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Figure 1. BokehMe creates photo-realistic and highly controllable bokeh effects from high-resolution images and imperfect disparity maps
predicted by DPT [26]. The first column shows the result with a hexagon aperture shape, and the rest of them use a circular shape.

Abstract

We propose BokehMe, a hybrid bokeh rendering frame-
work that marries a neural renderer with a classical phys-
ically motivated renderer. Given a single image and a po-
tentially imperfect disparity map, BokehMe generates high-
resolution photo-realistic bokeh effects with adjustable blur
size, focal plane, and aperture shape. To this end, we an-
alyze the errors from the classical scattering-based method
and derive a formulation to calculate an error map. Based
on this formulation, we implement the classical renderer by
a scattering-based method and propose a two-stage neural
renderer to fix the erroneous areas from the classical ren-
derer. The neural renderer employs a dynamic multi-scale
scheme to efficiently handle arbitrary blur sizes, and it is
trained to handle imperfect disparity input. Experiments
show that our method compares favorably against previous
methods on both synthetic image data and real image data
with predicted disparity. A user study is further conducted
to validate the advantage of our method.

*Corresponding author.

1. Introduction

Bokeh effect refers to the way the lens renders the out-
of-focus blur in a photograph (Fig. 1). With different lens
designs and configurations, various bokeh styles can be
created. For example, the shape of the bokeh ball can
be controlled by the aperture. Classical rendering meth-
ods [6, 20, 31, 40] can change bokeh styles easily by con-
trolling the shape and size of the blur kernel. However, they
often suffer from artifacts at depth discontinuities. Neural
rendering methods [11,25,32] can address this problem well
by learning from image statistics, but they have difficulty
simulating real bokeh balls and can only produce the bokeh
style from the training data. In addition, previous neural
rendering methods lack a mechanism to produce large blur
size on high-resolution images, because of the fixed recep-
tive field of the neural network and the blur size limit of the
training data.

To produce artifact-free and highly controllable bokeh
effects, we propose a novel hybrid framework, termed
BokehMe, which makes the best of the two worlds by fus-
ing the results from a classical renderer and a neural ren-
derer (Fig. 2). We use the scattering-based method [31]
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All-in-Focus Ours (CR) Ours (NR) Ours
Figure 2. BokehMe combines a classical renderer (CR) and a neu-
ral renderer (NR) to create bokeh effects with stunning bokeh balls
and adjustable aperture shapes (row 1: circle; row 2: hexagon).

as our classical renderer. To determine where this method
may render noticeable boundary artifacts, we model the lens
system and conduct a comprehensive analysis of the error
between scattering-based rendering and real rendering. A
soft but tight error map is derived to identify regions with
boundary artifacts. Using the error map to replace the arti-
fact region with the neural rendering result, we are able to
preserve the bokeh style from the classical renderer without
apparent visual artifacts. For the neural renderer, to break
the blur size limit, we decompose it to two sub-networks:
adaptive rendering network (ARNet) and iterative upsam-
pling network (IUNet). In ARNet, we resize the input im-
ages adaptively and generate a bokeh image in low reso-
lution. Then, IUNet is used to upsample the low-resolution
bokeh image iteratively guided by the initial high-resolution
input images. As a result, our neural renderer can handle ar-
bitrarily large blur sizes.

Our main contributions are summarized as follows.

• We propose a novel framework, which combines a
classical renderer and a neural renderer for photo-
realistic and highly controllable bokeh rendering.

• We analyze the lens system and propose an error map
formulation to effectively fuse the classical rendering
and the neural rendering.

• We propose a two-stage neural renderer which uses
adaptive resizing and iterative upsampling to handle
arbitrary blur sizes for high-resolution images, and it
is robust to potentially imperfect disparity input.

In addition, due to the lack of test data in the field of
controllable bokeh rendering, we contribute a new bench-
mark: BLB, synthesized by Blender 2.93 [5], together with
EBB400, processed from EBB! [11]. Since the evalua-
tion of bokeh effects is subjective, we also conduct a user
study on images captured by iPhone 12. Extensive results
show that BokehMe can render images that appear physi-
cally sound and maintain the diversity of the bokeh style.

