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Abstract

We present a novel self-distillation based self-supervised

monocular depth estimation (SD-SSMDE) learning frame-

work. In the first step, our network is trained in a self-

supervised regime on high-resolution images with the pho-

tometric loss. The network is further used to generate

pseudo depth labels for all the images in the training set.

To improve the performance of our estimates, in the sec-

ond step, we re-train the network with the scale invariant

logarithmic loss supervised by pseudo labels. We resolve

scale ambiguity and inter-frame scale consistency by intro-

ducing an automatically computed scale in our depth la-

bels. To filter out noisy depth values, we devise a filtering

scheme based on the 3D consistency between consecutive

views. Extensive experiments demonstrate that each pro-

posed component and the self-supervised learning frame-

work improve the quality of the depth estimation over the

baseline and achieve state-of-the-art results on the KITTI

and Cityscapes datasets.

1. Introduction

One of the long-lasting research fields of computer vi-
sion is the accurate estimation of the 3D geometry of scenes.
This includes tasks such as depth and ego motion predic-
tion, which have major importance in the perception sys-
tem of real-world applications, such as robotics and auto-
mated driving. While precise depth measurements can be
directly obtained using specialized sensors such as LiDAR,
they have several disadvantages such as high cost and re-
duced output density. As an alternative, estimating depth
from images captured from a moving monocular or binoc-
ular system of cameras is attractive due to the lower cost
and generally simpler setup. The stereo setup exhibits some
limitations from a practical point of view as the stereo rig
has to be carefully calibrated and synchronized.

Monocular depth estimation is an inherently ill-posed
problem and initial results had lower performance com-
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Figure 1. SD-SSMDE, our self-distillation framework for self-

supervised monocular depth estimation. The teacher network
(Self) trained in a self-supervised manner brings significant im-
provements over the baseline [18]. Our student model (Pseudo) is
trained with pseudo labels generated with the previous model. The
error is reduced, especially on the car on the right and on the entire
left-hand side area of the image. In the error maps, small error is
encoded with blue, while large error is encoded with red.

pared to aforementioned methods. With the recent advances
in deep learning, the performance gap has been reduced,
especially in a supervised setting. The prohibitively large
cost of collecting high-quality ground truth has led to the
emergence of self-supervised monocular depth estimation,
which unlocks the power of large-scale unlabeled datasets.
Such approaches learn both the depth and ego motion, and
embed 3D geometric constraints by using 3D reprojection
models to synthesize consecutive images. More specifi-
cally, points from the target frame are back-projected in the
camera coordinate system, displaced by the camera motion
and reprojected onto adjacent source frames. In this way,
the target image can be reconstructed from the source im-
ages, and the photometric difference between the target and
synthesized image will be minimized during training.

Self-supervised monocular depth estimation relies on
several assumptions that are not always true and hinder the
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learning performance. It assumes that the scene is rigid and
the camera is moving, that all image regions can be recon-
structed from the neighboring frames and that all surfaces
are Lambertian, i.e. have constant brightness. However,
dynamic objects or a static camera, occlusions and illumi-
nation changes between consecutive views break these as-
sumptions. Recent works address various issues [2,5,18,38]
by designing masking techniques for filtering errors dur-
ing training, by using stereo images or external information
such as semantic segmentation and optical flow to guide
the training process or improve the feature representation.
However, in the self-supervised setting, propagating correct
training signals is still difficult for all pixels, photometric
loss can be high in occluded areas or for moving objects,
and low in uniform texture areas or for repetitive structures.

In this paper, we propose a novel self-distillation based
self-supervised learning framework for monocular depth es-
timation (SD-SSMDE) that leads to significant improve-
ments when trained on monocular video and introduce the
following contributions: (1) a two-stage self-distillation
training strategy for monocular depth estimation: self-su-
pervised first stage to generate high resolution pseudo la-
bels and a supervised second stage using a similar or a more
lightweight network (2) a novel architecture for the depth
network for more accurate results (3) we solve scale ambi-
guity by incorporating the scale in pseudo labels, therefore
depth predictions from the second stage are scaled and in-
ter-frame scale-consistent (4) a filtering strategy based on
3D consistency between consecutive views to filter out large
errors in pseudo labels. We perform extensive experiments
on the KITTI and Cityscapes datasets and demonstrate that
the proposed network and two-stage training framework
yield state-of-the-art results and surpass or achieve on par
results with current approaches.

