is needed
when training a model on a low-resolution version of the
original dataset [31, 72, 75] (e.g., 256 for FFHQ). Before,
the target distribution was fixed, and differences were purely
introduced during post-hoc metric evaluation. Now, the situ-
ation is much more intricate. Different resizing choices will
result in different training distributions entirely. In Table 3,
we train three different StyleGAN2 [34] (config-e) models,
following the official PyTorch implementation* for 25k it-

*https://github.com/NVlabs/stylegan2-ada

Dataset preprocessing FID ↓ on FFHQ
PIL-bicubic

Naive Nearest ( ) 4.82 ± 0.09
PyTorch–bilinear ( ) 5.13 ± 0.20
TensorFlow–bilinear ( ) 5.08 ± 0.16
PIL–bicubic ( ) 6.21 ± 0.23

Table 3. Dataset resizing. We downsample the FFHQ dataset
using different resize functions ψdata from 1024 to 256. We train
StyleGAN2 [34] (Config-E) models, using the identical training
procedure and report FID of the result. The score is computed
across three different training runs for each of the setting. The
scores show large variation, indicating the resizing function can
greatly affect the training distribution. Using a preprocessing func-
tion that antialiases (marked by ) preserves more information
from the original images and interestingly results in a higher score.
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Figure 7. Effects of JPEG compression. The FFHQ dataset im-
ages are resized from 1024 to different resolutions (512 and 256)
using PIL-bicubic and compressed using the JPEG format, with
different compression ratios. Subsequently, we plot the FID (left)
and KID (right) between the compressed images and uncompressed
images, at the same resolution, as a function of JPEG compression.
The effect of JPEG compression is more severe for smaller images.

erations. We resize FFHQ [33] to 256 using Naive Nearest,
PIL–bicubic, PyTorch–bilinear, and TensorFlow–bilinear.
We use the same PIL–bicubic function (ψFID, ψ̂FID) for FID
evaluation; note that here, it is upsampling (256 → 299).
Qualitatively, using an aliased downsampling function pro-
duces a training distribution with visual artifacts for the
generative model to mimic, likely different than the natural
visual data we wish to model. Quantitatively, interestingly,
we observe that that the aliased pre-processing results in
lower FID values. As the antialiased function better pre-
serves signal in the original images, we hypothesize that
retaining more information from the original input actually
produces a more difficult distribution to model.

4.3. Variation due to Quantization/Compression
JPEG during evaluation. In Figure 7, we test the effect
of quantization applied to real FFHQ images at different res-
olutions on FID (left) and KID (right). For each resolution,
the real dataset images are correspondingly downsampled
using PIL–bicubic, and the scores are computed between the
resized uncompressed PNG images and the resized JPEG-
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Figure 8. Effects of image quantization/compression. We plot
FID as a function of JPEG compression, applied to StyleGAN2
images [34], trained on LSUN Churches [70] (left) and FFHQ [33]
(right) at a resolution of 256 × 256. The blue dashed line shows
FID when the generated images are quantized to 8-bit unsigned
integers (PNG). Interestingly, when training with JPEG-75 dataset
images (left), applying lossy compression artifically improves the
FID score by a large margin (4.00→3.48).

compressed images. Figure 7 shows that the effect of the
JPEG compression on both metrics. The effect is more pro-
nounced for lower resolutions, where the artifacts remain
after the subsequent resampling step.
JPEG on training images. The comparisons above use
the FFHQ dataset, which was collected as uncompressed
PNG files. Any additional compression only monotonically
increases the FID score (Figure 8 right). This is expected, as
information is being removed from the generator. However,
this does not apply to other datasets which were collected as
JPEG images. To study this effect, we train a StyleGAN2
model [34] on the LSUN outdoor Church dataset [70], which
was collected as JPEG-75. In Figure 8 (left), we plot the FID
of the trained generator as a function of JPEG compression
and observe that the FID score for the StyleGAN2 model sur-
prisingly improves when slight JPEG compression is added.
This indicates that interestingly, though the model is able to
capture complex variations in the dataset, it is unable to fully
model the low-level statistics induced by JPEG compression.
The best FID score (3.48) is obtained when the generated
images are compressed with JPEG quality 87 (not the full
75), indicating the model is able to replicate some of the
artifacts, but not all. The FID score for the generated images
stores as PNG files is 4.00. Furthermore, this indicates that
the metric is sensitive to low-level statistics, and a large gain
in the metric could be achieved simply through manual post-
processing. Following these observations, we recommend
that researchers curate and store training images as PNG
formats for the future image synthesis datasets.

4.4. Consequences in model selection
In this section, we show that using aliased resizing can

result in different conclusions, both when comparing across
different methods and when choosing a “best” model check-
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Figure 9. FID inconsistencies when evaluating models and
checkpoints. We compare the FID scores induced by different
resizing functions. (Left) We show different intermediate check-
points while training a MUNIT model [28] on the horse2zebra
dataset [78]. (Right) We compare methods trained on FFHQ-2k.
The non-monotonic relationship demonstrates the sensitivity of the
FID metric to the resizing function. As a consequence, different
checkpoints or methods may be selected, depending on if an aliased
or an anti-aliased resizing function is chosen.

point. Concretely, in Figure 9 (left) we evaluate the different
intermediate checkpoints when training an image-to-image
translation model [28] on the horse2zebra dataset. In Fig-
ure 9 (right) we evaluate the StyleGAN2 [34] models with
different data augmentation trained to generate 256 × 256
FFHQ images [33] in a few shot setting (2000 training im-
ages). In both cases, the choice of the resizing function leads
to a different best model getting selected.

5. Recommendations
We have shown surprisingly sensitivities to seemingly

inconsequential implementation details when evaluating gen-
erative models. The resize operation and the image quanti-
zation/compression are especially impactful. Based on our
observations, we discuss some best practices when training
and evaluating generative models. We recommend using im-
plementations that adapt the filter size to the downsampling
factor, following signal processing principles, at each resiz-
ing step (ψdata, ψFID, and ψ̂FID). There are many details one
needs to keep track of when computing FID. Any inconsis-
tency leads to results that are no longer comparable to other
methods. To facilitate an easy comparison, avoid inconsis-
tent comparisons, and encourage the usage of critical oper-
ations that are correctly implemented, we provide an easy-
to-use library (github.com/GaParmar/clean-fid),
and pre-computed Inception statistics for common datasets.
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