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Figure 1. Given an input dataset of unaligned images, our GANgealing algorithm discovers dense correspondences between all images. Top
row: Images from LSUN Cats and the dataset’s average image. Second row: Our learned transformations of the input images. Third row:
Dense correspondences learned by GANgealing. Bottom row: By annotating the average transformed image, we can propagate user edits to
images and videos. Please see our project page for detailed video results: www.wpeebles.com/gangealing.

Abstract
We propose GAN-Supervised Learning, a framework for

learning discriminative models and their GAN-generated
training data jointly end-to-end. We apply our framework
to the dense visual alignment problem. Inspired by the clas-
sic Congealing method, our GANgealing algorithm trains
a Spatial Transformer to map random samples from a GAN
trained on unaligned data to a common, jointly-learned tar-
get mode. We show results on eight datasets, all of which
demonstrate our method successfully aligns complex data
and discovers dense correspondences. GANgealing signifi-
cantly outperforms past self-supervised correspondence al-
gorithms and performs on-par with (and sometimes exceeds)
state-of-the-art supervised correspondence algorithms on
several datasets—without making use of any correspondence
supervision or data augmentation and despite being trained
exclusively on GAN-generated data. For precise correspon-
dence, we improve upon state-of-the-art supervised methods
by as much as 3⇥. We show applications of our method
for augmented reality, image editing and automated pre-
processing of image datasets for downstream GAN training.

Code and models: www.github.com/wpeebles/gangealing

1. Introduction

Visual alignment, also known as the correspondence or
registration problem, is a critical element in much of com-
puter vision, including optical flow, 3D matching, medical
imaging, tracking and augmented reality. While much recent
progress has been made on pairwise alignment (aligning im-
age A to image B) [2,14,22,34,51,57,58,60,68–71,75], the
problem of global joint alignment (aligning all images across
a dataset) has not received as much attention. Yet, joint align-
ment is crucial for tasks requiring a common reference frame,
such as automatic keypoint annotation, augmented reality
or edit propagation (see Figure 1 bottom row). There is
also evidence that training on jointly aligned datasets (such
as FFHQ [42], AFHQ [15], CelebA-HQ [40]) can produce
higher quality generative models than training on unaligned
data.

In this paper, we take inspiration from a series of classic
works on automatic joint image set alignment. In particular,
we are motivated by the seminal unsupervised Congealing
method of Learned-Miller [48] which showed that a set of im-
ages could be brought into alignment by continually warping
them toward a common, updating mode. While Congeal-
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ing can work surprisingly well on simple binary images,
such as MNIST digits, the direct pixel-level alignment is not
powerful enough to handle most datasets with significant
appearance and pose variation.

To address these limitations, we propose GANgealing:
a GAN-Supervised algorithm that learns transformations of
input images to bring them into better joint alignment. The
key is in employing the latent space of a GAN (trained on
the unaligned data) to automatically generate paired train-
ing data for a Spatial Transformer [35]. Crucially, in our
proposed GAN-Supervised Learning framework, both the
Spatial Transformer and the target images are learned jointly.
Our Spatial Transformer is trained exclusively with GAN
images and generalizes to real images at test time.

We show results spanning eight datasets—LSUN Bicy-
cles, Cats, Cars, Dogs, Horses and TVs [87], In-The-Wild
CelebA [52] and CUB [83]—that demonstrate our GANgeal-
ing algorithm is able to discover accurate, dense correspon-
dences across datasets. We show our Spatial Transformers
are useful in image editing and augmented reality tasks.
Quantitatively, GANgealing significantly outperforms past
self-supervised dense correspondence methods, nearly dou-
bling key point transfer accuracy (PCK [4]) on many SPair-
71K [59] categories. Moreover, GANgealing sometimes
matches and even exceeds state-of-the-art correspondence-
supervised methods.

2. Related Work
Pre-Trained GANs for Vision. Prior work has explored
the use of GANs [27, 67] in vision tasks such as classi-
fication [10, 12, 55, 74, 84], segmentation [56, 79, 82, 90]
and representation learning [7, 20, 21, 23, 36], as well as
3D vision and graphics tasks [28, 64, 72, 89]. Likewise, we
share the goal of leveraging the power of pre-trained deep
generative models for vision tasks. However, the relevant
past methods follow a common two-stage paradigm of (1)
synthesizing a GAN-generated dataset and (2) training a
discriminative model on the fixed dataset. In contrast, our
GAN-Supervised Learning approach learns both the discrim-
inative model as well as the GAN-generated data jointly
end-to-end. We do not rely on hand-crafted pixel space aug-
mentations [12, 36], human-labeled data [28, 72, 79, 89, 90]
or post-processing of GAN-generated datasets using domain
knowledge [10, 56, 82, 89].