2. Related Work

2.1. Supervised Monocular Depth Estimation

Depth estimation from a single image is an ill-posed
problem since a 2D image can be generated from an in-
finity of 3D scenes. With the emergence of deep learn-
ing, Eigen et al. [12] formulated depth regression as a su-
pervised learning problem. Since then, various improve-
ments to network architectures [11,33,41,55] and loss func-
tions [34,60] have been made. Xian et al. [36] models depth
estimation as classification and obtains more robust results.
However, the classification increases the complexity of the
network and introduces challenges regarding the depth in-
terval discretization. DORN [13] and SORD [10] propose
improvements over the uniform discretization technique.

The aforementioned methods require ground truth depth,
which is usually sparse depth from LiDAR scans. The dif-
ficulty to acquire ground truth has led to the development

of semi-supervised methods that rely on weak labels such
as relative depth [4], camera pose [59] or synthetic data
[1,32,40]. Another line of research [30,37] proposes the use
of conventional structure-from-motion methods [47], that
are usually computationally intensive, to generate pseudo
labels. Knowledge distillation from stereo depth estimates
[7, 23, 42, 43, 53] has also been recently exploited for im-
proved depth predictions. In contrast, in our framework we
employ only monocular sequences and we do not rely on the
availability of calibrated and synchronized stereo cameras.

2.2. Self-Supervised Monocular Depth Estimation

Early approaches on self-supervised monocular depth
estimation [14, 17] were inspired by auto-encoders and em-
ploy stereo pairs during training. The SfmLearner [61] is
the first solution working on monocular image sequences
by jointly training a depth and pose estimation network.

Current approaches address some of the issues of self-
supervised monocular learning. Monodepth2 [18] handles
the lack of ego motion with an auto-masking of station-
ary pixels and the occlusion problem with a minimum re-
projection loss. Low-texture areas are often problematic
when using the photometric loss, therefore feature-based
reconstruction losses [48, 59] have been proved more ro-
bust. Formulating self-supervised depth estimation as a
depth classification problem has been tackled in [19, 27].
Other works improve the network architecture [21] or in-
clude test-time refinement procedures [2, 5]. Feature rep-
resentation learning is guided with semantic networks or
single-view reconstruction auto-encoder networks in sev-
eral approaches [22,28,49]. For extracting potentially mov-
ing objects, instance or semantic segmentation have been
used in [2, 29, 50]. Other methods [5, 20, 38, 46, 58] employ
external optical-flow networks and design selective mask-
ing techniques to avoid propagating large errors in the train-
ing signal for moving objects. ManyDepth [54] uses multi-
frame input at test-time for improved results.

The idea of self-distillation has been approached in sev-
eral works. Compared to [39] and [44], we generate high-
resolution pseudo labels, which can be further distilled by
a similar or more lightweight student network that can be
trained on low or high resolution images. Poggi et al. [44]
proposes a filtering scheme by estimating the uncertainty
of the depth output, while our filtering scheme relies on
measuring the 3D consistency between consecutive views.
Yang et al. [57] devises a filtering scheme based on depth
reprojection error, however in the context of multi-view
stereo. Compared to [57] we adopt a minimum reprojec-
tion error from multiple source images to account for pixels
which are visible in the target image but are occluded in
one of the source images. An important contribution of our
work which has not been previously investigated is solv-
ing scale ambiguity: the student network learns from inter-
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Figure 2. Our SD-SSMDE training framework. In the first stage, we train a depth estimation teacher network and a camera pose network
in a self-supervised manner. Using the trained depth network, we generate pseudo labels for all the images in the training set. Automatic
scale recovery is performed in order to obtain absolute depth values. In the second stage, we train the depth student network from scratch
and regress depth maps supervised by the previously generated pseudo labels. In order to remove erroneous depth estimates from pseudo
labels, a consistency check is performed, for the same 3D point computed from different views.

frame scale-consistent pseudo labels that have been previ-
ously scaled to absolute depth values. With the proposed
contributions, we outperform both [39] and [44].

3. SD-SSMDE Method

In this section we describe the self-distillation based two-
stage training pipeline and the improved depth network ar-
chitecture. We also provide details about implementation.