2. Related Work
Classical Rendering. Classical rendering can be classi-
fied into two categories: object space methods and image
space ones. Object space methods [1, 16, 33, 39], based on
ray tracing, render exact results. However, most are time-
consuming and require complete 3D scene information, re-
sulting in poor practicality. Compared with object space
methods, image space ones [3, 4, 10, 29, 38] only require a
single image and its corresponding depth map, which are
easier to implement. In recent years, more and more meth-
ods [6, 20, 23, 27, 28, 31, 34, 40] combine different modules,
such as depth estimation, semantic segmentation, and clas-
sical rendering, to construct an automatic rendering system.
To prevent the color of background from bleeding into fore-
ground, most methods decompose the image to multiple
layers conditioned on the estimated depth map, and execute
rendering from back to front.

Despite the fact that classical rendering is flexible, this
paradigm suffers from artifacts at depth discontinuities, es-
pecially when the focal plane targets background.

Neural Rendering. To improve efficiency and avoid
boundary artifacts, many recent works use neural networks
to simulate the rendering process. For example, Nalbach
et al. [21] and Xiao et al. [35] train networks to produce a
bokeh effect from an all-in-focus image and its correspond-
ing perfect depth map. By training on the synthetic data
created by OpenGL shaders and Unity Engines [30], bound-
ary artifacts can be effectively alleviated. However, perfect
depth maps are not always easy to obtain in the real world.
Wang et al. [32] thus propose an automatic rendering sys-
tem comprised of depth prediction, lens blur, and guided up-
sampling to generate high-resolution depth-of-field (DoF)
images from a single image. Besides, encoder-decoder net-
works [9,11–13,25], that map all-in-focus images into shal-
low DoF images in an end-to-end manner, have also been
studied recently. Unlike aforementioned methods, Xu et
al. [37] focus on fully automatic portrait rendering. They
use recurrent filters [18] to approximate the conditional ran-
dom field-based rendering method and achieve a significant
speed improvement.

However, the main problem of neural rendering is lack
of controllability. For a trained neural network, the bokeh
style cannot be changed and the blur range is limited. In
addition, bokeh balls produced by the network are not real
as the network tends to learn a simple fuzzy effect.

3. BokehMe: A Hybrid Rendering Framework
As shown in Fig. 3, our framework generates a bokeh

image B from an all-in-focus image I , a disparity map D,
and controlling parameters via two renderers: a classical
renderer and a neural renderer. Their rendered results are
fused based on an error map E that identifies the potentially
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Figure 3. Framework of BokehMe. The bokeh image is obtained
by fusing the outputs of a classical renderer and a neural renderer.

erroneous areas from the classical renderer. The controlling
parameters include blur parameter K, refocused disparity
df , gamma value γ, and some parameters about the bokeh
style, e.g., aperture shape. Specifically, K reflects the blur
amount of the whole image. df determines the disparity
(inverse depth) of the focal plane. γ, used in gamma correc-
tion, controls the brightness and salience of bokeh balls.

3.1. Classical Renderer and Error Analysis

Classical Renderer. We expect the classical renderer to fo-
cus on rendering realistic bokeh effects in depth-continuous
areas. After comparing different methods, we find pixel-
wise rendering methods based on scattering [23, 31] have
relatively small error in these areas despite causing serious
color-bleeding artifacts at depth discontinuities. The core
idea of this method is scattering each pixel to its neighbor
areas where the distance between them is less than the blur
radius of the pixel. As discussed in [31, 38], given the dis-
parity d of a pixel, its blur radius can be calculated by

r = K |d− df | . (1)

We implement the algorithm with CuPy package to achieve
a significant parallel speedup (refer to the supplementary
material). Since the transformation from scene irradiance
to image intensity is nonlinear [38], an additional gamma
correction [17] is applied before and after the rendering.

Lens System. To understand why scattering-based meth-
ods cause error at depth discontinuities, we model a virtual
lens system. For a simple scenario (Fig. 4) where two ob-
jects exist in space, we derive 8 rendering cases at depth
discontinuities (2 cases are shown here while the others are
shown in the supplementary material). Taking the center
pixel (the black dot) as an example, only neighbor pixels
on red gradient foreground plane and those on blue gradient

(a) (b)

Rendering areas of
background neighbor pixels

Rendering areas of 
foreground neighbor pixels

Real

Scattering-
based

Figure 4. Comparison of real rendering and scattering-based ren-
dering at depth discontinuities. Rendered result of the center pixel
(the black dot) is the integration of its neighbor pixels on red gradi-
ent foreground plane and those on blue gradient background plane.