Joint Image Set Alignment. Average images have long
been used to visualize joint alignment of image sets of the
same semantic content (e.g., [78,95]), with the seminal work
of Congealing [32, 48] establishing unsupervised joint align-
ment as a research problem. Congealing uses sequential
optimization to gradually minimize the entropy of the inten-
sity distribution of a set of images by continuously warping
each image via a parametric transformation (e.g., affine).
It produces impressive results on well-structured datasets,

such as digits, but struggles with more complex data. Subse-
quent work in this area assumes the data lies on a low-rank
subspace [44, 66] or factorizes images as a composition of
color, appearance and shape [62] to establish dense corre-
spondences between instances of the same object category.
FlowWeb [92] uses cycle consistency constraints to estimate
a fully-connected correspondence flow graph. Every method
above assumes that it is possible to align all images to a
single central mode in the data. Joint visual alignment and
clustering was proposed in AverageExplorer [95] but as a
user-driven data interaction tool. Bounding box supervision
has been used to align and cluster multiple modes within
object categories [19]. Automated transformation-invariant
clustering methods [24, 25] can align images in a collection
before comparing them but work only in limited domains.
Recently, Monnier et al. [63] showed that warps could be
predicted with a network instead, removing the need for
per-image optimization; this opened the door for simulta-
neous alignment and clustering of large-scale collections.
Unlike our approach, these methods assume images can be
aligned with simple (e.g., affine) color transformations; this
assumption breaks down for complex datasets like LSUN.

Spatial Transformer Networks (STNs). A Spatial Trans-
former module [35] is one way to incorporate learnable
geometric transformations in a deep learning framework. It
regresses a set of warp parameters, where the warp and grid
sampling functions are differentiable to enable backpropaga-
tion. STNs have seen success in discriminative tasks (e.g.,
classification) and applications such as robust filter learn-
ing [16, 37], view synthesis [26, 65, 93] and 3D representa-
tion learning [39, 86, 91]. Inverse Compositional STNs (IC-
STNs) [49] advocate an iterative image alignment framework
in the spirit of the classical Lukas-Kanade algorithm [6, 54].
Prior work has incorporated STNs in generative models for
geometry-texture disentanglement [85] and image composit-
ing [50]. In contrast, we use a generative model to directly
produce training data for STNs.

3. GAN-Supervised Learning
In this section, we present GAN-Supervised Learning.

Under this framework, (x, y) pairs are sampled from a pre-
trained GAN generator, where x is a random sample from
the GAN and y is the sample obtained by applying a learned
latent manipulation to x’s latent code. These pairs are used
to train a network f✓ : x ! y. This framework minimizes
the following loss:

L(f✓,y) = `(f✓(x),y), (1)

where ` is a reconstruction loss. In vanilla supervised learn-
ing, f✓ is learned on fixed (x,y) pairs. In contrast, in GAN-
Supervised Learning, both f✓ and the targets y are learned
jointly end-to-end. At test time, we are free to evaluate f✓

on real inputs.
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Figure 2. GANgealing Overview. We first train a generator G on unaligned data. We create a synthetically-generated dataset for alignment
by learning a mode c in the generator’s latent space. We use this dataset to train a Spatial Transformer Network T to map from unaligned to
corresponding aligned images using a perceptual loss [38]. The Spatial Transformer generalizes to align real images automatically.

3.1. Dense Visual Alignment
Here, we show how GAN-Supervised Learning can be ap-

plied to Congealing [48]—a classic unsupervised alignment
algorithm. In this instantiation, f✓ is a Spatial Transformer
Network [35] T , and we describe our parameterization of
inputs x and learned targets y below. We call our algorithm
GANgealing. We present an overview in Figure 2.

GANgealing begins by training a latent variable gener-
ative model G on an unaligned input dataset. We refer to
the input latent vector to G as w 2 R512. With G trained,
we are free to draw samples from the unaligned distribution
by computing x = G(w) for randomly sampled w ⇠ W ,
where W denotes the distribution over latents. Now, con-
sider a fixed latent vector c 2 R512. This vector corresponds
to a fixed synthetic image G(c) from the original unaligned
distribution. A simple idea in the vein of traditional Con-
gealing is to use G(c) as the target mode y—i.e., we learn
a Spatial Transformer T that is trained to warp every ran-
dom unaligned image x = G(w) to the same target image
y = G(c). Since G is differentiable in its input, we can
optimize c and hence learn the target we wish to congeal
towards. Specifically, we can optimize the following loss
with respect to both T ’s parameters and the target image’s
latent vector c jointly:

Lalign(T, c) = `(T (G(w)), G(c)), (2)

where ` is some distance function between two images.
By minimizing L with respect to the target latent vector
c, GANgealing encourages c to find a pose that makes T ’s

job as easy as possible. If the current value of c corresponds
to a pose that cannot be reached from most images via the
transformations predicted by T , then it can be adjusted via
gradient descent to a different vector that is “reachable" by
more images.