3.1. Self-Distillation based Training Pipeline

We propose a two-stage training pipeline for monocu-
lar depth estimation that requires only video frames and no
depth ground truth data. In the first stage, the camera pose
network [18] and depth teacher network are trained in a
self-supervised manner on high-resolution images with the
photometric loss. Next, the network is used to infer depth
on the entire training set. Since the depth outputs differ
from the real-world depth by a scale factor, we employ a
scale recovery module [56] to recover the true depth. In
the second stage, the camera pose network is fixed and we
instantiate a new depth student network having the same
or a more lightweight architecture. The student depth net-
work is trained from scratch in a supervised regime with

the pseudo labels. During this training phase, a mask is
generated on-the-fly, which filters out depth locations with
large errors from the loss computation. Starting from the as-
sumption that the same scene captured in three consecutive
images should have a high level of 3D consistency in differ-
ent views, we filter out locations that have high deviations
between the 3D points in the camera coordinate system.

3.2. Depth Network Architecture

Our encoder-decoder depth network used by both the
teacher and student network follows the design of the
panoptic segmentation network Panoptic-DeepLab [6, 45]
with several changes. We employ backbone output stride 32
instead of 16. An Atrous Spatial Pyramid Pooling (ASPP)
[3] with parallel dilated depthwise separable convolutions
[26] extracts context information from the backbone out-
put. The decoder consists of five upsampling stages, where
the spatial resolution is gradually increased by a factor of
two. Each upsampling stage consists of upsampling, con-
catenation with low-level features from the backbone and a
[5⇥ 5, 256] depthwise separable convolution for feature fu-
sion. The low-level features from 1/16 to 1/2 are projected
to {128, 64, 32, 16} channels before concatenation. After
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Figure 3. Our depth network architecture. We introduce a new depth decoder which provides high quality depth predictions.

the last upsampling stage, a [5⇥ 5, 64] depthwise separable
convolution and a 2⇥ bilinear upsampling to the original
image resolution follow. Finally, two convolutional layers
with [5⇥5, 32] and [1⇥1, 1] yield the final depth map. Dur-
ing training, we adopt multi-scale depth prediction at four
scales {1/8, 1/4, 1/2, 1} and introduce a [1⇥1, 1] convolu-
tion after the fusion. Losses are computed using the multi-
scale depth predictions [14, 17, 18]. A depiction of our net-
work can be found in Figure 3.

3.3. Self-Supervised Monocular Depth Estimation

The teacher network is trained in a self-supervised man-
ner in the first stage of training. The goal of self-supervised
depth estimation from a single image is to predict a depth
map aligned to the input image without using any ground
truth data during training. The basic mechanism behind
the method relies on geometric projections that allow view-
synthesis of adjacent frames based on the predicted depth.
During inference, the network takes a single image and pre-
dicts the depth, but during training three consecutive frames
are employed. Two separate networks, a depth estimation
and a camera pose estimation network, are jointly trained.
The depth estimation network actually learns the disparity,
which is the inverse of depth as it was proved to be more
robust [14, 18].

Consider a target image It and adjacent source images
Is, where s = {t� 1, t+ 1} captured by a moving camera.
Let Mt!s be the camera pose that defines the 3D transla-
tion Tt!s and rotation Rt!s between consecutive 3D scene
positions:

Mt!s =


Rt!s Tt!s

0 1

�
(1)

Let K be the intrinsic camera matrix, which is known in
advance and fixed for the entire dataset [18].

Given a pixel p in the target frame its corresponding posi-
tion in 3D in homogeneous coordinates x can be computed

by backprojection using the predicted target depth:

x =


Dt(p)K�1p

1

�
(2)

Assuming camera motion and static scene, x can be re-
projected in the source frame Is after displacing it using the
camera pose Mt!s:

p0 =
⇥
K|0

⇤
Mt!sx (3)

The target image is synthesized Is!t by sampling the
source images Is with bilinear interpolation [17,18], which
we denote with Ishp0i. The per-pixel photometric reprojec-
tion error Lp between the target image and the synthesized
images is minimized during training. To account for occlu-
sions between views, the minimum reprojection error over
all source images is computed as in [18]:

Lp = min
s

pe(It, Is!t) (4)

The photometric error pe is the weighted sum between
the structural similarity SSIM [52] and L1 error:

pe(Ia, Ib) = ↵
1� SSIM(Ia, Ib)

2
+(1�↵)

��Ia � Ib
��
1

(5)

We also adopt an edge-aware smoothness loss [17, 18]
that encourages local smoothness in the presence of low im-
age gradient.

