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Abstract

Multimodal learning helps to comprehensively under-
stand the world, by integrating different senses. Accord-
ingly, multiple input modalities are expected to boost model
performance, but we actually find that they are not fully
exploited even when the multimodal model outperforms
its uni-modal counterpart. Specifically, in this paper we
point out that existing multimodal discriminative models,
in which uniform objective is designed for all modalities,
could remain under-optimized uni-modal representations,
caused by another dominated modality in some scenar-
ios, e.g., sound in blowing wind event, vision in drawing
picture event, etc. To alleviate this optimization imbal-
ance, we propose on-the-fly gradient modulation to adap-
tively control the optimization of each modality, via mon-
itoring the discrepancy of their contribution towards the
learning objective. Further, an extra Gaussian noise that
changes dynamically is introduced to avoid possible gen-
eralization drop caused by gradient modulation. As a re-
sult, we achieve considerable improvement over common
fusion methods on different multimodal tasks, and this sim-
ple strategy can also boost existing multimodal methods,
which illustrates its efficacy and versatility. The source
code is available at https://github.com/GeWu-
Lab/OGM-GE_CVPR2022.

1. Introduction
People perceive the world by collaboratively utilizing

multiple senses: eyes to look, ears to listen, and hands
to touch. Such a multimodal way can provide more com-
prehensive information from different aspects. Inspired by
the multi-sensory integration ability of humans [11], mul-
timodal data, collected from different sensors, tend to be
more considered in machine learning. In recent years, mul-

†Equal contribution. *Corresponding author.

timodal learning has exhibited a clear advantage in improv-
ing the performance of previous uni-modal tasks as well as
addressing new challenging problems, such as action recog-
nition [10,23,29,37], audio-visual speech recognition [33],
and visual question answering [2, 19, 41].

Multimodal data usually provides more views compared
with uni-modal one, accordingly learning with multimodal
data should match or outperform the uni-modal case. How-
ever, according to the recent study [39], multimodal models
that optimize the uniform learning objective for all modal-
ities with joint training strategy can be inferior to the uni-
modal model in some situations. Such a phenomenon vio-
lates the intention of improving model performance through
integrating information from multiple modalities. Previ-
ous researchers claimed that various modalities tend to con-
verge at different rates, leading to uncoordinated conver-
gence problem [20, 35, 39]. To cope with this problem,
some methods aid the training of multimodal models with
the help of additional uni-modal classifiers or pre-trained
models [8,39]. Hence, they inevitably bring extra efforts on
training additional neural modules.

However, we further find that even when the multimodal
models outperform the uni-modal ones, they still cannot
fully exploit the potential of multiple modalities. As shown
in Figure 1, the joint multimodal model achieves the best
event classification performance on VGGSound [7], but the
performance of visual and audio modality within it is clearly
worse than that in the visual-only and audio-only model,
respectively1. This interesting observation suggests under-
optimized representation in both modalities. We consider
the reason could be that, in some multimodal scenarios,
the dominated modality [31] with better performance (e.g.,
sound of wind blowing, vision of playing football, etc.) will
suppress the optimization of the other one. Moreover, as il-

1Here, the visual-only and the audio-only are the models that trained
with a single modality. To evaluate the uni-modal encoders of the multi-
modal model, we observe the performance through fixing the joint-trained
uni-modal encoder and finetuning a uni-modal classifier only.
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Figure 1. Performance of the uni-modal models, joint-trained multimodal model, and multimodal model with our proposed OGM-GE on
the validation set of the VGGSound [7] dataset. (a) Performance of audio modality. (b) Performance of visual modality. (c) Performance
of the multimodal model. Best viewed in color.

lustrated in Figure 1(a) and (b), there is another noticeable
observation that accuracy drops more remarkably in visual
modality compared with audio case, which is consistent
with the fact that VGGSound, as a curated sound-oriented
dataset, prefers audio modality, even the sound sources are
guaranteed to be visible. Generally speaking, such dataset
preferences will lead to one modality is usually dominant,
resulting in this phenomenon of optimization imbalance.