background plane can pass to the center pixel. Apparently,
the scattering-based rendering is different from the real one.
Initial Error Map. We aim to obtain an error map to
identify areas rendered incorrectly by the classical renderer.
Later, we will train a neural network to predict the error
map formulated in this section. Let E∗ denote the target
error map. Since only regions within the scattering radius
from the depth boundary may have significant difference
from the real rendering, E∗ can be conservatively formu-
lated as the spatially variant dilation of the depth boundary,
and the dilation size depends on the maximum blur radius
of the pixels located on both sides of the depth boundary.
Take the scenario in Fig. 4 as an example, the i-th element
of E∗ can be defined by

E∗
i = 1

(
αi < 1

)
, αi =

lii′

max (ri, ri′)
, (2)

where αi can be treated as a variable of E∗
i . i′ is the index

to the nearest pixel of the i-th pixel in the other depth plane.
lii′ is the distance between the two pixels. ri and ri′ are the
blur radii of the corresponding pixels.
Improved Error Map. Considering the fact that the
classical renderer generates high-quality results in depth-
continuous regions with controllable bokeh style, we would
like to appropriately narrow and soften the initial error map
to preserve more of the bokeh result from the classical ren-
derer without obvious artifacts in fusion boundary.

Through the theoretic and numerical analysis shown in
the supplementary material, we derive that for each pixel,
the color difference between the scattering-based rendering
result and the real rendering result is

Hi = ki |ci − ci′ | , ki = f(αi, βi) , (3)

where ci and ci′ are the colors of the i-th pixel and the i′-th
pixel before rendering. ki is a function of two variables αi
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Figure 5. Column 1, 2: graphs of the color difference Hi between
real rendering and scattering-based rendering in 4 cases. Column
3: graphs of the error map E∗

i w.r.t. the erroneous areas from the
classical renderer. The improved error map is softer and tighter
than the initial one, and covers the color difference on the whole.

and βi. αi has been defined in Eq. 2 while βi takes the form

βi =
min (ri, ri′)

max (ri, ri′)
, (4)

which represents the ratio of the smaller and the larger blur
radius of the two pixels. ki varies with the refocused dispar-
ity and the shortest distance between the processing pixel
and the depth boundary. For clarity, we assume |ci−ci′ | = 1
and draw the graphs of Hi in the first two columns of Fig. 5.
Based on the observation that Hi is reduced with the in-
crease of αi and βi, we heuristically rewrite Eq. 2 to

E∗
i = max

(
0, 1− αi

δ1
)
· 1

(
βi < δ2

)
, (5)

where δ1 and δ2 are two hyperparameters. This formula
will be equivalent to Eq. 2 if setting δ1 = ∞ and δ2 =
1. Note that in our implementation, we replace the sec-
ond indicator function term with a smooth one, i.e., 0.5 +
0.5 tanh (10 (δ2 − βi)). After comparing the model trained
with different hyperparameters (in the supplementary mate-
rial), we empirically set δ1 = 4 and δ2 = 2

3 . We also show
the graphs of the initial E∗

i (Eq. 2) and the improved E∗
i

(Eq. 5) in the last column of Fig. 5. Note that as 0 ≤ βi ≤ 1,
we define E∗

i = 0 if βi > 1. One can observe that the im-
proved E∗

i is softer and tighter than the initial one, and still
covers the area with large color difference. An additional
practical example is shown in Fig. 6.

3.2. Neural Renderer and Model Training

To handle the rendering at depth discontinuities and
overcome the limitations of the blur range, we propose a
neural renderer consisting of two sub-networks: ARNet and
IUNet (Fig. 7). To simplify the input of the neural renderer,
we define a signed defocus map S based on Eq. 1:

S = K(D − df ) , (6)

Real Scattering Color Diff. Error Map

Figure 6. In this example, the disparities of background and fore-
ground are fixed to 0 and 0.2, respectively. The refocused dispar-
ity is set to 0, 0.2, 0.5 and 1 from row 2 to row 5, and the variable
βi for each case can be calculated by Eq. 4, i.e., 0, 0, 0.6 and
0.8. One can see that the color difference between real rendering
and scattering-based rendering “fades out” with the increase of βi,
and our improved error map can cover the color difference on the
whole, which is consistent with the observation in Fig 5.