3.4. Scale Recovery in Pseudo Labels

The output of the self-supervised depth estimation net-
work is relative depth, i.e. depth values for an image are in
broad agreement with each other, however they differ from
real-world values by a scale factor. We employ the tech-
nique from [56] to compute the scale factor. The idea be-
hind the scale recovery module is to find the scale between
an estimated and the real camera height. The first step is
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to determine the ground points. This is done by computing
a surface normal for each 3D point and finding the points
that have a normalized normal close to the ideal ground
normal n = (0, 1, 0)> based on a similarity function. Af-
ter identifying the ground points, a set of camera heights is
estimated for each 3D point. The last step is to compute
the depth scale factor as the ratio between the real cam-
era height and the median of the estimated heights. Each
pseudo label is scaled with the estimated scale factor, such
that we obtain absolute depth values and scale consistent
pseudo labels across frames.

3.5. Supervised Monocular Depth Estimation

In the second stage, for training the student network, we
formulate the depth estimation task as a supervised regres-
sion problem. We adopt the scale-invariant log loss [12,34]:

Lsp = �

vuut 1

N

X

i

d2i �
�

N2

 
X

i

di

!2

(6)

where di = log yi � log ȳi, yi is the predicted depth and
ȳi is the pseudo ground-truth depth. N represents the num-
ber of pixels with valid values and � is a weighting factor.
We scale the range of the loss with � in order to improve
convergence.

During inference, we directly predict the depth values
using the logits from the depth regression head, by ap-
plying sigmoid and scaling the predicted values by a con-
stant value, which we set to 80 for both KITTI [15] and
Cityscapes, where the usual depth range is [0-80m].

3.6. Filtering Errors in Pseudo Labels

Given the high-resolution depth pseudo labels, we check
the 3D consistency between consecutive views. This check
is valid due to the fact that pseudo labels are inter-frame
consistent after scaling them to absolute depth values. We
only keep reliable depth estimates for pixels which have
similar 3D coordinates in different views. This masking
process is done on-the-fly during the second stage training.

Assume we know the intrinsic matrix K and the camera
pose M between the target and source coordinate system
given by the pose network, which has been trained in the
previous stage. Let p be a pixel in the target image. The
3D point x corresponding to p can be obtained by back-
projection using equation 2 and its 2D coordinates p0 in the
source image can be computed using equation 3. Since p0

has real valued coordinates, the source depth Ds is sampled
with bilinear interpolation Dshp0i and backprojected to the
source camera coordinate system x0. Finally, the 3D point
x0 is displaced using the camera pose Ms!t to the common
coordinate system of the target camera. Then, the absolute
difference between the two 3D points on the z axis is com-
puted. If the difference is smaller than a predefined thresh-

old T , the point is valid, otherwise it will be filtered out. We
adopt a minimum 3D consistency error between the target
and adjacent source views in order to account for possible
occlusions that may occur in one of the source views. The
resulting mask F is computed as the Iverson bracket:

F =
h
min
s

��Ms!tDshp0iK�1p0 �Dt(p)K�1p)
��
1
< T

i

(7)

3.7. Implementation Details

For the depth prediction network, we employ the back-
bone [24] pretrained on Imagenet [31]. For the self-
supervised network, the output of the sigmoid layer is con-
verted to depth with D = 1/(a� + b), where a = 0.1 and
b = 100 represent the scaling interval.

The pose estimation network has a lightweight architec-
ture [18] with a ResNet-18 backbone [24]. The network
takes as input pairs of color images, target and source, and
predicts the 6DOF camera pose, the translation vector and
rotation matrix in terms of three Euler angles. During infer-
ence, the pose network is discarded.

