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Abstract

Image copy detection is an important task for content

moderation. We introduce SSCD, a model that builds on

a recent self-supervised contrastive training objective. We

adapt this method to the copy detection task by changing the

architecture and training objective, including a pooling op-

erator from the instance matching literature, and adapting

contrastive learning to augmentations that combine images.

Our approach relies on an entropy regularization term,

promoting consistent separation between descriptor vec-

tors, and we demonstrate that this significantly improves

copy detection accuracy. Our method produces a compact

descriptor vector, suitable for real-world web scale appli-

cations. Statistical information from a background image

distribution can be incorporated into the descriptor.

On the recent DISC2021 benchmark, SSCD is shown to

outperform both baseline copy detection models and self-

supervised architectures designed for image classification

by huge margins, in all settings. For example, SSCD out-

performs SimCLR descriptors by 48% absolute.

Code is available at https://github.com/

facebookresearch/sscd-copy-detection.

1. Introduction

All online photo sharing platforms use content moder-

ation to block or limit the propagation of images that are

considered harmuful: terrorist propaganda, misinformation,

harassment, pornography, etc. Some content moderation

can be performed automatically, for unambiguous data like

pornographic pictures, but this is much harder for complex

data like memes [31] or misinformation [2]. In these cases,

content is moderated manually. For of viral images, where

copies of same image may be uploaded thousands of times,

manual moderation of each copy is tedious and unneces-

sary. Instead, each image for which a manual moderation

decision is taken can be recorded in a database, so that it

can be re-identified later and handled automatically.

This paper is concerned with this basic task of re-

identifcation. This is non trivial because copied images are

Figure 1. The SSCD architecture for image copy detection. It

is based on SimCLR, with the following additions: the entropy

regulatization, cutmix/mixup-aware InfoNCE, and inference-time

score normalization.

often altered, for technical reasons (e.g. a user shares a mo-

bile phone screenshot that captures additional content), or

users may make adversarial edits to evade moderation.

Image re-identification is an image matching problem,

with two additional challenges. The first is the enormous

scale at which copy detection systems are deployed. At

this scale, the only feasible approach is to represent im-

ages as short descriptor vectors, that can be searched ef-

ficiently with approximate nearest neighbor search meth-

ods [23, 30]. Copy detection systems typically proceed in

2 stages: a retrieval stage that produces a shortlist of candi-

date matches and a verification stage, often based on local

descriptor matching that operates on the candidates. In this

work, we are concerned with the first stage. Figure 1 shows

the overall architecture of our Self Supervised Copy Detec-

tion (SSCD) approach.

The second challenge is that there is a hard match/non-

match decision to take, and positive image pairs are rare.

We wish to limit verification candidates using a threshold,

which is a harder constraint than the typical image retrieval

setting, where only the order of results matter.

SSCD uses differential entropy regularization [42] to
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promote a uniform embedding distribution, which has three

effects: (1) it makes distances from different embedding re-

gions more comparable; (2) it avoids the embedding col-

lapse described in [29], making full use of the embedding

space; (3) it also improves ranking metrics that do not re-

quire consistent thresholds across queries.

Score normalization is important for ranking systems.

An advanced score normalization relies on matching the

query images with a set of background images. In this work,

we show how this normalization can be incorporated in the

image descriptor itself. We anticipate that this work will

set a strong single-model baseline for image copy detection.

We plan to release code and models for our method.

Section 2 discusses works related to this paper. Sec-

tion 3 motivates the use of an entropy loss term in a sim-

plified setting. Section 4 carefully describes SSCD. Sec-

tion 5 presents results and ablations of our method. Sec-

tion 6 points out a few observations about the copy detec-

tion task.

2. Related work

Content tracing approaches. Content tracing on a user-

generated photo sharing platform aims at re-identifying

images when they circulate out and back into the plat-

form. There are three broad families of tracing methods:

metadata-based [1, 3], watermarking [13, 32, 51, 63] and

content-based. This work belongs to this last class.

Classical image datasets for content tracing, like Ca-

sia [16,36] focus on image alterations like splicing, removal

and copy-move transformations [16,44,54] that alter only a

small fraction of the image surface, so the re-identification

is done reliably with simple interest-point based techniques.

The challenge is to detect the tampered surface, which is

typically approached with deep models inspired by image

segmentation [34, 62]. A related line of research is image

phylogeny: the objective is to identify the series of edits

that were applied to an image between an initial and a fi-

nal state [14, 15, 33]. The Nimble/Media forensics series

of competitions organized by NIST aim at benchmarking

these tasks [40,57]. In this work we focus on the identifica-

tion itself, with strong transformations and near duplicates

that need to be distinguished (see Figure 2).