which encodes the information about the depth relationship
and the spatially variant blur radius. To match the gamma
correction in the classical renderer, we use a map filled with
the normalized gamma value as an additional input.
ARNet resizes the input images adaptively, and outputs an
error map and a bokeh image B lr

nr in low resolution (Fig. 8).
The adaptive resizing layer consists of two steps. The first
step is to calculate the downscale factor

w(0) = min

(
1,

max (|S|)
R̂

)
, (7)

where max (|S|) corresponds to the maximum blur radius
of the whole image. R̂ is the maximum blur radius we set
for the neural network. The second step is to downsam-
ple all images and reduce the numerical range of the signed
defocus map by the ratio of w(0). The middle part of the
network is lightweight and replaceable. We use the same
architecture as DeepFocus (fast version) [35] in this work.
IUNet iteratively upsamples the low-resolution bokeh im-
age B lr

nr by a factor of 2 until reaching the original resolu-
tion (Fig. 9). To avoid the fuzziness around in-focus areas
caused by direct bilinear upsampling, we use the original
high-resolution input as a guidance map. In each iteration,
it is resized to twice the resolution of the input bokeh im-
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Figure 7. Architecture of the neural renderer. ARNet first esti-
mates a low-resolution bokeh image and an low-resolution error
map. Then, the error map is restored to original resolution by bi-
linear upsampling, while the bokeh image is upsampled by IUNet.
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Figure 8. Architecture of ARNet. The adaptive resizing layer
downsamples the input images and reduces the numerical range
of the signed defocus map to ensure that the defocus values are in
the acceptable range of the neural network without decreasing the
blur amount of the whole image.

age. To match the increasing blur size during the iteration,
we also need to dynamically adjust the values of the defocus
map. Specifically, we once again use the adaptive resizing
layer, and the downscale factor of each iteration t is set as

w(t) =
1

2
w(t−1), t = 1, ..., T . (8)

However, with the progress of iteration, the scaled defo-
cus values may exceed the acceptable range [−R̂, R̂] of the
neural network. Fortunately, the fuzziness caused by di-
rect bilinear upsampling is unnoticeable for the areas with
large amount of bokeh blur. Thus, we can just refine the
areas whose defocus values are in the range. To this end,
we first clip the out-of-range defocus values to ensure that
the subsequent network can work without collapse. Then,
we threshold the dilated defocus map Sd to produce a mask,
which indicates the effectively rendered areas without defo-
cus clipping. In these areas, we use the output of the net-
work, while for the rest of the areas, we use the input bokeh
image after bilinear upsampling. Here, we use Sd instead of
S because the negative effects caused by defocus clipping
will spread during the rendering. The detailed calculation
of Sd is in the supplementary material. Overall, with the
increase of iteration, the resolution of the bokeh image will
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Figure 9. Architecture of IUNet. The low-resolution bokeh im-
age will be upsampled iteratively to generate a high-quality high-
resolution bokeh image. In each iteration, the defocus clipping
layer aims to prevent the scaled defocus values from exceeding
the acceptable range of the subsequent network, and the thresh-
olding layer produces a mask to replace the rendered result within
clipping areas with the bilinear upsampled input bokeh image.

be higher, but the effective area refined by the network will
be smaller. In other words, areas nearby the focal plane will
be refined more times.

Finally, following alpha blending [19, 36], we use the
predicted error map E to fuse the bokeh results of the clas-
sical renderer Bcr and that of the neural renderer Bnr:

B = (1− E) ·Bcr + E ·Bnr . (9)

Loss Functions. We train ARNet and IUNet separately.
When training ARNet, the adaptive resizing layer is unused.
B is fused by Bcr and B lr

nr. The loss is defined by

LAR = Lℓ1(B,B∗) + Lℓ1(∇B,∇B∗)

+ Lℓ1(B
lr
nr, B

∗) + Lℓ1(∇B lr
nr,∇B∗)

+ λbce Lbce(E,E∗) , (10)

where ground-truth maps are marked with a superscript ∗.
∇ denotes the image gradient. λbce is empirically set to
0.1. When training IUNet, we freeze ARNet and use the
following loss:

LIU = Lℓ1(B,B∗) + Lℓ1(∇B,∇B∗)

+ Lℓ1(Bnr, B
∗) + Lℓ1(∇Bnr,∇B∗) . (11)
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Table 1. Quantitative results on the BLB dataset. Different levels correspond to different blur parameters of bokeh images, e.g., “Level 1”
denotes that the blur parameter is 10, and “Level 5” denotes that the blur parameter is 50. The best performance is in boldface.