On KITTI, the networks are trained in both training
stages with a minibatch of 12 images for 66k iterations, us-
ing Adam optimizer and a base learning rate of 10�4. In the
first stage, we employ step learning rate decay and drop the
learning rate by 10 at 50k iterations. In the second stage,
we employ polynomial learning rate decay and train for the
same number of iterations. On Cityscapes, we train with a
minibatch of 12 images for 12k iterations in the first stage
and 30k iterations in the second. We apply image augmen-
tation during training, such as random horizontal flipping
and random color augmentation with the settings from [18].
In the self-supervised training stage, we weight the smooth-
ness loss by 0.001 and we set ↵ to 0.85 in the photomet-
ric loss. In the supervised loss, we set � to 0.85 and � to
10 [34]. The threshold T for 3D consistency masking is 1.
The self-supervised loss, as well as the supervised loss are
computed at four scales.

4. Experiments

In this section, we evaluate our SD-SSMDE teacher and
student models on the KITTI and Cityscapes datasets. We
perform extensive ablation studies and compare our results
with other approaches using standard evaluation metrics.

4.1. Datasets

KITTI [16] is a driving dataset captured in urban, rural
and highway areas. We employ the Eigen splits [11] with
the pre-processing of Zhou et al. [61] where static frames
are removed. The training set consists of 39,810 image
triplets, while the validation set has 4,424 images. The re-
ported results are evaluated on 697 test images using Garg’s
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Model GT Scaling Auto Scaling Fixed Scaling Resolution AbsRel # SqRel # RMS # RMSlog # � < 1.25 " � < 1.252 " � < 1.253 "
Supervised (reference) X 192 ⇥ 640 0.097 0.645 4.296 0.180 0.892 0.964 0.983
Self-supervised (teacher) X 192 ⇥ 640 0.104 0.768 4.513 0.180 0.892 0.964 0.983
Self-supervised (teacher) X 192 ⇥ 640 0.108 0.795 4.655 0.192 0.878 0.959 0.981
Pseudo-supervised (student) X 192 ⇥ 640 0.100 0.661 4.264 0.172 0.896 0.967 0.985

Supervised (reference) X 320 ⇥ 1024 0.091 0.567 4.137 0.177 0.902 0.966 0.983
Self-supervised (teacher) X 320 ⇥ 1024 0.101 0.720 4.339 0.176 0.898 0.967 0.984
Self-supervised (teacher) X 320 ⇥ 1024 0.104 0.747 4.453 0.185 0.885 0.963 0.983
Pseudo-supervised (student) X 320 ⇥ 1024 0.098 0.674 4.187 0.170 0.902 0.968 0.985

Table 1. Ablation study for the self-distillation based two-stage self-supervised learning framework. We perform experiments with
ResNet-50 backbone, two image resolutions and three scale recovery methods during inference. In the second stage, we always train on
scaled pseudo labels generated from the high-resolution self-supervised model and use 3D consistency check filtering.

Model Backbone AbsRel # SqRel # RMS # RMSlog # � < 1.25 "
Monodepth2 [18] ResNet-18 0.115 0.903 4.863 0.193 0.877

Ours ResNet-18 0.112 0.854 4.839 0.190 0.876

Monodepth2 [18] ResNet-50 0.110 0.831 4.642 0.187 0.883
Ours ResNet-50 0.104 0.768 4.513 0.180 0.892

Table 2. Ablation study for the depth decoder of the self-

supervised teacher network. By changing the decoder we ob-
tain significant improvements compared to the Monodepth2 base-
line [18]. The network is trained on medium resolution images.

Gt Scaled PS Auto Scaled PS Filtering AbsRel # SqRel # RMS # RMSlog # � < 1.25 "
X 0.102 0.716 4.351 0.177 0.887

X 0.103 0.729 4.457 0.181 0.881
X X 0.100 0.661 4.264 0.172 0.896

Table 3. Ablation study for the pseudo supervised training of

our student network. In this stage, we train with pseudo la-
bels (PS) generated with the self-supervised teacher network. The
pseudo labels are either scaled with the ground truth or scaled with
an automatic scale recovery method [56]. Performing a 3D consis-
tency check to filter out errors from the pseudo labels is beneficial.

crop [14]. We cap the depth values to 80m as in [18]. In
Table 9 from the supplementary section B we evaluate our
model on the improved KITTI ground truth [51] on the 652
available frames from the Eigen test set.

Cityscapes [9] is an urban driving dataset with high res-
olution images. The training set has 69,730 image triplets,
while the validation set consists of 1,525 images. We em-
ploy the cropping and evaluation scheme from [35] and give
more details in the supplementary section C. Depth values
are capped at 80m as with KITTI.

