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Figure 1. Human Mesh Recovery from Multiple Shots. Videos from edited media, like movies, include sudden shot changes that lead
to discontinuities between the frames (top), which reduce the rich potential of a film to a series of short independent temporal sequences.
However, within the same scene, the underlying 4D structure of the scene changes smoothly. We leverage this insight and treat the different
shots as multi-view cues that provide complementary information about the 3D human body underlying these shot boundaries. This leads
to both more accurate 3D reconstructions (middle, bottom) and longer 3D pose sequences. These serve as a great source of data for training
deep learning models that enable direct human mesh recovery on movie data.

Abstract

Videos from edited media like movies are a useful, yet
under-explored source of information, with rich variety of
appearance and interactions between humans depicted over
a large temporal context. However, the richness of data
comes at the expense of fundamental challenges such as
abrupt shot changes and close up shots of actors with heavy
truncation, which limits the applicability of existing 3D hu-
man understanding methods. In this paper, we address these
limitations with the insight that while shot changes of the
same scene incur a discontinuity between frames, the 3D
structure of the scene still changes smoothly. This allows
us to handle frames before and after the shot change as
multi-view signal that provide strong cues to recover the 3D

state of the actors. We propose a multi-shot optimization
framework that realizes this insight, leading to improved
3D reconstruction and mining of sequences with pseudo-
ground truth 3D human mesh. We treat this data as valuable
supervision for models that enable human mesh recovery
from movies; both from single image and from video, where
we propose a transformer-based temporal encoder that can
naturally handle missing observations due to shot changes
in the input frames. We demonstrate the importance of our
insight and proposed models through extensive experiments.
The tools we develop open the door to processing and an-
alyzing in 3D content from a large library of edited me-
dia, which could be helpful for many downstream applica-
tions. Code, models and data are available at: https:
//geopavlakos.github.io/multishot/
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Figure 2. Multi-shot reasoning. Frames before and after the shot change depict the same 3D scene and provide a multi-view signal which
helps reconstruct the underlying 3D pose of humans, particularly in cases of close-up, heavily truncated images of people. Blue triangles
correspond to estimated camera locations in the scene. Each person is reconstructed independently.

1. Introduction

Movies are a treasure trove of human “behavior
episodes” [4]. They are produced in many different coun-
tries in multiple genres, giving us tremendous cultural di-
versity and range. Datasets, most prominently, AVA [14]
have emerged, which provide a rich annotation of spatio-
temporally localized human actions in movies. This would
seem like ideal data on which to train systems for video un-
derstanding, and furthermore use that as a stepping stone
for acquiring “common sense” from observations of diverse
human behavior. This “visual” route could be complemen-
tary to the “linguistic” route to capturing common sense and
arguably more fundamental.

But before we go too far with our wishful thinking, we
must confront a fundamental challenge of video data de-
rived from movies – the complication of “shots”. Film has
a grammar [2]. Stories are communicated through a jux-
taposition of shots, typically from different camera angles
viewing the same scene. Alfred Hitchcock’s Rope and Sam
Mendes’s 1917 are noteworthy precisely because they are
presented as a single take, without any discernible breaks
corresponding to shot boundaries.

These shot changes manifest as sudden discontinuities in
video as illustrated in Figure 1. Current temporal 3D human
mesh and motion recovery methods, as well as most action
classification algorithms, treat these shots as independent
scenes, which reduce the rich potential of a film to a se-
ries of short independent temporal sequences. Furthermore,
shot changes often manifest in close up shots of actors and
most state-of-the-art human mesh recovery models struggle
to handle such heavily truncated images of people as shown
in Figure 7. These two issues prevent applying such models
to analyze 3D human behaviors in movies.