Methods
Level 1 Level 2 Level 3 Level 4 Level 5

PSNR SSIM Time(s) PSNR SSIM Time(s) PSNR SSIM Time(s) PSNR SSIM Time(s) PSNR SSIM Time(s)

VDSLR [38] 41.13 0.9891 0.06 39.15 0.9848 0.23 37.64 0.9812 0.53 36.48 0.9783 0.97 35.57 0.9760 1.55
SteReFo [6] 37.21 0.9831 0.13 35.28 0.9818 0.60 33.99 0.9813 1.69 32.94 0.9809 3.74 32.12 0.9805 6.87
RVR [40] 32.35 0.9648 0.10 32.00 0.9321 0.43 28.36 0.9011 1.11 25.80 0.8775 2.30 23.94 0.8596 4.12
RVR† [40] 37.15 0.9836 0.13 38.55 0.9880 0.62 35.56 0.9854 1.82 33.03 0.9815 3.97 31.15 0.9774 7.21

DeepLens [32] 33.68 0.9679 0.14 31.43 0.9603 0.14 30.16 0.9564 0.14 29.30 0.9539 0.14 28.68 0.9521 0.14
DeepFocus [35] 38.92 0.9900 0.71 36.13 0.9857 0.71 31.47 0.9623 0.71 25.55 0.9089 0.71 21.04 0.8227 0.71
DeepFocus† [35] 38.92 0.9900 0.71 35.74 0.9861 0.49 34.21 0.9833 0.22 33.21 0.9809 0.13 32.44 0.9788 0.09

Ours (CR) 41.32 0.9900 0.03 39.51 0.9877 0.10 38.35 0.9868 0.20 37.53 0.9864 0.34 36.86 0.9862 0.52
Ours (NR) 40.41 0.9905 0.13 40.16 0.9904 0.13 39.21 0.9896 0.14 38.01 0.9884 0.16 37.20 0.9875 0.16
Ours 43.30 0.9932 0.16 42.21 0.9924 0.23 41.02 0.9915 0.34 39.78 0.9906 0.50 38.80 0.9898 0.68

Note that, for fast convergence, we supervise the training of
both ARNet and IUNet with the intermediate result B lr

nr or
Bnr, aside from the final result B.

Implementations. Our implementation is based on Py-
Torch [22]. To train the neural renderer, we synthesize a
bokeh dataset using a simplified ray tracing method. This
dataset contains 150 scenes. For each scene, it consists of an
all-in-focus image, a disparity map ranging from 0 to 1, and
a stack of bokeh images with 2 blur parameters (12, 24), 20
refocused disparities (0.05, 0.1, ..., 1), and 5 gamma values
(1, 2, ..., 5). We use the data with the blur parameter of 12
for ARNet training and 24 for IUNet training. We follow the
same data pre-processing configurations as in [35]. To im-
prove the generalization, we additionally augment the input
disparity map with random gaussian blur, dilation and ero-
sion. The acceptable defocus ranges of ARNet and IUNet
are both set to [−12, 12] for training and [−10, 10] for in-
ference. Both networks are trained for 50 epochs with a
batch size of 16. The learning rate is set to 10−4. Adam
optimizer [14] is used for optimization. All experiments are
conducted on a NVIDIA GeForce GTX 1080 Ti GPU.

4. Experiments

4.1. Test Data

For all test data, without loss of generality, we assume
that the aperture shape is circular and the gamma value is
2.2 to create a level playing field for different methods. The
disparity maps of all datasets are normalized to [0, 1] range.

BLB contains 500 test samples synthesized by Blender
2.93 [5]. Specifically, we download 10 3D scene models
of Blender splash screens from different versions [2]. For
each scene model, we use Cycles Engine [5] to render an
all-in-focus image, a disparity map, and a stack of bokeh
images with 5 blur parameters and 10 refocused disparities.
The image resolution is set to 1920× 1080.

EBB400 contains 400 wide and shallow DoF image pairs
which are randomly selected from EBB! [11]. For each
sample, we predict a disparity map by DPT [26], and man-

ually label a bounding box referred to the in-focus areas,
so that we can obtain the refocused disparity by taking
the median value of the disparity map within the bounding
box [23]. The image resolution is about 1536× 1024.