4.2. Ablation Study on KITTI

Self-distillation based learning framework. In Ta-
ble 1, we perform ablation experiments related to the self-
supervised learning framework. In our experiments, we
train our networks on one of the two image resolutions: the
medium resolution 192 ⇥ 640 and high resolution 320 ⇥
1024. In the first experiment, our depth network is trained
in a supervised regime with the improved KITTI ground
truth [51]. The depth network with ResNet-50 backbone
and the proposed decoder is trained with the scale invari-

Depth estimation error Pseudo labels error

Threshold (m) AbsRel # RMS # % Filtered AbsRel # RMS #
no filtering 0.103 4.457 0 0.082 3.995
1.0 0.100 4.264 18 0.069 3.245

1.5 0.101 4.364 12 0.072 3.416

Table 4. Filtering scheme ablation. Comparison between stu-
dent network training with or without pseudo label filtering on the
KITTI test set. We also measure the error of pseudo labels on the
training set and the amount of 3D points that are filtered.

Model PS �scale AbsRel # SqRel # RMS # RMSlog # � < 1.25 "
Monodepth2 [18] (R18) - 0.093 0.109 0.623 4.136 0.154 0.873

SD-SSMDE (R50) unscaled 0.100 0.109 0.494 3.591 0.141 0.888
SD-SSMDE (R18) scaled 0.061 0.084 0.436 3.550 0.128 0.918
SD-SSMDE (R50) scaled 0.040 0.076 0.377 3.304 0.117 0.933

Table 5. Scale variance analysis. Comparison on KITTI Eigen
test split with improved ground truth [51] on 192 ⇥ 640 resolu-
tion. Our student network learns from unscaled or automatically
scaled [56] pseudo labels (PS). During inference, we compute the
standard deviation �scale of individual ground truth median scales.
All depth predictions are scaled with a fixed scale factor.

ant logarithm loss [34] for depth regression. We train the
network under the same conditions as the self-supervised
method and with the same hyperparameters. Next, we train
the teacher network in the self-supervised regime. Self-
supervised methods suffer from scale ambiguity, i.e. the
output is not scaled to real-world values. We experiment
with ground truth median scaling [18], as it is common
practice, and an automatic scale recovery method [56] dur-
ing inference. Adopting the automatic scaling, the error in-
creases, since the scale computed from the predicted depth
maps is not as accurate. Using our best model with a
ResNet-50 backbone, trained on high-resolution images and
using automatic scaling, we generate pseudo labels for the
entire training set. In the second stage, the student depth
network is supervised by the pseudo labels. A 3D consis-
tency check is applied in order to remove noisy estimates
and although the labels will be more sparse, they will also
be more accurate. We obtain improved results from the sec-
ond stage training, for both image resolutions. During in-
ference, a fixed scale factor is employed to map the depth
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Method Backbone Sem Resolution AbsRel # SqRel # RMS # RMSlog # � < 1.25 " � < 1.252 " � < 1.253 "
GeoNet [58] ResNet-50 192 ⇥ 640 0.153 1.328 5.737 0.23 0.802 0.934 0.972
DF-Net [62] ResNet-50 192⇥ 640 0.146 1.182 5.215 0.213 0.818 0.943 0.978
Guizilini et al. [22] ResNet-50 X 192 ⇥ 640 0.113 0.831 4.663 0.189 0.878 0.971 0.983
SGDepth [29] ResNet-50 X 192 ⇥ 640 0.112 0.833 4.688 0.190 0.884 0.961 0.981
Monodepth2 [18] ResNet-50 192 ⇥ 640 0.110 0.831 4.642 0.187 0.883 0.962 0.982
FSRE-Depth [28] ResNet-50 X 192 ⇥ 640 0.102 0.675 4.393 0.178 0.893 0.966 0.984
SD-SSMDE (ours) ResNet-50 192 ⇥ 640 0.100 0.661 4.264 0.172 0.896 0.967 0.985

Shu et al. [48] ResNet-50 X 320 ⇥ 1024 0.104 0.729 4.481 0.179 0.893 0.965 0.984
SD-SSMDE (ours) ResNet-50 320 ⇥ 1024 0.098 0.674 4.187 0.170 0.902 0.968 0.985