Semantic and perceptual image comparison Several

definitions of near-duplicate image matching, form a con-

tinuum between pixel-wise copy and instance matching [18,

28]. The definition we use in this work is: images are

considered copies iff they come from the same 2D image

source. More relaxed definitions allow, for example, to

match nearby frames in a video.

There is a large body of literature about solving instance

matching [7,11,26,35,37,46–48] i.e., recognizing images of

the same 3D object with viewpoint/camera changes. In this
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Figure 2. Example retrieval results from the DISC2021 dataset.

Each row is an example. From left to right: query image, first re-

sult returned by SSCD, first result returned by the SimCLR base-

line.

work, we build on this literature because it addresses com-

plex image matching, and to our knowledge, recent works

and benchmarks for strict copy detection are rare [17, 53].

Instance matching. Classical instance matching relies on

3D matching tools, like interest points [26, 35, 43]. CNN-

based approaches use backbones from image classification,

either pre-trained [4, 20, 49] or trained end-to-end [21, 38],

with two adaptations: (1) the pooling layer that converts the

last CNN activation map to a vector is a max-pooling [49],

or more generally GeM pooling [39], a form of Lp normal-

ization where p is adapted to the image resolution [7]; (2)

careful normalization of the vectors. In addition to simple

L2-normalization [4], “whitening” is often used to compare

descriptors [25, 49]. An additional normalization technique

contrasts the distances w.r.t. a background distribution of

images [18, 27]. In this work, we apply these pooling and

normalization techniques to copy detection.

Contrastive self-supervised learning. A recent line of

self-supervised learning research uses contrastive objectives

that learn image representations that bring transformed im-
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ages together. These methods either discriminate image fea-

tures [10, 22, 24] or the cluster assignments of these im-

age features [8]. These methods either rely on memory

banks [24, 56] or large batch sizes [10]. In particular, Sim-

CLR [10] uses matching transformed image copies as a

surrogate task to learn a general image representation that

transfer well to other tasks, such as image classification. A

contrastive InfoNCE loss [52] is used to map copies of the

same source image nearby in the embedding space.

Differential entropy regularization. Increasing the en-

tropy of media descriptors forces them to spread over the

representation space. Sablayrolles et al. [42] observed that

the entropy can be estimated locally with the Kozachenko-

Leononenko differential entropy estimator [6], that can be

incorporated directly into the loss to maximize descriptor

entropy. The work of El-Nouby et al. [19] is closest to our

approach. It adds the entropy term to a contrastive loss at

fine-tuning time to improve the accuracy for category and

instance retrieval. Our approach is similar, applied to a self-

supervised objective and image copy detection.

3. Motivation

In this section, we start from the SimCLR [10] method,

then perform a simple experiment where we combine it with

the entropy loss from [42] and witness how it impacts clas-

sification and copy detection tasks.

3.1. Preliminaries: SimCLR

SimCLR training is best described at the mini-batch

level. For batches of N images, it creates two augmented

copies of each image (repeated augmentations), yielding

2N transformed images. The positive pairs of matching

images are P = {(i, i + N), (i + N, i)}i=1..N . We de-

note positive matches for image i as Pi = {j | (i, j) 2 P}.

Each image is transformed by a CNN backbone network.

The final activation map of the CNN is average pooled, then

projected using a two-layer MLP into a L2-normalized de-

scriptor zi 2 R
d. Descriptors are compared with a cosine

similarity: sim(zi, zj) = z>i zj . A contrastive InfoNCE loss

maximizes the similarity between copies relative to the sim-

ilarity of non-copies. For inference (e.g. to transfer to image

classification), SimCLR discards the training-time MLP, us-

ing globally pooled features from the CNN trunk directly.

The InfoNCE loss. SimCLR’s InfoNCE loss is a softmax

cross-entropy with temperature, that matches descriptors to

other descriptors. Let si,j be the temperature-adjusted co-

sine similarity si,j = sim(zi, zj)/⌧ . The InfoNCE loss is

defined as a mean of `i,j terms for positive pairs (i, j) 2 P :

`i,j = � log
exp(si,j)

P

k 6=i exp(si,k)
(1)

LInfoNCE =
1

|P |

X

i,j2P

`i,j . (2)

3.2. Entropy regularization

We use the differential entropy loss proposed in [42],

based on the Kozachenko-Leononenko estimator. We adapt

it to the repeated augmentation setting by only regularizing

neighbors from different source images:

LKoLeo = �
1

N

NX

i=1

log
�
min
j 62P̂i

kzi � zjk
�
, (3)

where P̂i = Pi [ {i}. Since this entropy loss is a log of the

distance to the nearest neighbor, its impact is very high for

nearby vectors but dampens quickly when the descriptors

are far apart. The effect is to “push” apart nearby vectors.