IPB contains 40 images captured by iPhone 12 Portrait
mode. For each scene, we first export an all-in-focus im-
age and a bokeh image post-processed by the Portrait mode
from iPhone 12. Then, using the online photo editor Pho-
topea [24], we can further extract a disparity map and an
irradiance map from the bokeh image. All images are shot
vertically with the resolution of 3024× 4032.

4.2. Compared Methods

We compare BokehMe with two types of methods: clas-
sical rendering methods and neural rendering methods. For
simplicity, we represent them as “C” and “N” in the follow-
ing. For a fair comparison, we provide the same disparity
map for all methods, and we only preserve their bokeh ren-
dering modules, while the others are discarded.

VDSLR [38] (C) is a pixel-wise pseudo ray tracing method
accelerated by randomized intersection searching.

SteReFo [6] (C) decomposes the image into layers accord-
ing to the depth and renders the image from back to front.

RVR [40] (C) is similar to SteReFo. However, as discussed
in [34], original RVR lacks weight normalization, resulting
in serious artifacts among different depth layers, so we add
extra weight normalization as in SteReFo, and mark this
modified method with superscript †.

DeepLens [32] (N) is trained on a homemade synthetic
dataset and can generate high-resolution outputs.

DeepFocus [35] (N) is trained on Unity data [30]. As Deep-
Focus cannot handle large blur sizes, we apply the adaptive
resizing layer proposed in our paper to the head of its model,
and upsample its result to original resolution directly. Sim-
ilarly, this modified method is marked with superscript †.
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All-in-Focus VDSLR [38] SteReFo [6] RVR† [40] GT

Disparity DeepLens [32] DeepFocus [35] DeepFocus† [35] Ours
Figure 10. Qualitative results on the BLB dataset. The rough refocused plane is labelled with a yellow cross on the disparity map.
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Figure 11. Evaluation on the BLB dataset with corrupting dispar-
ity maps. In the right chart, positive levels correspond to dilation
levels while negative levels correspond to erosion levels.

4.3. Zero-shot Cross-dataset Evaluation

Following [6, 35, 37], we use PSNR and SSIM as met-
rics. We test BokehMe on the BLB dataset. As shown
in Table 1, BokehMe achieves the best PSNR and SSIM
scores compared with other state-of-the-art methods among
all levels of blur, and our final model incorporating the
classical renderer and the neural renderer outperforms ei-
ther separate one, demonstrating strong complementarity
between the two renderers. In addition, as the level of blur
increases, the classical rendering methods become more
time-consuming, while the neural rendering methods main-
tain high efficiency. We also show some visual results in
Fig. 10. One can observe: (i) The performance of clas-
sical methods degrades at depth discontinuities when the
background is refocused on; (ii) DeepLens renders smooth
results at depth discontinuities, but they seem not in line
with the actual rendering; (iii) Compared with DeepFocus,
DeepFocus† avoids corruption in processing large blur sizes
but generates blurry results around in-focus areas. (iv) Our
approach renders most realistic bokeh effects for both in-
focus and out-of-focus areas.

Since it is hard to acquire a disparity map in the real

VDSLR VDSLRd3 Ours Oursd3 GT
Figure 12. Rendered results after dilating the disparity map on the
BLB dataset. “d3” means the level of dilation is 3 (the kernel size
is 7× 7). The image originates from Fig. 10.

Table 2. Quantitative results on the EBB400 dataset.

Methods VDSLR SteReFo RVR† DeepLens DeepFocus† Ours

PSNR 23.78 23.56 23.56 23.46 23.81 23.85
SSIM 0.8738 0.8674 0.8690 0.8707 0.8754 0.8770

world, a common practice is to estimate one. Nevertheless,
the predicted disparity map may be blurry and not align with
the RGB image at boundary. Therefore, we redo the “Level
3” experiment (Table. 1) by corrupting the disparity map
with 5 levels of gaussian blur, dilation and erosion, respec-
tively. We also retrain BokehMe without disparity augmen-
tation for extra comparison. As shown in Fig. 11, BokehMe
trained with augmentation better adapts to imperfect dispar-
ity maps. Another interesting observation is that the mod-
erate dilation improves the performance of most methods,
especially for the classical ones. The reason may be that
the dilated pixels that extend beyond the boundaries of the
foreground object act as the occluded background pixels,
leading to a significant improvement of metrics in case of
background refocusing. However, as shown in Fig. 12, it
causes more boundary artifacts at the same time.