Aiming to solve the problem above, we first analyze the
imbalance phenomenon from the optimization perspective,
and find that the modality with better performance con-
tributes to lower joint discriminative loss then dominates
the optimization progress via propagating limited gradient
over the other modality, thus leading to the under-optimized
situation. Then, to ease the situation, we propose to control
the optimization process of each modality via the On-the-
fly Gradient Modulation (OGM) strategy. Specifically, the
contribution discrepancy between different modalities to the
learning objective is dynamically monitored during train-
ing progress, which is then exploited to adaptively modulate
the gradients, offering more efforts on the under-optimized
modality. However, the modulated gradient may lower the
intensity of the stochastic gradient noise, which has been
proven to have a positive correlation with generalization
ability [21]. Hence, we further introduce extra Gaussian
noise that changes dynamically to achieve Generalization
Enhancement (GE). After applying our method of OGM-
GE on the multimodal learning task of VGGSound in Fig-
ure 1, we obtain the consistent performance boost for under-
optimized uni-modal representation, i.e., the blue curves in
Figure 1(a) and (b). More than that, the visual modality
gains more improvement. As a result, our method is no-
ticeably superior to the conventional one in the multimodal
learning setting, as shown in Figure 1(c). To comprehen-
sively demonstrate the effectiveness of OGM-GE, we test
it in various multimodal tasks on different datasets, which
brings consistent improvements, working with both vanilla
fusion strategies and existing multimodal methods.

To summarize, our contributions are as follows:

• We find the optimization imbalance phenomenon that
the performance of the joint multimodal model is lim-
ited due to the under-optimized representations, and
then analyze it from the optimization perspective.

• The OGM-GE method is proposed to solve the opti-
mization imbalance problem by controlling the opti-
mization process of each modality dynamically as well
as enhancing generalization ability.

• The proposed OGM-GE can be plugged in not only
vanilla fusion strategies but also existing multimodal
frameworks and brings consistent improvement, indi-
cating its promising versatility.

2. Related works
2.1. Multimodal learning

Multimodal learning is a sophisticated learning
paradigm in the machine learning community and has
been attracting increasing attention because of the growing
amount of multimodal data, which naturally contains abun-
dant correlation. There are different research directions
according to specific applications. For example, some
researchers have explored the correspondence between
multimodal data in an unsupervised manner, to learn mean-
ingful representations for downstream tasks [1,4,17,18,25].
Moreover, there is numerous research dedicating to ex-
ploiting information of multiple modalities to boost model
performance on a certain task compared with uni-modal
frameworks, e.g., action recognition [10, 23, 29], audio-
visual speech recognition [16, 33], and visual question
answering [2, 19]. However, most multimodal methods
that utilize joint training strategy could not fully exploit all
modalities and produce under-optimized uni-modal repre-
sentations, making the performance of multimodal models
fail to reach where they are expected, even though they
sometimes indeed outperform the uni-modal counterparts.
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2.2. Imbalanced multimodal learning

The aforementioned defect of previous audio-visual
learning methods encourages researchers to explore the rea-
sons behind it. Several studies pointed out that most mul-
timodal learning methods cannot effectively boost the per-
formance even with more information [8,35,39,40], which
is caused by the discrepancy between modalities. Wang
et al. [39] found that different modalities have different
convergence rates, making the jointly trained multimodal
model fail to match or outperform its uni-modal counter-
part. Winterbottom et al. [40] demonstrated an inherent bias
in TVQA dataset towards the textual subtitle modality. Re-
cently, several methods have emerged trying to solve these
problems [8, 35, 39]. Wang et al. [39] proposed Gradient-
Blending to obtain an optimal blending of modalities based
on their over-fitting behaviors. Further, Du et al. [8] trained
the multimodal model by distilling knowledge from the
well-trained uni-modal models to strengthen the uni-modal
encoders. These methods can indeed bring improvement to
a degree, but extra efforts are required to introduce addi-
tional neural modules, which complicates the training pro-
cedure. In this work, from the perspective of optimization,
we tackle this problem by adaptively controlling the opti-
mization of each modality without extra modules.