Figure 3. Preliminary experiment: we train SimCLR mod-

els on ImageNet with varying differential entropy regularization

strength, (regular SimCLR: λ = 0). We measure: ImageNet lin-

ear classification accuracy and DISC2021 micro average precision

(µAP ), with optional score normalization (µAPSN ). The Im-

ageNet and DISC2021 measures are not comparable, but trends

within each curve are significant.

3.3. Experiment: SimCLR and entropy

For this experiment, we combine our contrastive loss

with the entropy loss, using a weighting factor �, similar

to [19, 42]:

Lbasic = LInfoNCE + �LKoLeo. (4)

We then evaluate the impact of the combined loss on an

image classifcation setting and a copy detection setting, see

Section 5.1 for more details about the setup.

Figure 3 shows how varying entropy loss weight � im-

pacts both tasks. As the entropy loss weight increases, Im-

ageNet linear classification accuracy decreases: this loss
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Figure 4. Preliminary experiment: histogram of squared distances

for DISC2021 matching images and non-matching nearest neigh-

bors. Above: baseline SimCLR. Below: SimCLR combined with

entropy regularization (weight λ = 30), without whitening or sim-

ilarity normalization.

term is not helpful for classification. Conversely, for copy

detection the accuracy increases significantly.

Figure 4 shows the distribution of distances between

matching images (positive pairs) and the nearest non-

matching neighbors (negative pairs). Applying the entropy

loss increases all distances and makes the negative distance

distribution more narrow. The result is that there is a larger

contrast between positive pairs and the mode of the negative

distribution, i.e. they are more clearly separated.

4. Method

Having seen how the entropy loss improves copy de-

tection accuracy, in this section we expand it into a robust

image copy detection approach: SSCD. This entails adapt-

ing the architecture, the data augmentation, the pooling and

adding a normalization stage, as shown in Figure 1.

4.1. Architecture

SSCD uses a ResNet-50 convolutional trunk to extract

image features. We standardize on this architecture because

it is widely used, well optimized and still very competitive

for image classification [55], but any CNN or transformer

backbone could be used (see Section 5).

Pooling. For classification, the last CNN activation map is

converted to a vector by mean pooling. We use generalized

mean (GeM) pooling instead, which was shown [7, 39] to

improve the discriminative ability of descriptors. This is

desirable for instance retrieval and our copy detection case

alike. GeM introduces a parameter p, equivalent to average

pooling when p = 1 and max-pooling when p ! 1. SSCD

uses p = 3, following common practice for image retrieval

models [7, 39, 49].

type details

SimCLR horizontal flip, random crop, color jitter, grayscale,

Gaussian blur

Strong blur 50% large-radius Gaussian blur (� 2 [1, 5])
Advanced 10% rotation, 10% text, 20% emoji,

20% JPEG compression

Adv. + mixup 2.5% mixup, 2.5% cutmix

Table 1. List of data augmentations used for SSCD. The presenta-

tions is incremental: each set of augmentations includes the ones

from all rows before. The percentages are probabilities to apply

each augmentation.

While GeM pooling at inference time systematically im-

proves accuracy, we observe that it is beneficial at training

time only in combination with the differential entropy reg-

ularization, i.e. with a vanilla InfoNCE it is better to train

with average pooling. We conjecture that GeM pooling may

reduce the difficulty of the training task without the addi-

tional objective of maximally separating embedding points.

We observe that learning the scalar p, as proposed in [39],

fails for contrastive learning: the pooling parameter grows

unbounded until training becomes numerically unstable.

Descriptor projection. SimCLR uses a 2-layer MLP pro-

jection at training time. For inference, the MLP is discarded

and CNN trunk features are used directly. The MLP is

partly motivated to retain transformation-covariant features

in the base network, which may be useful for downstream

tasks, despite a training task that requires a transformation-

invariant descriptor. Jing et al. [29] also find that the MLP

insulates the trunk model from an embedding collapse into

a lower-dimensional space caused by the InfoNCE loss.

For SSCD, the training and inference tasks are the same,

obviating the need for transformation-covariant features,

and differential entropy regularization prevents the dimen-

sional collapse. We replace the MLP with a simple linear

projection to the target descriptor size, and retain this pro-

jection for inference.

4.2. Data Augmentation

Self-supervised contrastive objectives learn to match im-

ages across image transforms. These methods are sensitive

to the augmentations seen at training time [10], since invari-

ance to these transforms is the only supervisory signal.