In this work, we propose a solution that addresses both
of these challenges. First, we recognize that shot changes
often depict a coherent underlying 4D scene from differ-
ent viewpoints, despite the temporal discontinuities at the
frame level. Thus, when handled properly, shot changes can
be used as a multi-view signal of the underlying dynamic

scene. This can be a powerful cue in disambiguating the 3D
pose and motion of humans, which is particularly helpful
for close-up, heavily truncated images of people (Figure 2).
Specifically, we build on this novel and unexplored idea and
propose a multi-shot optimization method that allows re-
covery of a consistent 3D human motion sequence across
shot changes, simultaneously addressing both challenges of
temporal fragmentation and partial humans.

The proposed multi-shot optimization allows recovery of
long and reliable 3D human motion sequences from movies.
This data can be treated as pseudo-ground truth and used for
training regression models that predict human mesh directly
from pixels in a feed-forward manner from images [22] or
videos [23]. This workflow is illustrated in Figure 3. We
show that high quality output from our multi-shot optimiza-
tion is crucial for improving the performance of these mod-
els as multi-shot reasoning provides both longer and more
accurate 3D pseudo-ground truth. Notably, unlike many
previous works, the resulting direct prediction models are
robust enough to perform human mesh recovery on movie
data. Moreover, to further push the applicability on films,
we propose a transformer-based architecture (t-HMMR) for
our temporal encoder. A common challenge in edited me-
dia is that a person may not be consecutively depicted in
the scene due to shot changes to another character or the
background, often referred to as B-rolls (e.g., sequence of
Figure 3). Transformers can easily address this by explic-
itly not attending to frames that do not contain the person of
interest and ignore them, while still processing a larger tem-
poral context before and after the irrelevant input frames.

We experiment on AVA [14], a large scale dataset of
movies with atomic action annotations. Applying our multi-
shot optimization on AVA results in over 350k frames with
pseudo-ground truth 3D. We treat this as training data to su-
pervise regression models for human mesh recovery, from
single image or video. Simultaneously, we curate a subset
of AVA and use it for evaluation. We demonstrate the im-
portance of our multi-shot optimization and the benefit on
the downstream models through extensive experimentation
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Figure 3. Overview of our workflow. We reconstruct 3D human mesh sequences from movies using our multi-shot optimization. The
resulting reconstructions can be used as training data for both single-view human mesh recovery and temporal human mesh motion recovery.

on AVA and common benchmarks.
In summary, our contributions are:

• We introduce the problem of human mesh recovery
from multiple shots and we propose an optimization
approach that is applicable in multi-shot sequences.
This results in high-quality 3D pseudo-ground truth
that proves to be particularly effective at supervising
direct regression models for human mesh recovery.

• We demonstrate that the resulting regression models
can be applied successfully on movies, and we validate
the importance of multi-shot reasoning at getting more
accurate and longer pseudo-ground truth for training.

• To further push the applicability of regression models
on movie data, we propose a temporal model with a
pure transformer-based temporal encoder that is more
suitable for inference on multi-shot sequences.

2. Background
This section provides reference to prior work and acts as

background to our approach. The relevant literature is vast,
so here we consider the most relevant approaches.

2.1. Human body modelling

Recent work in 3D human reconstruction has been influ-
enced heavily by the availability of powerful human body
models. The SMPL model [35] is one of the most pop-
ular choices that, among others, has enabled work on re-
construction [22], prediction [70], as well as imitation [46].
At a high level, one can consider SMPL as a function
M(θ, β) that takes as input pose parameters θ and shape
parameters β (collectively Θ = {θ, β}) and returns the
3D body mesh M and joints X . Other body models fol-
low similar formulations, with differences on the modelling
side [42,62,64], or the expressivity of the model [1,21,43].

2.2. 3D pose and shape from single image

Optimization: Reconstructing 3D pose and shape from a
single image is often addressed in an optimization setting.