To further evaluate the generalization of the model given
an imperfect disparity map as input, we compare different
methods on the EBB400 dataset where disparity maps are
predicted by DPT [26]. As the blur parameter of each sam-
ple is unknown, we pick out the optimal value from 1 to 100
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All-in-Focus Disparity VDSLR [38] DeepLens [32] Ours iPhone 12 Portrait
Figure 13. An example of user study on the IPB dataset. The rough refocused plane is labelled with a yellow cross on the disparity map.

Table 3. Ablation study of IUNet. “B-Up”: bilinear upsam-
pling; “I-Up”: iterative upsampling by IUNet; “Clip”: clipping of
the signed defocus map; “S-Fuse”: fusion with the mask thresh-
olded by the signed defocus map; “D-Fuse”: fusion with the mask
thresholded by the dilated defocus map.

No. B-Up I-Up Clip S-Fuse D-Fuse PSNR SSIM
B1 ✓ 37.30 0.9830
B2 ✓ 23.23 0.8719
B3 ✓ ✓ 38.55 0.9883
B4 ✓ ✓ ✓ 39.19 0.9894
B5 ✓ ✓ ✓ 39.21 0.9896

for each method. Despite the fact that color inconsistency
and scene misalignment exist between the wide and shal-
low DoF image pairs, BokehMe still ranks the first in both
metrics as shown in Table 2. Refer to the supplementary
material for qualitative results.

4.4. Ablation Study

IUNet supports arbitrary-scale upsampling without los-
ing quality. To better understand how this outstanding char-
acteristic is obtained, we conduct an ablation study on the
BLB dataset (Level 3). Note that we only evaluate the neu-
ral renderer. Table 3 shows: (i) Upsampling by IUNet with-
out “clipping” will destroy the results because of out-of-
range defocus values (B1 vs. B2 and B2 vs. B3); (ii) Us-
ing the low-resolution input bokeh image to compensate the
clipping areas improves PSNR by 0.64 dB (B3 vs. B4); (iii):
Replacing the signed defocus map with dilated defocus map
further improves metrics slightly (B4 vs. B5). Besides, we
show in the supplementary material that this operation will
provide a more natural boundary transition when the focal
plane targets background.

4.5. User Study

Since PSNR and SSIM cannot fully reflect the actual
quality of the rendered bokeh images, we conduct a user
study on the IPB dataset. For all methods, the blur param-
eter and the refocused disparity are manually adjusted to
match iPhone 12 Portrait mode. The study involves 53 par-
ticipants. From Table 4 and Fig. 13, one can see that our

Table 4. User study results. Given a scene, participants are re-
quired to select one option from “Good”, “Normal”, and “Bad”
for each anonymous method.

Methods iPhone 12 VDSLR DeepLens Ours

Good (%) 19.3 26.6 26.3 55.0
Normal (%) 29.3 47.7 45.0 38.5
Bad (%) 51.4 25.7 28.7 6.5

approach is most favored with a clear boundary of in-focus
objects and natural bokeh effects for foreground blur. Note
that iPhone 12 Portrait mode can only produce bokeh effects
for objects behind the focal point.

5. Discussion and Conclusion
Classical rendering methods are flexible but suffer from

artifacts at depth discontinuities. Neural rendering meth-
ods are capable of handling boundary artifacts but lack con-
trollability and have difficulty in generating stunning bokeh
balls in out-of-focus areas. To exploit the advantages of two
paradigms, we propose BokehMe, a general framework that
combines a classical renderer and a neural renderer. Ex-
tensive experiments illustrate that BokehMe can produce
photo-realistic and highly controllable bokeh effects from
an all-in-focus image and a potentially imperfect dispar-
ity map, demonstrating strong complementarity of classical
rendering and neural rendering.

For BokehMe, the bokeh style can be controlled by
changing the kernel shape of the classical renderer. It works
for most scenes, however, if highlights happen to lie at the
boundary of the error map, the bokeh style inconsistency
may be noticeable. In addition, given a 8-bit digital image
where bright lights exist in the scene, the gamma correc-
tion is insufficient to create prominent bokeh balls in out-of-
focus areas. An ideal way is to transform the LDR image to
an HDR image [8], by inverse tone mapping [7, 15], which
is beyond the scope of this paper. Although similar effects
can be achieved by forcibly enhancing the RGB values of
input images, there is still room for improvement. We leave
this in our future work.
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