2.3. Stochastic gradient noise

The gradient noise of SGD is considered to have an es-
sential correlation with the generalization ability of the deep
models [6, 13, 42, 44, 48]. Such stochastic gradient noise
is introduced by random mini-batch sampling, believed to
serve as a regularization and help the model to escape from
saddle point or local optimum [6,21,42,44]. Zhou et al. [47]
further provided theoretical proof that the stochastic gradi-
ent algorithms, in conjunction with proper Gaussian noise,
are guaranteed to converge to the global optimum in poly-
nomial time with random initialization. In this work, to en-
hance the generation ability of the multimodal model, we
introduce extra Gaussian noise into the gradient and achieve
considerable improvement.

3. Method
3.1. Optimization imbalance analysis

We introduce the analysis of the optimization imbal-
ance phenomenon and find that the optimization progress
of the multimodal model is dominated by the modality
with better performance, leading to another modality be-
ing under-optimized. Here we take audio and visual modal-
ities as example. For convenience, we denote training
dataset D = {xi, yi}i=1,2...N . Each xi consists of two
inputs from different modalities as xi = (xa

i , x
v
i ), where

a and v indicate audio and visual modality, respectively.
yi ∈ {1, 2, · · · ,M}, where M is the number of cate-

gories. We use two encoders φa(θa, ·) and φv(θv, ·) to ex-
tract features, where θa and θv are the parameters of en-
coders. Representatively, we take the most widely used
vanilla fusion method, concatenation, as the example here2.
Let W ∈ RM×(dφa+dφv ) and b ∈ RM denote the parame-
ters of the last linear classifier. Then the logits output of the
multimodal model is as follows:

f(xi) = W [φa(θa, xa
i );φ

v(θv, xv
i )] + b. (1)

To observe the optimization process of each modality in-
dividually, W can be represented as the combination of two
blocks: [W a,W v]. The Equation 1 can be rewritten as:

f(xi) = W a · φa(θa, xa
i ) +W v · φv(θv, xv

i ) + b. (2)

We denote the logits output for class c as f(xi)c, and
the cross-entropy loss of the discriminative model becomes
L = − 1

N

∑N
i=1 log ef(xi)yi∑M

k=1 ef(xi)k
. With the Gradient De-

scent (GD) optimization method, W a and the parameters
of encoder φa(θa, ·) are updated as (similarly for W v and
φv(θv, ·) ):

W a
t+1 = W a

t − η∇WaL(W a
t )

= W a
t − η

1

N

N∑
i=1

∂L

∂f(xi)
φa(θa, xa

i ),
(3)

θat+1 = θat − η∇θaL(θat )

= θat − η
1

N

N∑
i=1

∂L

∂f(xi)

∂(W a
t · φa

t (θ
a, xa

i ))

∂θat
,

(4)

where η is the learning rate. According to Equation 3 and 4,
we can find that the optimization of W a and φa nearly has
no correlation with that of the other modality3, except the
term related to the training loss ( ∂L

∂f(xi)
). The uni-modal

encoders thus can hardly make adjustment according to the
feedback from each other. Then combined with Equation 2,
the gradient ∂L

∂f(xi)
can be rewritten as :

∂L

∂f(xi) c
=

e(W
a·φa

i +Wv·φv
i +b)c∑M

k=1 e
(Wa·φa

i +Wv·φv
i +b)k

− 1c=yi . (5)

For convenience, we simplify φa(θa, xa
i ) and φv(θv, xv

i )
as φa

i and φv
i , respectively. Then, we can infer that for sam-

ple xi belonging to class yi, when one modality, such as the
visual modality, has better performance, it contributes more

2The analysis of another vanilla fusion method, summation, is provided
in the Supp. Materials. These two simple but effective fusion method are
widely used in many existing multimodal method.

3Our OGM-GE can also boost methods that contain more complex in-
teraction between modalities, please see details in Section 4.3.
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Figure 2. The pipeline of the On-the-fly Gradient Modulation with Generalization Enhancement strategy.

to ∂L
∂f(xi)yi

via W v · φv
i , leading to lower loss globally. Ac-

cordingly, the audio modality, which relatively has a lower
confidence for the correct category, could obtain limited op-
timization efforts w.r.t. its modal-specific parameters during
the back propagation. This phenomenon indicates that the
modality with better performance dominates the optimiza-
tion progress. As a result, when the training of multimodal
model is about to converge, the other modality could still
suffer from under-optimized representation and needs fur-
ther training.