This simple approach is reasonable for datasets with lim-
ited diversity; however, in the presence of significant appear-
ance and pose variation, it is not reasonable to expect that
every unaligned sample can be aligned to the exact same
target image. Hence, optimizing the above loss does not
produce good results in general (see Table 3). Instead of
using the same target G(c) for every randomly sampled
image G(w), it would be ideal if we could construct a per-
sample target that retains the appearance of G(w) but where
the pose and orientation of the object in the target image is
roughly identical across targets. To accomplish this, given
G(w), we produce the corresponding target by setting just a
portion of the w vector equal to the target vector c. Specifi-
cally, let mix(c,w) 2 R512 refer to the latent vector whose
first entries are taken from c and remaining entries are taken
from w. By sampling new w vectors, we can create an in-
finite pool of paired data where the input is the unaligned
image x = G(w) and the target y = G(mix(c,w)) shares
the appearance of G(w) but is in a learned, fixed pose. This
gives rise to the GANgealing loss function:

Lalign(T, c) = `(T (G(w)| {z }
x

), G(mix(c,w))| {z }
y

), (3)

where ` is a perceptual loss function [38]. In this paper, we
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opt to use StyleGAN2 [43] as our choice of G, but in princi-
ple other GAN architectures could be used with our method.
An advantage of using StyleGAN2 is that it possesses some
innate style-pose disentanglement that we can leverage to
construct the per-image target described above. Specifically,
we can construct the per-sample targets G(mix(c,w)) by
using style mixing [42]—c is supplied to the first few inputs
to the synthesis generator that roughly control pose and w is
fed into the later layers that roughly control texture. See Ta-
ble 3 for a quantitative ablation of the mixing "cutoff point"
where we begin to feed in w (i.e., the cutoff point is chosen
as a layer index in W+ space [1]).

Spatial Transformer Parameterization. Recall that a
Spatial Transformer T takes as input an image and regresses
and applies a (reverse) sampling grid g 2 RH⇥W⇥2 to the
input image. Hence, one must choose how to constrain the g
regressed by T . In this paper, we explore a T that performs
similarity transformations (rotation, uniform scale, horizon-
tal shift and vertical shift). We also explore an arbitrarily
expressive T that directly regresses unconstrained per-pixel
flow fields g. Our final T is a composition of the similarity
Spatial Transformer into the unconstrained Spatial Trans-
former, which we found worked best. In contrast to prior
work [50, 63], we do not find multi-stage training necessary
and train our composed T end-to-end. Finally, our Spatial
Transformer is also capable of performing horizontal flips at
test time—please refer to Supplement B.4 for details.

When using the unconstrained T , it can be beneficial
to add a total variation regularizer that encourages the pre-
dicted flow to be smooth to mitigate degenerate solutions:
LTV(T ) = LHuber(�xg) + LHuber(�yg), where LHuber de-
notes the Huber loss and �x and �y denote the partial deriva-
tive w.r.t. x and y coordinates under finite differences. We
also use a regularizer that encourages the flow to not deviate
from the identity transformation: LI(T ) = ||g||22.

Parameterization of c. In practice, we do not backpropa-
gate gradients directly into c. Instead, we parameterize c as
a linear combination of the top-N principal directions of W
space [29, 77]:

c = w̄ +
NX

i=1

↵idi, (4)

where w̄ is the empirical mean w vector, di is the i-th prin-
cipal direction and ↵i is the learned scalar coefficient of the
direction. Instead of optimizing L w.r.t. c directly, we opti-
mize it w.r.t. the coefficients {↵i}Ni=1. The motivation for
this reparameterization is that StyleGAN’s W space is highly
expressive. Hence, in the absence of additional constraints,
naive optimization of c can yield poor target images off the
manifold of natural images. Decreasing N keeps c on the

manifold and prevents degenerate solutions. See Table 3 for
an ablation of N .

Our final GANgealing objective is given by:

L(T, c) = Ew⇠W [Lalign(T, c)

+ �TVLTV(T ) + �ILI(T )]. (5)

We set the loss weighting �TV at either 1000 or 2500 (de-
pending on choice of `) and the loss weighting �I at 1. See
Supplement B for additional details and hyperparameters.

3.2. Joint Alignment and Clustering
GANgealing as described so far can handle highly-

multimodal data (e.g., LSUN Bicycles, Cats, etc.). Some
datasets, such as LSUN Horses, feature extremely diverse
poses that cannot be represented well by a single mode in the
data. To handle this situation, GANgealing can be adapted
into a clustering algorithm by simply learning more than
one target latent c. Let K refer to the number of c vectors
(clusters) we wish to learn. Since each c captures a specific
mode in the data, learning multiple {ck}Kk=1 would enable
us to learn multiple modes. Now, each ck will learn its own
set of ↵ coefficients. Similarly, we will now have K Spatial
Transformers, one for each mode being learned. This variant
of GANgealing amounts to simultaneously clustering the
data and learning dense correspondence between all images
within each cluster. To encourage each ck and Tk pair to spe-
cialize in a particular mode, we include a hard-assignment
step to assign unaligned synthetic images to modes:

LK

align(T, c) = min
k

Lalign(Tk, ck) (6)