In these approaches [6, 15, 17, 30, 43, 68], a set of features
are detected on an image (typically 2D keypoints), and then
a configuration of the body model is recovered such that it is
consistent with the features. This requires a reprojection ob-
jective Eproj that penalizes deviations of the projected model
from the detected features, and a set of objectives Eprior,
that express the priors and encourage the reconstruction to
be valid. At test time, the sum of these objectives is min-
imized in an iterative manner. The SMPLify [6, 43] meth-
ods are canonical examples of this type of approach for sin-
gle image reconstruction, but other settings have also been
considered, e.g., from multiple views [10,17] or monocular
video [3, 24, 46, 50]. In this work, we adapt optimization
approaches to be applicable in the setting of multiple shots.

Direct prediction: Directly regressing the SMPL parame-
ters has seen many successes recently due to deep learning
advances. A canonical example is HMR [22], which learns
a direct mapping from raw RGB images to SMPL parame-
ters and involves design principles adopted by many follow-
up works [3,13,27,44,52]. More specifically, HMR consists
of a feature encoder fim : I 7→ ϕ that converts an image I
to a feature representation ϕ, followed by an iterative feed-
back regressor that maps the intermediate features to model
parameters, Θ̂, and camera parameters, Π̂. Using the pre-
dicted camera parameters, the reconstructed mesh can be
projected to the image, which enables supervision with re-
projection losses, given 2D annotations. Concurrently with
HMR, other works have investigated decoupled regression
approaches [9, 38, 41, 45, 56, 59, 65], where the intermedi-
ate feature representation is hardcoded, e.g., 2D keypoints,
silhouettes, semantic parts or dense correspondences. Re-
cent works have introduced improvements to the HMR de-
sign, proposing camera estimation [26], probabilistic mod-
elling [29, 53, 54], transformer-based architectures [33, 34],
or other improved designs [25, 67, 69]. In this work, we
adopt the HMR architecture for single-frame mesh recov-
ery and following popular convention, we liberally refer to
the model we use as HMR, even if the model weights are
different than [22].
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Limitations: Previous works [5, 20, 25, 51] have identified
the limitations of relevant reconstruction approaches when
it comes to heavy truncation of humans. Joo et al. [20]
propose augmentation with synthetically cropped examples,
Rockwell and Fouhey [51] retrain their model with confi-
dent reconstructions, while Kocabas et al. [25] propose a
more robust architecture. In our work, we use complemen-
tary information from neighboring shots to improve the 3D
reconstruction and collect training examples that improve
the robustness of our single-frame model. Prior work has
also identified the challenges and benefits of jointly recon-
structing independent 3D instances, e.g., humans and hu-
mans [19,40,57], or humans and objects [63,71]. Although
we do not address these topics, we believe that multi-shot
content could be helpful at perceiving these interactions.

2.3. 3D pose and shape from video

For video approaches, the goal is 3D reconstruction
given a video sequence V = {It}Tt=1, of length T . Video
methods that follow-up HMR, e.g., [8, 23, 24, 36], take a
similar workflow with the addition of a temporal encoder
function fmovie, which maps per-frame features ϕt to per-
frame sequence features Φt, from which the model and
camera parameters for each frame are predicted via a 3D
regressor f3D : Φt 7→ {Θ̂t, Π̂t}. These methods differ
in the choice of the architecture for the temporal encoder
fmovie. Kanazawa et al. [23] use a convolutional model, Ko-
cabas et al. [24], Choi et al. [8] and Luo et al. [36] use a
recurrent model, while Sun et al. [58] use a hybrid model
combining convolutions with self-attention. More recently,
Rajasegaran et al. use a transformer architecture for spatio-
temporal tracking [47] and temporal pose prediction [48].
In this work, we also investigate a pure transformer-based
encoder, which is a more suitable architecture to handle
missing identities that often occur in films.