3.2. On-the-fly gradient modulation

As discussed, the optimization progress of multimodal
discriminative models is usually dominated by the modal-
ity with better performance, leading to the under-optimized
representations that limit the model performance. To solve
the problem, we aim to amend the optimization process of
each modality via OGM strategy, as shown in Figure 2.

In this section, we follow the notation in Section 3.1.
The parameters θu of the encoder φu, where u ∈ {a, v}, is
updated as follows when using GD method:

θut+1 = θut − η∇θuL(θut ). (6)

In practice, we employ the widely used Stochastic Gra-
dient Descent (SGD) optimization method and the parame-
ters are updated as:

θut+1 = θut − ηg̃(θut ), (7)

where g̃(θut ) = 1
m

∑
x∈Bt

∇θuℓ(x; θut ) is an unbiased es-
timation of the full gradient ∇θuL(θut ). Bt is a random
mini-batch which is chosen in the t-th step with size m, and
∇θuℓ(x; θut ) is the gradient w.r.t. Bt.

Specific to the optimization imbalance problem dis-
cussed in Section 3.1, we propose to adaptively modulate
the gradient of each modality via monitoring the discrep-
ancy of their contribution to the learning objective. Here
we design the discrepancy ratio ρut :

sai =

M∑
k=1

1k=yi · softmax(W a
t · φa

t (θ
a, xa

i ) +
b

2
)k,

svi =

M∑
k=1

1k=yi
· softmax(W v

t · φv
t (θ

v, xv
i ) +

b

2
)k,

(8)

ρvt =

∑
i∈Bt

svi∑
i∈Bt

sai
. (9)

ρat is accordingly defined as the reciprocal of ρvt . Here
we use (Wu

i · φi(θ
u, xu

i ) +
b
2 ) as the approximated predic-

tion of modality u to estimate uni-modal performance of the
multimodal model4. With ρut to dynamically monitor the
contribution discrepancy between audio and visual modal-
ities, we are able to adaptively modulate the gradient via:

kut =

{
1− tanh(α · ρut ) ρut > 1

1 others, (10)

where α is a hyper-parameter to control the degree of mod-
ulation. We integrate the coefficient kut into SGD optimiza-
tion method, and θut in iteration t is updated as follows:

θut+1 = θut − η · kut g̃(θut ). (11)

4Inspired by Deep Boltzmann Machine [34] that uses the average of the
bottom-up weight and the top-down weight to obtain the posterior distri-
bution, we use b

2
as the bias term to estimate the uni-modal prediction of

the multimodal model.
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By means of kut , the optimization of modality with better
performance (ρut > 1) is mitigated, while the other modal-
ity is not affected and able to get rid of limited optimization
efforts, gaining adequate training. Using the SGD optimiza-
tion method with OGM strategy, the optimization process of
each modality is controlled respectively and the imbalance
problem can be alleviated.

3.3. Generalization enhancement

In the SGD optimization method, according to the cen-
tral limit theorem, the gradient g̃(θut ) in Equation 7 fol-
lows a Gaussian distribution when the batch size m is large
enough [27], i.e.,

g̃(θut ) ∼ N (∇θuL(θut ),Σ
sgd(θut )), (12)

Σsgd(θut ) ≈
1

m
[
1

N

N∑
i=1

∇θuℓ(xi; θ
u
t )∇θuℓ(xi; θ

u
t )

T

−∇θuL(θut )∇θuL(θut )
T].

(13)

Then Equation 7 can be rewritten as follows, where ξt is
the noise term:

θut+1 = θut − η∇θuL(θut ) + ηξt, ξt ∼ N (0,Σsgd(θut )).
(14)

Theorem 1 (SGD generalization ability). Noise in SGD is
closely related to its generalization ability and larger SGD
noise often leads to better generalization [21]. The covari-
ance of the SGD noise is proportional to the ratio of learn-
ing rate to batch size.