Note that the K = 1 case is equivalent to the previously
described unimodal case. At test time, we can assign an
input fake image G(w) to its corresponding cluster index
k
⇤ = argmin

k
Lalign(Tk, ck). Then, we can warp it with

the Spatial Transformer Tk⇤ . However, a problem arises
in that we cannot compute this cluster assignment for in-
put real images—the assignment step requires computing
Lalign, which itself requires knowledge of the input image’s
corresponding w vector. The most obvious solution to
this problem is to perform GAN inversion [8, 11, 94] on
input real images x to obtain a latent vector w such that
G(w) ⇡ x. However, accurate GAN inversion for non-face
datasets remains somewhat challenging and slow, despite re-
cent progress [3, 33]. Instead, we opt to train a classifier that
directly predicts the cluster assignment of an input image.
We train the classifier using a standard cross-entropy loss on
(input fake image, target cluster) pairs (G(w), k⇤), where
k
⇤ is obtained using the above assignment step. We initialize

the classifier with the weights of T (replacing the warp head
with a randomly-initialized classification head). As with the
Spatial Transformer, the classifier generalizes well to real
images despite being trained exclusively on fake samples.
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Figure 3. Dense correspondence results on eight datasets. For each dataset, the top row shows unaligned images and the dataset average
image. The middle row shows our learned alignment of the input images. The bottom row shows dense correspondences between the images.
For our clustering models (LSUN Horses and Cars), we show results for one selected cluster. See Supplement F for uncurated results.

4. Experiments

In this section, we present quantitative and qualitative re-
sults of GANgealing on eight datasets: LSUN Bicycles, Cats,
Cars, Dogs, Horses and TVs [87], In-The-Wild CelebA [52]
and CUB-200-2011 [83]. These datasets feature signifi-
cant diversity in appearance, pose and occlusion of objects.
Only LSUN Cars and Horses use clustering (K = 4)1; for
all other datasets we use unimodal GANgealing (K = 1).
Note that all figures except Figure 2 show our method
applied to real images—not GAN samples. Please see
www.wpeebles.com/gangealing for full results.

1K is a hyperparameter that can be set by the user. We found K = 4 to
be a good default choice for our clustering models.

4.1. Propagation from Congealed Space

With the Spatial Transformer T trained, it is trivial to
identify dense correspondences between real input images
x. A particularly convenient way to find dense correspon-
dences between a set of images is by propagating from our
congealed coordinate space. As described earlier, T both
regresses and applies a sampling grid g to an input image.
Because we use reverse sampling, this grid tells us where
each point in the congealed image T (x) maps to in the origi-
nal image x. This enables us to propagate anything from the
congealed coordinate space—dense labels, sparse keypoints,
etc. If a user annotates a single congealed image (or the aver-
age congealed image) they can then propagate those labels to
an entire dataset by simply predicting the grid g for each im-
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Figure 4. Image editing with GANgealing. By annotating just a single image per-category (our average transformed image), a user can
propagate their edits to any image or video in the same category.

age x in their dataset via a forward pass through T . Figures 1
and 3 show visual results for all eight datasets—our method
can find accurate dense correspondences in the presence of
significant appearance and pose diversity. GANgealing ac-
curately handles diverse morphologies of birds, cats with
varying facial expressions and bikes in different orientations.

Image Editing. Our average congealed image is a tem-
plate that can propagate any user edit to images of the same
category. For example, by drawing cartoon eyes or overlay-
ing a Batman mask on our average congealed cat, a user can
effortlessly propagate their edits to massive numbers of cat
images with forward passes of T . We show editing results
on several datasets in Figures 4 and 1.

Augmented Reality. Just as we can propagate dense cor-
respondences to images, we can also propagate to individ-
ual video frames. Surprisingly, we find that GANgealing
yields remarkably smooth and consistent results when ap-
plied out-of-the-box to videos per-frame without leveraging
any temporal information. This enables mixed reality ap-
plications like dense tracking and filters. GANgealing can
outperform supervised methods like RAFT [75]—please see
www.wpeebles.com/gangealing for results.

4.2. Direct Image-to-Image Correspondence
In addition to propagating correspondences from con-

gealed space to unaligned images, we can also find dense
correspondences directly between any pair of images xA
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Figure 5. PCK@↵bbox on various SPair-71K categories for ↵bbox between 10�1 and 10�2. We report the average threshold (maximum
distance for a correspondence to be deemed correct) in pixels for 256⇥256 images beneath each plot. GANgealing outperforms state-of-the-
art supervised methods for very precise thresholds (< 2 pixel error tolerance), sometimes by substantial margins.

and xB . At a high level, this merely involves applying the
forward warp that maps points in xA to points in T (xA)
and composing it with the reverse warp that maps points in
the congealed coordinate space back to xB . Please refer to
Supplement B.7 for details.

Quantitative Results. We evaluate GANgealing with
PCK-Transfer. Given a source image xA, target image xB

and ground-truth keypoints for both images, PCK-Transfer
measures the percentage of keypoints transferred from xA

to xB that lie within a certain radius of the ground-truth
keypoints in xB .