Guizilini et al. [22] ResNet-18 X 192 ⇥ 640 0.117 0.854 4.714 0.191 0.873 0.963 0.981
Monodepth2 [18] ResNet-18 192 ⇥ 640 0.115 0.903 4.863 0.1F93 0.877 0.959 0.981
SGDepth [29] ResNet-18 X 192 ⇥ 640 0.113 0.835 4.693 0.191 0.879 0.961 0.981
Poggi et al. [44] ResNet-18 192 ⇥ 640 0.111 0.863 4.756 0.188 0.881 0.961 0.982
HR-Depth [39] ResNet-18 192 ⇥ 640 0.109 0.792 4.632 0.185 0.884 0.962 0.983
FSRE-Depth [28] ResNet-18 X 192 ⇥ 640 0.105 0.722 4.547 0.182 0.886 0.964 0.984

SD-SSMDE (ours) ResNet-18 192 ⇥ 640 0.106 0.751 4.485 0.180 0.885 0.964 0.984

Monodepth2 [18] ResNet-18 320 ⇥ 1024 0.115 0.882 4.701 0.190 0.879 0.961 0.982
SGDepth [29] ResNet-18 X 384 ⇥ 1280 0.107 0.768 4.468 0.186 0.891 0.963 0.982
HR-Depth [39] ResNet-18 320 ⇥ 1024 0.106 0.755 4.472 0.181 0.892 0.966 0.984
FSRE-Depth [28] ResNet-18 X 320 ⇥ 1024 0.102 0.687 4.366 0.178 0.895 0.967 0.984
SD-SSMDE (ours) ResNet-18 320 ⇥ 1024 0.101 0.700 4.332 0.174 0.895 0.966 0.985

Table 6. Comparison with the state-of-the-art on KITTI Eigen test set. We report results of methods that use only a single image during
inference. Sem denotes the use of semantic segmentation. Best results are in bold.

Image Ground Truth Depth Image Ground Truth Depth

Depth Prediction Error Map Depth Prediction Error Map

[1
8]

O
ur

s

Figure 4. Qualitative results on the KITTI Eigen test set with improved ground truth. We compare our SD-SSMDE results with
Monodepth2 [18] with ResNet-50 [18] on high resolution images. Our network provides better depth quality with smaller errors.

values in the interval [0, 80m].
Depth decoder. In Table 2, we present the results of our

baseline Monodepth2 [18] and our teacher network trained
in a self-supervised regime with the photometric loss. We
employ the same loss functions as [18], but we propose
a different decoder for the depth network. With both the
lightweight ResNet-18 and the deeper ResNet-50 [24] back-
bones, we achieve a lower error than [18]. The proposed de-
coder is able to better capture context due to the ASPP [6]
module and the higher number of channels in each convo-
lutional layer.

Scale recovery and filtering. We perform ablation stud-
ies for the second part of our training pipeline in Table
3. We employ medium resolution images for these exper-

iments. First, we would like to see what is the impact of
training with pseudo labels scaled with a different scaling
factor. In the first experiment, we train our student depth
network supervised by the high resolution pseudo labels
scaled with the ground truth median scaling. With this set-
ting, in which no error filtering is performed, we improve
the results over the self-supervised counterpart. Although
trained with noisy labels, the network is able to converge
to a better minimum. We believe that this is because in the
self-supervised learning stage, the network becomes stuck
in a local minimum due to the use of the reprojection loss,
while when trained with labels, even noisy ones, the regres-
sion loss will guide the network to a global minimum. Our
findings agree with other studies that provide depth hints
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from stereo [53]. In our second experiment, we train our
network with the pseudo labels scaled by an off-the-shelf
scale recovery module [56] and no ground truth data is
used. Interestingly, we obtain similar results to training with
ground-truth scaled depth maps. Removing the dependence
on ground truth is a big advantage, therefore in our final
experiment we filter the automatically-scaled pseudo labels
by using the 3D consistency check in order to get a better
training signal. As expected, training with higher quality
labels further improves the result.

In Table 4 we perform an ablation study on the thresh-
old used in the filtering scheme and measure the depth error
on pseudo labels before and after filtering. By applying the
filtering scheme we obtain more accurate but also sparser
pseudo labels. A threshold of T = 1 achieves the best bal-
ance between accuracy and density.