2.4. Training with pseudo-ground truth

The strategy of using optimization approaches to gener-
ate pseudo-ground truth for human mesh regression models
has been used in different contexts. For single images, Lass-
ner et al. [30] use SMPLify [6] and manually discard fail-
ures to curate training data. SPIN [27] and EFT [20] build
on this idea and initialize the optimization with an estimate
provided by a regressor, which leads to more accurate fits,
without requiring human intervention. Müller et al. [39] use
a procedure similar to SPIN but focus on cases with self-
contact. Arnab et al. [3] run a temporal optimization over
monocular video, which can improve upon single frame re-
sults. Fang et al. [12] use mirror reflections as an additional
view for resolving the depth ambiguity. Leroy et al. [31]
focus on videos from the Mannequin Challenge [32], which
provide multiple registered viewpoints in static scenes. In
contrast to the above, in this work we investigate videos

from edited media like movies, where many previous ap-
proaches are often failing and we capitalizing on the in-
sight of multi-shot continuity to improve the quality of 3D
pseudo-ground truth and the length of respective sequences.

3. Multi-shot optimization

Here we present the first step of our workflow based on
multi-shot optimization. First, we describe the necessary
preprocessing steps and the multi-shot optimization routine
we use for pseudo-ground truth generation. Then, we pro-
vide more details about the application of our multi-shot
optimization on the AVA dataset.

Preprocessing To apply our multi-shot optimization on a
general video, we need a sequence of an individual within
a scene.First, we detect 2D body joints using an off-the-
shelf 2D pose tracker like OpenPose [7] or AlphaPose [11].
While these methods obtain quite reliable 2D joint tracklets,
they fail across shot boundaries. To extend tracklet dura-
tion, we run a shot detection algorithm [49, 55], and use a
person re-identification network trained on movie data [16]
to link identities across shots. The result is longer 2D joint
tracklets, extending beyond shot boundaries, which are used
as inputs to the multi-shot optimization.

3.1. Multi-shot optimization

Relying on the insight that the input shots depict a sin-
gle underlying 4D scene, we adapt optimization approaches
such that they are applicable in the multi-shot setting and re-
cover a consistent 3D human mesh across shot changes. To
make this more concrete, let us consider the case where we
have access to two consecutive frames t and t+1, before and
after the shot boundary respectively. As in SMPLify [6],
we can setup data term Et

proj and prior term Et
prior for each

frame. In order to incorporate the novel multi-shot insight,
we introduce a term that encourages the body poses in these
frames to be consistent. Note that prior works [3, 24, 46]
have used temporal smoothness terms before, but we can-
not naively apply these losses as done previously, because
these approaches define smoothness regularization in the
camera coordinate frame. This is because there is a large
shot change in the camera frames due to shot changes.

As such, we must apply the smoothness regularization in
the canonical coordinate frame in order to incorporate the
multi-shot insight. Specifically, we explicitly decompose
the pose parameters θ to global orientation Rgl and body
pose parameters θb. By undoing the global orientation, we
can compute the body joints Xcan = RT

glX in the canoni-
cal space. This formulation allows factoring out the camera
motion, which can be abrupt, and imposing the smoothness
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term only in the canonical frame:

Et
sm joint = ||Xt

can −Xt+1
can ||22 (1)

Et
sm param = ||θtb − θt+1

b ||22. (2)

The sum of objectives is optimized over the entire sequence
of length T :

E =

T∑
t=1

(Et
proj + Et

prior) +

T−1∑
t=1

(Et
sm joint + Et

sm param), (3)

returning model parameters Θt for every frame t of the se-
quence. For faster convergence to a more accurate solution,
we initialize our reconstruction with pose and shape esti-
mates provided by a regression network [27].

3.2. Reconstructing people in AVA

Although the above workflow is applicable in many oc-
casions with videos from TV series or movies, in this work,
we focus primarily on the AVA dataset [14]. AVA con-
tains 300 movies annotated with human bounding boxes and
atomic actions. Bounding box annotations are available at
1fps and organized in short tracklets. We also process the
data at 1fps, and apply our preprocessing step to extend the
tracklet duration over shot changes (i.e., link short tracklets
of the same identity). Each tracklet is reconstructed in 3D
with our multi-shot optimization (section 3.1). Two impor-
tant features of the reconstructed sequences are the diverse
and challenging visual conditions (e.g., truncation), and the
length and quantity of the sequences that it includes. By
reidentifying tracklets across shots, we can connect smaller,
potentially overfragmented subsequences into longer multi-
shot sequences, useful for training temporal models.