According to Theorem 1, higher value of the gradient
covariance (ξt in Equation 14) often brings better general-
ization ability. When we use the coefficient kut to modulate
the gradient, θu is updated as:

θut+1 = θut − η∇θuL′(θut ) + ηξ′t,

ξ′t ∼ N (0, (kut )
2 · Σsgd(θut )),

(15)

where η∇θuL′(θut ) = kut · η∇θuL(θut ). Based on Equa-
tion 10, kut ∈ (0, 1]. Absolutely, when the learning rate and
batch-size are fixed, the covariance of ξ′t is smaller than the
original ξt. The generalization ability of SGD optimization
method could be reduced. Hence, it is desirable to develop
a method of controlling the SGD noise, recovering the gen-
eralization ability.

To enhance the SGD noise, we introduce a simple
but effective Generalization Enhancement (GE) method
that adds a randomly sampled Gaussian noise h(θut ) ∼
N (0,Σsgd(θut )) to the gradient, which owns the same co-
variance as g̃(θut ) and changes dynamically according to the

current iteration. Then, combining the OGM method, θut is
updated as:

θut+1 = θut − η(kut g̃(θ
u
t ) + h(θut ))

= θut − η∇θuL′(θut ) + ηξ′t + ηϵt,
(16)

where ϵt ∼ N (0,Σsgd(θut )). Since ϵt and ξt are indepen-
dent, Equation 16 can be rewritten as:

θut+1 = θut − η∇θuL′(θut ) + ηξ′′t ,

ξ′′t ∼ N (0, ((kut )
2 + 1)Σsgd(θut )).

(17)

Hence, the covariance of the SGD noise is recovered and
even enhanced. We provide the overall OGM-GE strategy
in Algorithm 1, and the pipeline is shown in Figure 2. Com-
bining with our strategy, the optimization of multimodal
model can be more balanced with guaranteed generalization
ability for each modality.

Algorithm 1 Multimodal learning with OGM-GE strategy

Input: Training dataset D = {(xa
i , x

v
i ), yi}i=1,2...N , iter-

ation number T , hyper-parameter α, initialized modal-
specific parameters θu, u ∈ {a, v}.
for t = 0, · · · , T − 1 do

Sample a fresh mini-batch Bt from D;
Feed-forward the batched data Bt to the model;
Calculate ρu using Equation 8 and 9;
Calculate kut using Equation 10;
Calculate gradient g̃(θut ) using back-propagation;
Sample h(θut ) based on covariance of gradient g̃(θut );
Update using θut+1 = θut − η(kut g̃(θ

u
t ) + h(θut )).

end for

4. Experiments
4.1. Datasets

CREMA-D [5] is an audio-visual dataset for speech emo-
tion recognition, containing 7,442 video clips of 2-3 sec-
onds from 91 actors speaking several short words. This
dataset consists of 6 most usual emotions: angry, happy,
sad, neutral, discarding, disgust and fear. Categorical emo-
tion labels were collected using crowd-sourcing from 2,443
raters. The whole dataset is randomly divided into 6,698-
sample training set and validation set according to the ratio
of 9/1, as well as a 744-sample testing set.
Kinetics-Sounds (KS) [3] is a dataset containing 31 human
action classes selected from Kinetics dataset [22] which
contains 400 classes of YouTube videos. All videos are
manually annotated for human action using Mechanical
Turk and cropped to 10 seconds long around the action. The
31 classes were chosen to be potentially manifested visu-
ally and aurally, such as playing various instruments. This
dataset contains 19k 10-second video clips (15k training,
1.9k validation, 1.9k test).
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VGGSound [7] is a large-scale video dataset that contains
309 classes, covering a wide range of audio events in ev-
eryday life. All videos in VGGSound are captured “in the
wild” with audio-visual correspondence in the sense that
the sound source is visually evident. The duration of each
video is 10 seconds, and the division of the dataset is the
same as [7]. In our experimental settings, 168,618 videos
are used for training and validation, and 13,954 videos are
used for testing because some videos are not available now
on YouTube.
AVE [36] is an audio-visual video dataset for audio-visual
event localization, which covers 28 event classes and con-
sists of 4,143 10-second videos with both auditory and vi-
sual tracks as well as frame-level annotations. All videos
are collected from YouTube. In experiments, the split of the
dataset follows [36].