In Table 5 we demonstrate the advantage of using scaled
pseudo labels during training. By scaling the pseudo labels
with an automatic scale recovery method, not only do we
obtain absolute depth values but also inter-frame scale con-
sistent depth labels. Our experiments suggest that training
with scaled pseudo labels is required for improved perfor-
mance. We also perform a scale variance analysis of the
depth output of the student network. The scale is equal
to the median of all individual ratios of the ground truth
depth and the predicted depth maps medians. We report the
standard deviation of individual scales �scale where a lower
value indicates increased scale-consistent depth predictions
across frames. The best scores and the most scale-consistent
predictions are obtained with our SD-SSMDE model with
ResNet-50 backbone trained with scaled pseudo labels.

4.3. KITTI Results

In Table 6 we compare our results with the state-of-
the-art methods that perform inference on a single image.
When trained with medium resolution images, our net-
work with ResNet-50 backbone outperforms all other net-
works. We also surpass our baseline by a significant mar-
gin. With ResNet-18 on medium resolution images, we
achieve comparable results with FSRE-Depth [28]. Works
such as [22, 28, 29] use semantic segmentation guidance
and rely on the existence of pre-trained semantic networks
and pixel-level semantic annotations, which may be diffi-
cult and expensive to acquire. On the other hand, our net-
work achieves the best results, while being trained only on
monocular sequences, without extra data. Another advan-
tage of our method is that we can completely remove the
dependence on ground truth data during inference by using
a fixed scaling factor with no or minimal loss in accuracy.
A disadvantage of our two-stage training framework would
be the longer training time, however there is no additional
computation cost during inference, which is important from
a practical perspective. For high-resolution images, we ob-

Model Train Test AbsRel # SqRel # RMS # RMSlog #
Struct2Depth 2 [2] C C 0.145 1.737 7.280 0.205
Monodepth2 [18] C C 0.129 1.569 6.876 0.187
Videos in the Wild [20] C C 0.127 1.330 6.960 0.195
Li et al. [35] C C 0.119 1.290 6.980 0.190
Choi et al. [8] C C 0.115 1.125 6.584 0.195
SD-SSMDE (teacher - GT scaling) C C 0.117 1.090 6.468 0.176
SD-SSMDE (student - fixed scaling) C C 0.114 1.017 5.949 0.169
SD-SSMDE (student - GT scaling) C C 0.110 0.988 5.953 0.165

Monodepth2 [18] K C 0.153 1.785 8.590 0.234
SD-SSMDE (student - fixed scaling) K C 0.143 1.635 8.441 0.221

Table 7. Results on Cityscapes. Evaluation of models on the
Cityscapes dataset, trained on Cityscapes (C) or on KITTI (K).
All the competing methods use ground truth median scaling. The
input/output resolution for our network is 128⇥ 416. Full metrics
can be found in the supplementary material in Table 10.

tain the best scores overall.
Figure 4 presents a qualitative comparison between

Monodepth2 [18] and our results from the student network.
We observe that our network yields more accurate depth
maps, as seen for example on the ground and on the ve-
hicles. We provide more qualitative results in the supple-
mentary in Figure 6.

4.4. Cityscapes Results

In Table 7 we evaluate our models with the ResNet-50
backbone on the Cityscapes dataset and compare them with
the state-of-the-art. We also check the generalization ca-
pability of our model trained on KITTI, without any fine-
tuning. Compared to Monodepth2 and other competing
methods, we achieve better scores across all metrics.

5. Conclusions

We have presented a novel self-distillation based two-
stage self-supervised training framework for monocular
depth estimation: in the first stage, a self-supervised depth
network and camera pose estimation network are trained on
monocular sequences, in the second stage, the depth net-
work is trained on high-resolution pseudo labels generated
with the first network. We also introduced a new archi-
tecture for the depth network which brings significant im-
provements. We investigated the importance of training
with scaled pseudo labels and its effect on depth predic-
tions scale consistency among frames. In the second stage,
a filtering scheme based on 3D consistency between consec-
utive views was proposed for a more accurate supervision
signal. Our SD-SSMDE models achieve state-of-the-art re-
sults on the KITTI and Cityscapes datasets.
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