Our reconstructed sequences are treated as pseudo-
ground truth. As is typical with relevant approaches that
rely on pseudo-GT data sources [3, 23, 27], there might be
errors in the detection of the 2D keypoints, in the tracklet
re-ID, or the 3D reconstruction. Regardless, the quality of
the pseudo-ground truth is demonstrated from the effect it
has on the downstream task, i.e., the training of deep learn-
ing models for human mesh recovery.

3.3. Evaluating 3D accuracy on AVA

Finally, our novel insight that pose changes smoothly
across the shot boundary offers the opportunity to evalu-
ate the 3D pose accuracy of the recovered human mesh
on movie sequences without ground truth 3D data, via the
concept of novel view evaluation. Specifically, for a shot
change from frame t to t+ 1, we project the mesh of frame
t to frame t + 1, and vice versa. See Figure 4 and SupMat
for details. This allows us to evaluate the predicted pose
using 2D reprojection metrics, e.g., PCK [66]. We refer to
this metric as cross-shot PCK and use it to evaluate 3D pose
quality in AVA, where 3D ground truth is not available.

To enable a more concrete evaluation on AVA, we manu-
ally curate AVA’s test set. This curation includes human ver-
ification for tracklet re-ID, frames of shot changes and 2D
keypoint locations, discarding examples where these steps
are failing. All results reported on AVA refer to this clean
subset, where we can reliably compute cross-shot PCK.

Input image Shape prediction
Projection of  
shape across  

the shot

Evaluation based 
on keypoint  
reprojection

Figure 4. Novel view evaluation with cross-shot PCK. Given the
shape prediction for frame t (before the shot change), we project
it to frame t+1 (after the shot change), and vice versa. We assess
the 3D quality of the estimated pose by computing 2D reprojection
metrics on this novel view.

4. Direct Human Mesh Recovery
The 3D motion sequences we recovered with the offline

multi-shot optimization step offer a rich source of data with
pseudo ground truth 3D bodies. Here, we demonstrate how
to incorporate this data in the training of direct prediction
models for Human Mesh Recovery from single images or
video, without the reliance on keypoint detections.

4.1. Single-frame model

The first step is to train an updated single-frame model.
In general, the setting is similar to the original HMR [22].
Let our image encoder for frame I predict model parame-
ters Θ̂ and camera parameters Π̂. Model joints are projected
to 2D locations x̂. Our supervision for the network comes
from the output of the multi-shot optimization for the cor-
responding frame, Θgt, and the detected 2D joints xgt.

L2D = ||x̂− xgt||1 (4)

Lsmpl = ||Θ̂−Θgt||22. (5)

Our experiments show that training AVA dataset with our
multi-shot 3D pseudo-ground truth improve the robustness
of single-frame model against the diversity and the chal-
lenging visual conditions (e.g., truncation).

4.2. Temporal model

Using an updated and robust single-frame model, we
proceed towards learning the temporal encoding function
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Figure 5. Architecture of t-HMMR: To most effectively lever-
age the plethora of 3D pose sequences recovered from our data,
we propose t-HMMR, a human mesh and motion recovery model
based on the transformer architecture. Even if the identity of inter-
est is not present in some frames, we benefit from the large tempo-
ral context, by setting the attention to zero for the invalid frames,
while aggregating information from the relevant input images.