Table 1 lists the SSCD augmentations used in our ex-

periments. Note that since our main evaluation dataset

(DISC2021) is built in part with data augmentation, there

is a risk of overfitting to the augmentations of that dataset.

This is mitigated by (1) DISC2021’s set of augmentations

is not known precisely and (2) we present strong results

trained using a simple blur augmentation. Our starting base-

line is the default set of SimCLR augmentations.
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Strong blur. Empirically, copy detection benefits from a

stronger blur than is typically used for contrastive learn-

ing. We strengthen the blur augmentation compared to Sim-

CLR. We suggest that invariance to blur confers a low-

frequency bias, reducing the model’s sensitivity to high-

frequency noise common to real world copies. We use this

setting for most ablation steps, because it is easy to repro-

duce, and provides a good baseline setting for comparing

methods. This augmentation was initially tuned on a pro-

prietary dataset, and is unlikely to overfit to DISC2021.

Advanced augmentations. We evaluate our method with

additional augmentations, to demonstrate how SSCD ex-

tends as augmentations are added. Half of rotations rotate

by multiples of 90 degrees and half are unconstrained. The

text has a random font, text, opacity, font size, and color.

We add emoji of random size. We apply JPEG compres-

sion with randomly sampled compression quality. These

augmentations are somewhat inspired by DISC2021 but are

still fairly generic for image copy detection problems.

Mixed images. We use two augmentations that combine

content from two images within a training batch. In a

copy detection context, these augmentations model partial

copies, where part of an image is included in a composite

image. Mixup [61] is a pixelwise weighted average of two

images (a and b) with parameter � 2 [0, 1]: � ·a+(1��)·b.
CutMix [59] moves rectangular regions from one image

into another. See Appendix D for implementation details.

Mixed images match multiple images in the batch, requir-

ing changes to our losses, outlined below.

4.3. Loss Functions

SSCD uses a weighted combination of the contrastive In-

foNCE and the entropy loss, as in Equation (4). However,

we need to adapt both losses for the mixed-image augmen-

tation case, where Pi may contain multiple matching im-

ages.

InfoNCE with MixUp/CutMix augmentations. We

adapt the InfoNCE loss (see Section 3.1) to accommo-

date augmentations that mix features from multiple images.

Given an image i with full or partial matches j 2 Pi, we

modify the pairwise loss term from Equation (1) as:

ˆ̀
i,j = � log

exp(si,j)

exp(si,j) +
P

k 62P̂i
exp(si,j)

, (5)

where P̂i = Pi [ {i}. We then combine these terms by tak-

ing a mean per image, so that each image contributes simi-

larly to the overall loss, and average per-image losses. Note

that this is equivalent to InfoNCE for non-mixed images.

LInfoNCE�mix =
1

2N

2NX

i=1

1

|Pi|

X

j2Pi

ˆ̀
i,j . (6)

Entropy loss. Our formulation of the entropy loss in

Equation (3) remains the same, with P̂i updated to include

multiple matching images.

Combination. The losses are combined with entropy

weight parameter �:

L = LInfoNCE�mix + �LKoLeo (7)

Multi-GPU implementation. The contrastive matching

task benefits from a large batch size, since this provides

stronger negatives. Losses are evaluated over the global

batch, after aggregating image descriptors across GPUs.

Descriptors from all GPUs are included in the negatives In-

foNCE matches against, and we choose nearest neighbors

for entropy regularization from the global batch. Batch nor-

malization statistics are synchronized across GPUs to avoid

leaking information within a batch. We use the LARS [58]

optimizer for stable training at large batch size.

4.4. Inference and retrieval

For inference, the loss terms are discarded. Features are

extracted from the images using the convolutional trunk fol-

lowed by GeM pooling, the linear projection head, and L2

normalization. Then we apply whitening to the descriptors.

The whitening matrix is learned on the DISC2021 training

set. The descriptors are compared with cosine similarity or

equivalently with simple L2 distance.

4.5. Similarity normalization

We follow [18] using similarity normalization [12,27] as

one of our evaluation settings. It uses a background dataset

of images as a noise distribution, and produces high sim-

ilarity scores only for queries whose reference similarity

is greater than their similarity to nearest neighbors in the

background dataset. Given a query image q and a refer-

ence image r with similarity s(q, r) = sim(zq, zr), the ad-

justed similarity is ŝ0(q, r) = s(q, r)� �s(q, bn) where bn
is the nth nearest neighbor from the background dataset, and

� � 0 is a weight.