We evaluate PCK on SPair-71K [59] and CUB. For
SPair, we use the ↵bbox threshold in keeping with prior
works. Under this threshold, a predicted keypoint is
deemed to be correctly transferred if it is within a radius
↵bbox max(Hbbox,Wbbox) of the ground truth, where Hbbox
and Wbbox are the height and width of the object bound-
ing box in the target image. For each SPair category, we
train a StyleGAN2 on the corresponding LSUN category2—
the GANs are trained on 256⇥ 256 center-cropped images.
We then train a Spatial Transformer using GANgealing and
directly evaluate on SPair. For CUB, we first pre-train a
StyleGAN2 with ADA [41] on the NABirds dataset [81] and
fine-tune it with FreezeD [61] on the training split of CUB,
using the same image pre-processing and dataset splits as
ACSM [46] for a fair comparison. When T performs a hori-
zontal flip for one image in a pair, we permute our model’s
predictions for keypoints with a left versus right distinction.

SPair-71K Results. We compare against several self-
supervised and state-of-the-art supervised methods on the
challenging SPair-71K dataset in Table 1, using the standard
↵bbox = 0.1 threshold. Our method significantly outper-

2We use off-the-shelf StyleGAN2 models for LSUN Cats, Dogs and
Horses. Note that we do not evaluate PCK on our clustering models (LSUN
Cars and Horses) as these models can only transfer points between images
in the same cluster.

Method Correspondence Supervision
SPair-71K Category

Bicycle Cat Dog TV
HPF [58] matching pairs + keypoints 18.9 52.9 32.8 35.6
DHPF [60] matching pairs + keypoints 23.8 61.6 46.1 46.5
SCOT [51] matching pairs + keypoints* 20.7 63.1 42.5 40.8
CHM [57] matching pairs + keypoints 29.3 64.9 56.1 55.6
CATs [14] matching pairs + keypoints 34.7 66.5 56.5 58.0
WeakAlign [69] matching image pairs 17.6 31.8 22.6 35.1
NC-Net [70] matching image pairs 12.2 39.2 18.8 31.1
CNNgeo [68] self-supervised 16.7 32.7 22.8 34.1
A2Net [71] self-supervised 18.5 35.6 24.3 36.5
GANgealing GAN-supervised 37.5 67.0 23.1 57.9

Table 1. PCK-Transfer@↵bbox = 0.1 results on SPair-71K cat-
egories (test split).

forms prior self-supervised methods on several categories,
nearly doubling the best prior self-supervised method’s PCK
on SPair Bicycles and Cats. GANgealing performs on par
with and even outperforms state-of-the-art correspondence-
supervised methods on several categories. We increase the
previous best PCK on Bicycles achieved by Cost Aggrega-
tion Transformers [14] from 34.7% to 37.5% and perform
comparably on Cats and TVs.

High-Precision SPair-71K Results. The usual ↵bbox =
0.1 threshold reported by most papers using SPair deems a
correspondence correct if it is localized within roughly 10 to
20 pixels of the ground truth for 256⇥ 256 images (depend-
ing on the SPair category). In Figure 5, we evaluate perfor-
mance over a range of thresholds between 0.1 and 0.01 (the
latter of which affords a roughly 1 to 2 pixel error tolerance,
again depending on category). GANgealing outperforms all
supervised methods at these high-precision thresholds across
all four categories tested. Notably, our LSUN Cats model
improves the previous best SPair Cats PCK@↵bbox = 0.01
achieved by SCOT [51] from 5.4% to 18.5%. On SPair TVs,
we improve the best supervised PCK achieved by Dynamic
Hyperpixel Flow [60] from 2.1% to 3.0%. Even on SPair
Dogs, where GANgealing is outperformed by every super-
vised method at low-precision thresholds, we marginally
outperform all baselines at the 0.01 threshold.
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Figure 6. GANgealing alignment improves downstream GAN
training. We show random, untruncated samples from StyleGAN2
trained on LSUN Cats versus our aligned LSUN Cats (both models
trained from scratch). Our method improves visual fidelity.

Figure 7. Various failure modes: significant out-of-plane rotation
and complex poses poorly modeled by GANs.

CUB Results. Table 2 shows PCK results on CUB, com-
paring against several 2D and 3D correspondence meth-
ods that use varying amounts of supervision. GANgealing
achieves 57.5% PCK, outperforming all past methods that re-
quire instance mask supervision and performing comparably
with the best correspondence-supervised baseline (58.5%).

Ablations. We ablate several components of GANgeal-
ing in Table 3. We find that learning the target mode c is
critical for complex datasets; fixing c = w̄ dramatically de-
grades PCK from 67% to 10.6% for our LSUN Cats model.
This highlights the value of our GAN-Supervised Learning
framework where both the discriminative model and targets
are learned jointly. We additionally find that our baseline
inspired by traditional Congealing (using a single learned
target G(c) for all inputs) is highly unstable and degrades
PCK to as little as 7.7%. This result demonstrates the impor-
tance of our per-input alignment targets. We also ablate two
choices of the perceptual loss `: an off-the-shelf supervised
option (LPIPS [88]) and a fully-unsupervised VGG-16 [73]
pre-trained with SimCLR [13] on ImageNet-1K [17] (SSL)—
there is no significant difference in performance between the
two (±0.2%). Please see Table 3 for more ablations.