4.2. Experimental settings

In the experiment, we use the ResNet18-based [14] net-
work as the backbones. Specifically, for the visual encoder,
we take multiple frames as input, and put them into the 2D
network as [45] does; for the audio encoder, we slightly
change the input channel of ResNet18 from 3 to 1 as [7]
does, and the rest parts keep unchanged. Videos in AVE,
Kinetics-Sounds, and VGGSound lasts 10-second in length
and we extract frames with 1 fps. Considering the dif-
ference between datasets, 3 frames are uniformly sampled
from each 10-second clip as visual inputs. The whole audio
data is transformed into a spectrogram of size 257×1,004
by librosa [28] using a window with length of 512 and over-
lap of 353. For CREMA-D, we extract 1 frame from each
of the clip and process audio data into a spectrogram of size
257×299 with window length of 512 and overlap of 353.
We use SGD with 0.9 momentum and 1e-4 weight decay as
the optimizer. The learning rate is 1e-3 initially and multi-
plies 0.1 every 70 epochs, and α is determined from [0, 1]
according to the validation set.

4.3. Comparison on the multimodal task

Combination with conventional fusion methods. We first
apply OGM-GE in several vanilla fusion methods: baseline,
concatenation and summation, and specifically-designed fu-
sion method: FiLM [32], then evaluate the performance on
several datasets as shown in Table 1. Baseline is an intro-
duced vanilla fusion method that uses activation function
to mark out the related feature component of one modal-
ity compared with another. FiLM [32] learns to adaptively
influence the output of a neural network by applying an
affine transformation to the network’s intermediate features.
Audio-only and visual-only results are also provided. Ac-
cording to the results, we can find that the performance
of each uni-modal model is unbalanced. For example, the
audio-only model performance on the VGGSound dataset

Dataset CREMA-D VGGSound
Method Acc mAP Acc mAP

Audio-only 52.5 54.2 44.3 48.4
Visual-only 41.9 43.0 31.0 34.3

Baseline 50.8 52.6 48.4 51.7
Concatenation 51.7 53.5 49.1 52.5

Summation 51.5 53.5 49.1 52.4
FiLM [32] 50.6 52.1 48.5 51.6
Baseline† 54.4 56.2 50.1 53.5

Concatenation† 61.9 63.9 50.6 53.9
Summation† 62.2 64.3 50.4 53.6

FiLM† 55.6 57.4 50.0 52.9

Table 1. Performance on CREMA-D and VGGSound dataset.
Combined with OGM-GE, conventional fusion methods consis-
tently gain considerable improvement. † indicates OGM-GE strat-
egy is applied.

greatly outperforms its visual-only counterpart. In addition,
the accuracy of audio-only model on the CREMA-D dataset
is better than all of the vanilla fusion methods, which indi-
cates that the potential of the multimodal model is indeed
suppressed. After combining with OGM-GE, the perfor-
mance of all the vanilla fusion methods consistently gains
considerable improvement on different datasets, indicating
the effectiveness and satisfactory flexibility of our method.

Dataset CREMA-D KS
Method Acc Acc

Concatenation 51.7 59.8
Modality-Drop [9] (audio) 54.4 60.3
Modality-Drop [9] (visual) 53.3 61.3

Grad-Blending [39] 56.8 62.2
OGM 59.0 61.1

OGM-GE 61.9 62.3

Table 2. Comparison with other modulation strategies on
CREMA-D and Kinetics-Sounds dataset. Modality-Drop (audio)
method casts the audio input to a certain probability, similarly
for Modality-Drop (visual). Compared to concatenation, all other
methods make progress, among which our OGM-GE achieves the
best performance.