fmovie. In the past, this function has been represented by
convolutional [23], recurrent [24] or hybrid encoders [58].
However, all approaches assume a curated collection of
clean videos of people with continuous person tracking [18,
37, 72]. In contrast, in more general use cases, including
edited media, video data can be more challenging with is-
sues like shot changes or B-rolls which interleave back-
ground frames in between shots. These cases are not eas-
ily handled by convolutional or recurrent encoders, which
would require padding the inputs with zeros or concatenat-
ing all valid frames together, which ignores the difference in
timestamps between concatenated frames. To address these
limitations, we propose t-HMMR, a temporal model based
on a pure transformer architecture [60]. Transformers in-
clude an attention mechanism, allowing us to explicitly se-
lect the elements of the input sequence they will attend to.
This is a convenient feature, particularly with the discontin-
uous nature of sequences from films.

Our transformer encoder takes as input an intermediate
feature embedding {ϕt} of sequence of frames {It}. This
sequence comes with a scalar value per-frame {vt}, which
indicates whether the person is present in frame t (vt = 1),
or not (vt = 0). A fixed positional encoding pt is added
to the input features to indicate the time instance t of each
input element. The updated features are then processed by
a transformer encoder layer. This follows the architecture
of the original transformer model, including a self-attention
mechanism and a shallow feedforward network. The values
vt are used to ensure that the invalid input frames will not
contribute in the self-attention computation. The output of
this layer is a residual value ∆ϕt added to the feature ϕt

through a residual connection. The final output is the video
feature representation Φt. This is illustrated in Figure 5.

For training the transformer encoder, following prior

work [23, 24], we fix the weights of the image encoder fim,
and only update the temporal encoder fmovie and the pa-
rameter regressor f3D. Similarly to the single-frame model,
supervision is provided by the multi-shot optimization re-
sults, where we have corresponding losses with Equations 4
and 5, Lt

2D and Lt
smpl respectively, for each frame t. Also, to

further encourage temporal consistency, smoothness losses
are applied on 3D joints Lt

sm joint and 3D model parameters
Lt

sm joint (equivalent to equations 1 and 2 respectively).

5. Experiments

Our quantitative evaluation focuses on the effect of our
multi-shot continuity insight in multiple aspects. First, we
evaluate the efficacy of the multi-shot optimization; then we
validate the quality of pseudo-ground truth provided from
our offline multi-shot reconstruction by using it as super-
vision when training a single-frame human mesh recovery
model; finally we also address temporal pose regression and
highlight the importance of using multi-shot sequences for
training, as well as employing a transformer-based architec-
ture when dealing with movie data.

5.1. Experimental Setup

For single-frame regression, we use the HMR archi-
tecture [22] and adopt best practices from literature to
establish a strong baseline: we train with the standard
datasets using pseudo-ground truth SMPL parameters from
SPIN [27], and use the recently proposed cropping augmen-
tation scheme [21, 51]. We refer to this baseline as HMR+

and use it for initialization of our multi-shot optimization
and for ablative experiments. After the offline multi-shot
optimization, our final single-frame model is trained with
the same strategy, but with the addition of AVA dataset with
pseudo-ground truth from our multi-shot optimization. We
also compare with off-the-shelf baselines [22,25,27–29,51].
For the temporal model, we freeze the encoder of the single-
frame model, as done in [23, 24], for computational effi-
ciency, and train the temporal encoder and 3D regressor.

5.2. Multi-shot optimization

The proposed multi-shot optimization integrates infor-
mation across the shot boundary to improve 3D pose recon-
struction. To evaluate its success, we first setup a proof-of-
concept experiment on Human3.6M [18], where 3D ground
truth pose is available. Given the availability of multiple
viewpoints, shot changes can be simulated by alternating
camera views in the input sequence. We refer to the SupMat
for more details on this evaluation. Then, we report results
on AVA where we use the proposed cross-shot PCK met-
ric (Section 3.2). With this evaluation, we investigate per-
formance on the actual domain of interest (movies), while
also providing additional quantitative validation with accu-
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Optimization H3.6M (PA-MPJPE) ↓ AVA (cross-shot PCK) ↑