4.3. Automated GAN Dataset Pre-Processing
An exciting application of GANgealing is automated

dataset pre-processing. Dataset alignment is an important
yet costly step for many machine learning methods. GAN
training in particular benefits from carefully-aligned and fil-
tered datasets, such as FFHQ [42], AFHQ [15] and CelebA-
HQ [40]. We can align input datasets using our similarity

Method
Supervision Required

PCK@0.1Inst. Mask Keypoints
Rigid-CSM (with keypoints) [47] X X 45.8
ACSM (with keypoints) [46] X X 51.0
IMR (with keypoints) [80] X X 58.5
Dense Equivariance [76] X 33.5
Rigid-CSM [47] X 36.4
ACSM [46] X 42.6
IMR [80] X 53.4
Neural Best Buddies [2] 35.1
Neural Best Buddies (with flip heuristic) 37.8
GANgealing 57.5

Table 2. PCK-Transfer@0.1 on CUB. Numbers for the 3D meth-
ods are reported from [46]. We sample 10,000 random pairs from
the CUB validation split as in [46].

Ablation Description Loss (`) W+ cutoff �TV N PCK
Don’t learn c (fix c = w̄) SSL 5 1000 0 10.6
Unconstrained c optimization SSL 5 1000 512 0.34
Early style mixing cutoff SSL 4 1000 1 60.5
Late style mixing cutoff SSL 6 1000 1 65.0
No style mixing SSL 14 1000 1 25.9
No style mixing (LPIPS) LPIPS 14 1000 1 7.74
No LTV regularizer SSL 5 0 1 59.0
Lower �TV (LPIPS) LPIPS 5 1000 1 66.7
Complete model (SSL) SSL 5 1000 1 67.2
Complete model (LPIPS) LPIPS 5 2500 1 67.0

Table 3. GANgealing ablations for LSUN Cats. We evaluate
on SPair-71K Cats using ↵bbox = 0.1. SSL refers to using a self-
supervised VGG-16 as the perceptual loss `. N refers to the number
of W space PCA coefficients learned when optimizing c. Note that
the LSUN Cats StyleGAN2 generator has 14 layers.

Spatial Transformer T to train generators with higher visual
fidelity. We show results in Figure 6: training StyleGAN2
from scratch with our learned pre-processing of LSUN Cats
yields high-quality samples reminiscent of AFHQ. As we
show in Supplement E, our pre-processing accelerates GAN
training significantly.

5. Limitations and Discussion
Our Spatial Transformer has a few notable failure modes

as demonstrated in Figure 7. One limitation with GANgeal-
ing is that we can only reliably propagate correspondences
that are visible in our learned target mode. For example,
the learned mode of our LSUN Dogs model is the upper-
body of a dog—this particular model is thus incapable of
finding correspondences between, e.g., paws. A potential
solution to this problem is to initialize the learned mode with
a user-chosen image via GAN inversion that covers all points
of interest. Despite this limitation, we obtain competitive
results on SPair for some categories where many keypoints
are not visible in the learned mode (e.g., cats).

In this paper, we showed that GANs can be used to
train highly competitive dense correspondence algorithms
from scratch with our proposed GAN-Supervised Learning
framework. We hope this paper will lead to increased
adoption of GAN-Supervision for other challenging tasks.

13477



References
[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-

age2stylegan: How to embed images into the stylegan la-
tent space? In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4432–4441, 2019. 4

[2] Kfir Aberman, Jing Liao, Mingyi Shi, Dani Lischinski, Bao-
quan Chen, and Daniel Cohen-Or. Neural best-buddies:
Sparse cross-domain correspondence. ACM Transactions
on Graphics (TOG), 37(4):69, 2018. 1, 8

[3] Yuval Alaluf, Or Patashnik, and Daniel Cohen-Or. Restyle:
A residual-based stylegan encoder via iterative refinement.
arXiv preprint arXiv:2104.02699, 2021. 4

[4] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and
Bernt Schiele. 2d human pose estimation: New benchmark
and state of the art analysis. In Proceedings of the IEEE Con-
ference on computer Vision and Pattern Recognition, pages
3686–3693, 2014. 2

[5] David Arthur and Sergei Vassilvitskii. k-means++: The ad-
vantages of careful seeding. Technical report, Stanford, 2006.
13

[6] Simon Baker and Iain Matthews. Lucas-kanade 20 years on:
A unifying framework. International journal of computer
vision, 56(3):221–255, 2004. 2

[7] Manel Baradad, Jonas Wulff, Tongzhou Wang, Phillip Isola,
and Antonio Torralba. Learning to see by looking at noise.
arXiv preprint arXiv:2106.05963, 2021. 2

[8] David Bau, Hendrik Strobelt, William Peebles, Jonas Wulff,
Bolei Zhou, Jun-Yan Zhu, and Antonio Torralba. Semantic
photo manipulation with a generative image prior. ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH),
38(4), 2019. 4

[9] David Bau, Jun-Yan Zhu, Jonas Wulff, William Peebles, Hen-
drik Strobelt, Bolei Zhou, and Antonio Torralba. Seeing what
a gan cannot generate. In IEEE International Conference on
Computer Vision (ICCV), 2019. 21