Comparison with other modulation strategies. To
demonstrate the advantage of OGM-GE, we make com-
parisons with two main-stream modulation approaches:
Modality-Dropout [43], and Gradient-Blending [39]. To
be fair, the same backbone with concatenation is used in
all experiments. Results shown in Table 2 prove that all
the compared methods achieved better performance than the
baseline of concatenation more or less, which indicates that
the imbalance phenomenon indeed influences the results but
also confirms the effectiveness of these methods. We can
also notice that our proposed method show the superior per-
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Dataset KS VGGSound
Method Acc Acc

TSN-AV [38] 58.6 49.0
TSM-AV [26] 60.3 48.8

TBN [24] 60.8 49.4
PSP [46] 59.7 49.2
TSN-AV† 59.1 49.6
TSM-AV† 62.4 49.6

TBN† 63.1 50.4
PSP† 60.4 49.5

Table 3. Comparison with existing methods on the Kinetics-
Sounds and VGGSound. † indicates OGM-GE is applied.

formance among all other methods. Firstly, although ac-
cording to Theorem 1 that OGM might theoretically hurt the
generalization ability because it would reduce the intensity
of the stochastic gradient noise, it is still observed improve-
ments and comparable to other methods, which surprisingly
indicates that its positive effect surpasses its negative im-
pact to some extent. Secondly, when boosted with the intro-
duced GE strategy, our method shows the best performance
on all the datasets. It should also be noted that Gradient-
Blending [39] requires to train additional uni-modal classi-
fiers for modulation, while our method is free of that hence
much more efficient and effective in contrast.
Combination with existing methods. For all the datasets,
we combine the proposed OGM-GE with several existing
methods to further evaluate its flexibility. For Kinetics-
Sounds and VGGSound, TSN [38], TSM [26], TBN [24]
and PSP [46] are compared5. Considering that TSN and
TSM are specifically designed to event classification with
visual modality, for fair comparison in multimodal setting,
we add a ResNet-18 as the audio encoder and only use 3
RGB frames as the visual input, which we refer to as TSN-
AV and TSM-AV. In Table 3 we can find that OGM-GE
strengthens these two methods. Moreover, as mentioned
before, our method is not limited in the model configura-
tions where the audio and visual encoder have no interac-
tion before fusion process. Concretely, there exist multi-
ple stages of multimodal interaction before the fusion in
PSP but OGM-GE can still boost the performance as in
other methods, as shown in Table 3. Besides, OGM-GE
is also combined with x-vector [30], i-vector [15], and
MWTSM [12] on CREMA-D. The results in Table 4 fur-
ther demonstrate the versatility of OGM-GE.
Application beyond classification. In order to further val-
idate the versatility of OGM-GE in more general scenarios,
we employ it in a representative task, audio-visual event lo-
calization, which can be viewed as a fine-grained classifi-

5PSP is designed for audio-visual event localization, and here we bor-
row its backbone to perform the event classification tasks.

Method Acc
I-vector [15] 53.6
X-vector [30] 55.6
MWTSM [12] 54.1

I-vector† 55.3
X-vector† 57.1
MWTSM† 58.0

Table 4. Comparison with the existing methods on CREMA-D
dataset. † indicates OGM-GE is applied.

Audio-visual Event Localization
w/ or w/o OGM-GE w/o w/

AVGA [36] 72.0 72.8
PSP [46] 76.2 76.9

Table 5. Comparison results on audio-visual event localization be-
tween w/ and w/o OGM-GE in two representative frameworks.

cation. The comparison results are shown in Table 5. We
verify the effectiveness of our method on commonly used
AVE [36] dataset. Specifically, we insert OGM-GE into two
representative frameworks AGVA [36] and PSP [46]. The
improvement brought by OGM-GE demonstrates that the
imbalanced phenomenon is universal for different audio-
visual architectures and our method still brings consistent
performance gain although there exist interactions between
different modalities in these AVEL frameworks, which adds
difficulty for accurate estimation of the uni-modal perfor-
mance. Meanwhile, the slight boosts indicate the cross-
modal interactions also alleviate the imbalance. Please refer
to Supp. Materials for more details of the implementation.