Single frame 68.5 38.0
Single shot 62.7 42.3
Multi shot 59.2 55.2

Table 1. Multi-shot optimization evaluation on Human3.6M
and AVA. We show PA-MPJPE (Human3.6M) and cross-shot
PCK at α = 0.1 (AVA). Our multi-shot optimization outperforms
the optimization baselines applied on a single-frame or single-shot
(temporal reasoning on frames that do not span shot changes)

rate 3D ground truth (Human3.6M). The results are pre-
sented in Table 1. As a sanity check, we compare with two
optimization-based baselines, one that operates on a single
frame [6], and one that operates on temporal sequence with-
out shot changes [3,24,46]. In both cases, the multi-shot op-
timization outperforms the two baselines, which indicates
that it can successfully integrate information across multiple
shots. Qualitative examples of this behavior are presented
in Figure 6 and in the SupMat.

5.3. Single-frame direct prediction

As described above, 3D pose sequences generated by our
multi-shot optimization are used to supervise our direct re-
gression models. Since the quality of the pseudo-ground
truth affects the regression models, we can implicitly eval-
uate the importance of our multi-shot reasoning by inves-
tigating the effect it has on the downstream models. To
achieve this, we present results on AVA, as well as Partial-
Humans [51] and 3DPW [61]. We provide ablations of our
approach and comparisons against the most relevant state-
of-the-art models [22,27,28,51]. For reference, we also re-
port results from the most recent methods [25,29], although
they might not be directly comparable to us (e.g., stronger
backbone & specialized architecture for [25]). Results are
reported in Table 2, which lead to several insightful conclu-
sions. First, on images from movies, many of the state-of
the-art models perform poorly, and our pipeline allows us
to improve performance on movie data compared to pre-
vious approaches. Second, we show that multi-shot opti-
mization is a critical component in obtaining the best per-
formance and naively training on AVA alone does not give
as much improvements. Specifically, we conduct ablation
studies where we train the base HMR+ model with various
AVA supervisions: 2D keypoints and pseudo-ground truth
from single-frame optimization. We find that using the su-
pervision from multi-shot reasoning achieves the best re-
sults. Third, the improvement we achieve from the supervi-
sion of multi-shot optimization is not specific to movie data
only. Instead, we see improvement also on top of other chal-
lenging benchmarks; Partial Humans [51] and 3DPW [61].
Finally, we provide qualitative comparisons with the most
relevant baselines in Figure 7, and include a discussion on
failure cases in the SupMat.

Input frames Single-frame 
reconstructions

Multi-shot 
reconstructions

Figure 6. Qualitative effect of our multi-shot optimization.
Although a single frame baseline fails on the more challenging
frames with heavy truncation (center), our multi-shot optimization
leverages information from the less ambiguous frame across the
shot boundary to get a more accurate 3D reconstruction (right).

Method AVA ↑ PartialHumans ↑ 3DPW ↓

HMR [22] 28.0 88.6 81.3
GraphCMR [28] 23.9 75.7 70.2
SPIN [27] 24.0 82.4 59.2
Partial Humans∗ [51] - 83.3 -

ProHMR [29] 41.7 94.1 59.8
PARE [25] 40.8 94.4 50.9

HMR+ 37.6 93.1 59.2
+ AVA (2D keypoints) 32.0 93.9 58.5
+ AVA (single frame optim) 41.1 93.9 59.3
+ AVA (multi shot optim) 43.1 95.4 57.8

Table 2. The importance of using pseudo-ground truth from
multi-shot optimization when training a single-frame mesh re-
covery model. We show cross-shot PCK at α = 0.1 (AVA), PCKh
(PartialHumans) and PA-MPJPE (3DPW). We compare our model
trained with multi-shot pseudo-ground truth, with models trained
with other forms of pseudo-ground truth (third block), as well
as different state-of-the-art models (we share similar design with
models in the first block; methods in the second block deviate from
this). The availability of pseudo-ground truth from multi-shot op-
timization leads to improvements across the board.