[10] Victor Besnier, Himalaya Jain, Andrei Bursuc, Matthieu Cord,
and Patrick Pérez. This dataset does not exist: training mod-
els from generated images. In ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1–5. IEEE, 2020. 2

[11] Andrew Brock, Theodore Lim, James M Ritchie, and Nick
Weston. Neural photo editing with introspective adversarial
networks. In International Conference on Learning Repre-
sentations (ICLR), 2017. 4

[12] Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, and
Richard Zhang. Ensembling with deep generative views.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14997–15007, 2021. 2

[13] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on
machine learning, pages 1597–1607. PMLR, 2020. 8

[14] Seokju Cho, Sunghwan Hong, Sangryul Jeon, Yunsung Lee,
Kwanghoon Sohn, and Seungryong Kim. Cats: Cost aggrega-
tion transformers for visual correspondence. In Thirty-Fifth
Conference on Neural Information Processing Systems, 2021.
1, 7, 21

[15] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.
Stargan v2: Diverse image synthesis for multiple domains. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2020. 1, 8, 17

[16] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang,
Han Hu, and Yichen Wei. Deformable convolutional networks.
arXiv preprint arXiv:1703.06211, 2017. 2

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2009. 8

[18] Terrance DeVries, Michal Drozdzal, and Graham W Taylor.
Instance selection for gans. Advances in Neural Information
Processing Systems, 2020. 16

[19] Santosh Divvala, Alexei Efros, and Martial Hebert. Object
instance sharing by enhanced bounding box correspondence.
In BMVC, 2012. 2

[20] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Ad-
versarial feature learning. In International Conference on
Learning Representations (ICLR), 2017. 2

[21] Jeff Donahue and Karen Simonyan. Large scale adversarial
representation learning. arXiv preprint arXiv:1907.02544,
2019. 2

[22] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser,
Caner Hazirbas, Vladimir Golkov, Patrick Van Der Smagt,
Daniel Cremers, and Thomas Brox. Flownet: Learning optical
flow with convolutional networks. In Proceedings of the
IEEE international conference on computer vision, pages
2758–2766, 2015. 1

[23] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb,
Martin Arjovsky, Olivier Mastropietro, and Aaron Courville.
Adversarially learned inference. In International Conference
on Learning Representations (ICLR), 2017. 2

[24] Brendan J. Frey and Nebojsa Jojic. Transformation-invariant
clustering using the EM algorithm. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 25(1):1–
17, 2003. 2

[25] J. Brendan Frey and Nebojsa Jojic. Estimating mixture mod-
els of images and inferring spatial transformations using the
em algorithm. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 1999. 2

[26] Yaroslav Ganin, Daniil Kononenko, Diana Sungatullina, and
Victor Lempitsky. Deepwarp: Photorealistic image resyn-
thesis for gaze manipulation. In European Conference on
Computer Vision, pages 311–326. Springer, 2016. 2

[27] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative Adversarial Nets. In Advances in
Neural Information Processing Systems (NeurIPS), 2014. 2

[28] Zekun Hao, Arun Mallya, Serge Belongie, and Ming-Yu Liu.
GANcraft: Unsupervised 3D Neural Rendering of Minecraft
Worlds. In ICCV, 2021. 2

[29] Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Syl-
vain Paris. Ganspace: Discovering interpretable gan controls.
arXiv preprint arXiv:2004.02546, 2020. 4

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE Con-

13478



ference on Computer Vision and Pattern Recognition (CVPR),
2016. 13

[31] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, and Sepp Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium.
In Advances in Neural Information Processing Systems, 2017.
16

[32] G. B. Huang, V. Jain, and E. Learned-Miller. Unsupervised
joint alignment of complex images. In 2007 IEEE 11th Inter-
national Conference on Computer Vision, 2007. 2

[33] Minyoung Huh, Richard Zhang, Jun-Yan Zhu, Sylvain Paris,
and Aaron Hertzmann. Transforming and projecting images
to class-conditional generative networks. In European Con-
ference on Computer Vision (ECCV), 2020. 4

[34] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keu-
per, Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0:
Evolution of optical flow estimation with deep networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2462–2470, 2017. 1

[35] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.
Spatial transformer networks. In Advances in Neural Infor-
mation Processing Systems, pages 2017–2025, 2015. 2, 3

[36] Ali Jahanian, Xavier Puig, Yonglong Tian, and Phillip Isola.
Generative models as a data source for multiview representa-
tion learning. arXiv preprint arXiv:2106.05258, 2021. 2

[37] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V
Gool. Dynamic filter networks. In Advances in Neural Infor-
mation Processing Systems, pages 667–675, 2016. 2

[38] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European Conference on Computer Vision (ECCV), 2016. 3

[39] Angjoo Kanazawa, David W Jacobs, and Manmohan Chan-
draker. Warpnet: Weakly supervised matching for single-view
reconstruction. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3253–3261,
2016. 2

[40] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. In International Conference on Learning Rep-
resentations (ICLR), 2018. 1, 8, 17