4.4. Ablation study

Imbalance modulation analysis. To further analyze
OGM-GE, we monitor the change of discrepancy ratio dur-
ing training. As shown in Figure 1, both the performance
of audio and visual modality under the multimodal mod-
els are improved after the modulation. One interesting ob-
servation is that our method performs not as well as oth-
ers in the beginning but outperforms them in the end. That
is because we modulate the gradient and mitigate the opti-
mization of the modality with better performance, by which
our method can further exploit the information of the other
modalities and finally gain improvement. Moreover, it can
be noted from Figure 3 that the discrepancy ratio ρa obvi-
ously decreases after applied OGM-GE, which is a concrete
evidence for the effectiveness of our method. However, it
should be noted that the two modalities usually do not have
equal contribution for the learning objective because of the
natural imbalance existed in various curated datasets, such
as VGGSound. This can also be indicated by the results in
Table 1 and Figure 1.
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Figure 3. Change of discrepancy ratio ρa on the VGGSound dur-
ing training. Our OGM-GE strategy helps the model to have a
more balanced optimization.

Dataset CREMA-D KS VGGSound
Method Acc Acc Acc

SGD 51.7 59.8 49.1
SGD† 61.9 63.1 50.6
Adam 49.7 57.4 47.3

Adam† 54.6 58.9 48.2

Table 6. Experiments with SGD and Adam optimizers on
CREMA-D, Kinetics-Sounds and VGGSound. † indicates OGM-
GE is applied.

Adaptation to other optimizer. To explore the effective-
ness of our method in combination with other optimizer, we
apply OGM-GE to widely-used Adam optimizer to valid
if the OGM-GE strategy works well when optimized by
different optimizer. As shown in Table 6, combining with
the proposed OGM-GE method, the origin SGD and Adam
models gain much performance improvement. In addition,
based on the same experimental setting, the SGD optimizer
obtains better performance than Adam optimizer. The re-
sults show that our method can be well adapted to different
optimizers, achieving consistent performance improvement.
Analysis of different noise intensities. As stated in Theo-
rem 1, the intensity of the SGD noise is proportional to the
ratio of learning rate to batch-size, and larger noise intensity
often leads to better generalization. To empirically validate
this theorem, we perform experiments with different batch
size and learning rate, using vanilla concatenation fusion
method. The introduced GE method, as a noise intensity
enhancement strategy, is also solely applied to the vanilla
method to explore its effectiveness. As shown in Table 7,
smaller batch or larger learning rate, i.e. stronger inten-
sity, brings better performance. These results demonstrate
the existence of the potential risk of generalization damage
when applying OGM, which further validates the necessity
of leveraging GE. After introducing extra Gaussian noise,
the performance gains considerable improvement, which
demonstrates our GE method plays an important role in fa-
cilitating the generalization ability.

Settings CREMA-D VGGSound
(b=64, lr=1e-4) 50.4 48.3
(b=64, lr=5e-4) 51.0 48.7
(b=64, lr=1e-3) 51.8 49.1
(b= 64, lr=1e-3) 51.8 49.1
(b=128, lr=1e-3) 50.2 48.8
(b=256, lr=1e-3) 48.6 47.7

(b= 64, lr=1e-3) w/ GE 60.2 50.3

Table 7. Experiments on CREMA-D and VGGSound with differ-
ent learning rates and batch-size.

5. Discussion

In this paper, we propose a simple but effective multi-
modal learning strategy called On-the-fly Gradient Modu-
lation with Generalization Enhancement (OGM-GE) to al-
leviate the optimization imbalance problem, facilitating the
exploitation of both modalities. This method achieves con-
sistent performance gain on four representative multimodal
datasets under various settings and can generally serve as
a flexible plug-in strategy for both vanilla fusion method
and specifically-designed fusion method as well as existing
multimodal models.
Limitation. However, there is still an unresolved issue that,
even equipped with OGM-GE, the uni-modal performance
in multimodal model still do not surpass the best uni-modal
model. We hypothesize that solely leveraging optimization-
oriented method could not thoroughly solve the imbalance
problem, thus different approaches, such as more advanced
fusion strategy or network architectures, must be investi-
gated. We leave this intriguing challenge to future work.
Moreover, the versatility that OGM-GE suggests its tremen-
dous potential to more multimodal scenarios, which may
include depth, optical flow, language, etc.
Broader impacts. The proposed method is trained on cu-
rated datasets that perhaps contains bias, leading to the
model inevitably learned such information. This issue is
worth further consideration.
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