5.4. Temporal model

The proposed multi-shot optimization not only provides
better 3D pseudo-ground truth, but also has the benefit of
mining long sequences to train temporal regression models
on, as it can link sequences across shot changes. Here, we
validate this and also evaluate the suitability of the proposed
transformer temporal model, t-HMMR, on movie data.

Our analysis, performed on AVA, is summarized in Ta-
ble 3. Again, we point to three interesting facts. First,
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Figure 7. Qualitative evaluation in the presence of truncations.
Comparison with the most relevant state-of-the-art on AVA [14]
(first three rows) and Partial Humans dataset [51] (last two rows).
Our model is significantly more robust in images with truncations.

we confirm that current state-of-the-art temporal models,
HMMR [23], VIBE [24] and TCMR [8], when used off-the-
shelf, have very low accuracy on movie sequences. Second,
we observe that in the case of multi-shot movie sequences,
the proposed transformer model outperforms other choices
for the architecture of the encoder, i.e., convolutional [23]
and recurrent [24]. As discussed, transformer can better
handle missing identities (e.g., due to b-rolls), which are
common in edited media, and this translates also to a per-
formance improvement.

Finally, we evaluate the performance gain coming from
merging sequences from individual shots into a single se-
quence. For this, we use the exact same pseudo-ground
truths from multi-shot, but split the sequences into indi-
vidual shots (w/ single-shot AVA) and compare with the
full model that is trained on merged sequences (w/ multi-
shot AVA). Note that the only difference is the length of
sequences used for training. Eventually, we identify perfor-
mance improvement for the model when merging the indi-
vidual shots into multi-shot sequences, which validates the
importance of our multi-shot insight in mining longer se-
quences extending beyond a single shot.

In Figure 8 we provide example reconstructions of our t-
HMMR model, in comparison with the single frame model,
both trained on AVA. While the single frame model obtains
reasonable results, output from t-HMMR is more consistent
due to the larger temporal context.

Model same-frame PCK cross-shot PCK

HMMR (Conv) [23] 46.1 28.5
VIBE (RNN) [24] 40.1 25.0
TCMR (RNN) [8] 30.0 21.4

Conv (w/ multi-shot AVA) 79.6 53.6
RNN (w/ mutli-shot AVA) 78.3 52.6
t-HMMR (w/ single-shot AVA) 80.9 51.7
t-HMMR (w/ multi-shot AVA) 82.1 54.6

Table 3. Multi-frame evaluation on AVA. The numbers are same-
frame and cross-shot PCK values. First three rows correspond to
state-of-the-art models not trained on data from AVA. Using a) the
transformer architecture, and b) our multi-shot insight to connect
sequences that span more than one shots, is important to improve
performance on movie sequences.
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Figure 8. Effect of temporal model. While the single-frame pre-
diction for frame 1 can be inconsistent with frame 2, our temporal
model integrates information over the temporal window and esti-
mates a body pose for frame 1 that is consistent with frame 2.

6. Conclusion

We introduce a new task of 3D human reconstruction
from multiple shots. We propose an optimization approach,
which in turn helps improving direct regression methods
from single-frame and video. A limitation of the multi-
shot reasoning is that it currently relies on Re-ID to iden-
tify which shots correspond to the same underlying scene
and this can be noisy. Although our experiments show that
even with this noise, the approaches benefit from multi-shot
reasoning, it would be interesting to employ the most recent
tracking systems [47, 48] to perform such re-identification.
We believe that our work opens a new door towards ana-
lyzing movie data. In particular, our multi-shot reasoning
provides relative extrinsic camera estimates between differ-
ent shots. It would be exciting to use this information in
the future to reconstruct not only the humans but also the
rest of the environment. Movie data also exhibits “common
sense” human behaviors that involve higher level reasoning.
It would be interesting to analyze this in future work.
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