[41] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative adver-
sarial networks with limited data. arXiv, 2020. 7

[42] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019. 1, 4, 8, 16, 17

[43] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8110–8119, 2020. 4, 13

[44] Ira Kemelmacher-Shlizerman and Steven M Seitz. Collection
flow. In Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on, pages 1792–1799. IEEE, 2012. 2

[45] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015. 14

[46] Nilesh Kulkarni, Abhinav Gupta, David F Fouhey, and Shub-
ham Tulsiani. Articulation-aware canonical surface mapping.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2020. 7, 8

[47] Nilesh Kulkarni, Abhinav Gupta, and Shubham Tulsiani.
Canonical surface mapping via geometric cycle consistency.
IEEE International Conference on Computer Vision (ICCV),
2019. 8

[48] Erik G. Learned-Miller. Data driven image models through
continuous joint alignment. IEEE Trans. Pattern Anal. Mach.
Intell., 28(2):236–250, 2006. 1, 2, 3

[49] Chen-Hsuan Lin and Simon Lucey. Inverse compositional
spatial transformer networks. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017. 2

[50] Chen-Hsuan Lin, Ersin Yumer, Oliver Wang, Eli Shechtman,
and Simon Lucey. St-gan: Spatial transformer generative
adversarial networks for image compositing. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9455–9464, 2018. 2, 4

[51] Yanbin Liu, Linchao Zhu, Makoto Yamada, and Yi Yang.
Semantic correspondence as an optimal transport problem.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020. 1, 7

[52] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In IEEE Interna-
tional Conference on Computer Vision (ICCV), December
2015. 2, 5

[53] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. arXiv preprint arXiv:1608.03983,
2016. 14

[54] Bruce D. Lucas and Takeo Kanade. An iterative image reg-
istration technique with an application to stereo vision. In
Proceedings of the 7th International Joint Conference on Arti-
ficial Intelligence - Volume 2, IJCAI’81, pages 674–679, 1981.
2

[55] Chengzhi Mao, Augustine Cha, Amogh Gupta, Hao Wang,
Junfeng Yang, and Carl Vondrick. Generative interventions
for causal learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
3947–3956, 2021. 2

[56] Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, and An-
drea Vedaldi. Finding an unsupervised image segmenter
in each of your deep generative models. arXiv preprint
arXiv:2105.08127, 2021. 2

[57] Juhong Min and Minsu Cho. Convolutional hough matching
networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
2940–2950, June 2021. 1, 7

[58] Juhong Min, Jongmin Lee, Jean Ponce, and Minsu Cho. Hy-
perpixel flow: Semantic correspondence with multi-layer neu-
ral features. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 3395–3404, 2019. 1,
7

[59] Juhong Min, Jongmin Lee, Jean Ponce, and Minsu Cho. Spair-
71k: A large-scale benchmark for semantic correspondence.
arXiv preprint arXiv:1908.10543, 2019. 2, 7

13479



[60] Juhong Min, Jongmin Lee, Jean Ponce, and Minsu Cho.
Learning to compose hypercolumns for visual correspon-
dence. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XV 16, pages 346–363. Springer, 2020. 1, 7

[61] Sangwoo Mo, Minsu Cho, and Jinwoo Shin. Freeze the
discriminator: a simple baseline for fine-tuning gans. arXiv
preprint arXiv:2002.10964, 2020. 7

[62] Hossein Mobahi, Ce Liu, and William T. Freeman. A compo-
sitional model for low-dimensional image set representation.
In 2014 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2014, Columbus, OH, USA, June 23-28,
2014, pages 1322–1329. IEEE Computer Society, 2014. 2

[63] Tom Monnier, Thibault Groueix, and Mathieu Aubry. Deep
transformation-invariant clustering. In H. Larochelle, M. Ran-
zato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages
7945–7955. Curran Associates, Inc., 2020. 2, 4

[64] Xingang Pan, Bo Dai, Ziwei Liu, Chen Change Loy, and
Ping Luo. Do 2d gans know 3d shape? unsupervised 3d
shape reconstruction from 2d image gans. In International
Conference on Learning Representations, 2021. 2

[65] Eunbyung Park, Jimei Yang, Ersin Yumer, Duygu Ceylan, and
Alexander C Berg. Transformation-grounded image genera-
tion network for novel 3d view synthesis. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.
2

[66] YiGang Peng, Arvind Ganesh, John Wright, Wenli Xu, and
Yi Ma. RASL: robust alignment by sparse and low-rank
decomposition for linearly correlated images. IEEE Trans.
Pattern Anal. Mach. Intell., 34(11):2233–2246, 2012. 2

[67] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-
vised representation learning with deep convolutional gener-
ative adversarial networks. In International Conference on
Learning Representations (ICLR), 2016. 2

[68] Ignacio Rocco, Relja Arandjelovic, and Josef Sivic. Convolu-
tional neural network architecture for geometric matching. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 6148–6157, 2017. 1, 7

[69] Ignacio Rocco, Relja Arandjelović, and Josef Sivic. End-to-
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