We generalize this by aggregating an average similarity

across multiple neighbors (n to nend) from the background

dataset:

ŝ(q, r) = s(q, r)�
�

1 + nend � n

nendX

i=n

s(q, bi)

| {z }

bias(q)

. (8)

Integrated bias. Carrying around a bias term makes in-

dexing of descriptors more complex. Therefore, we include

the bias into the descriptors as an additional dimension:

ẑq = [zq � bias(q)] ẑr = [zr 1] (9)
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Then we are back to ŝ(q, r) = sim(ẑq, ẑr). The descrip-

tors are not normalized, i.e. the dot product similarity is not

equivalent to L2 distance. If L2 distance is preferred for in-

dexing, it is possible to convert the max dot product search

task into L2 search using the approach from [5].

Similarity normalization consistently improves metrics.

However it adds operational complexity, and may make it

difficult to detect content similar to the background distri-

bution. Therefore, we report results both with and without

this normalization.

5. Experiments

In this section we evaluate SSCD for image copy detec-

tion. Despite its relative simplicity, it depends on various

settings that we evaluate in an extensive ablation study.

5.1. Datasets

DISC2021. Most evaluations are on the validation dataset

of the Image Similarity Challenge, DISC2021 [18].

DISC2021 contains both automated image transforms and

manual edits. There are 1 million reference images and

50,000 query images, of which 10,000 are true copies. A

disjoint 1 million image training set is used for model train-

ing and as background dataset for score normalization. The

training set contains no copies or labels, but is representa-

tive of the image distribution of the dataset. The perfor-

mance is evaluated with micro average precision (µAP )

that measures the precision-recall tradeoff with a uniform

distance threshold.

ImageNet. For some experiments we train models on the

ImageNet [41] training set (ignoring the class labels). We

use ImageNet linear classification to measure how our copy

detection methods affect semantic representation learning.

Copydays [17] is a small copy detection dataset. Follow-

ing common practice [7,9], we augment it with 10k distrac-

tors from YFCC100M [45], a setting known as CD10K, and

evaluate the retrieval performance with mean average preci-

sion (mAP ) on the “strong” subset of robustly transformed

copies. In addition to this standard measure, we evaluate

the µAP on the overall dataset.

5.2. Training implementation

We use the training schedule and hyperparameters from

SimCLR [10]: batch size N = 4096, resolution 224⇥ 224,

learning rate of 0.3 ⇥N/256, and a weight decay of 10�6.

We train models for 100 epochs on either ImageNet or the

DISC training set, using a a cosine learning rate schedule

without restarts and with a linear ramp-up. We use the

LARS optimizer for stable training at large batch size. We

train at spatial resolution 224⇥ 224.

We use a lower temperature than SimCLR, ⌧ = 0.05
versus 0.1, following an observation in [10] that this setting

yields better accuracy on the training task, while reducing

accuracy of downstream classification tasks.

5.3. Evaluation protocol

Inference. We resize the small edge of an image to size

288 preserving aspect ratio for fully convolutional models.

We use a larger inference size than seen at training to avoid

train-test discrepancy [50]. We use different preprocessing

for the DINO [9] ViT baseline, following their copy detec-

tion method. See Appendix D for details.

Descriptor postprocessing. Image retrieval benefits from

PCA whitening. SSCD descriptors are whitened, then

L2 normalized. For baseline methods that use CNN

trunk features, we L2 normalize both before and after

whitening. SimCLR projection features often occupy a

low-dimensional subspace, making whitening at full de-

scriptor size unstable, and many representations perform

better when whitened with low-variance dimensions ex-

cluded. For baseline methods, we try dimensionalities

{d, 3
4d,

d
2 ,

d
4 , . . .} and choose the one that maximizes the fi-

nal accuracy. For SSCD, we whiten at full descriptor size.

We use the FAISS [30] library to apply embedding

postprocessing and perform exhaustive k-nearest neighbor

search. We train PCA on the DISC2021 training dataset,

following standard protocol for this dataset.

5.4. Results

method trained on transforms dims µAP µAPSN

Multigrain [7, 18] ImageNet⇤ 1500 16.5 36.5

HOW [18, 48] SfM-120k⇤ 17.3 37.2

Multigrain [7] ImageNet⇤ 2048 20.5 41.7

DINO [9] † ImageNet 1500 32.2 53.8

SimCLR [10] trunk ImageNet SimCLR 2048 13.1 33.9

SimCLR [10] proj ImageNet SimCLR 128 9.4 17.3

SimCLRCD trunk ImageNet strong blur 2048 39.8 56.8

SSCD ImageNet strong blur 512 50.4 64.5

SSCD ImageNet advanced 512 55.5 71.0

SSCD ImageNet adv.+mixup 512 56.8 72.2

SSCD DISC strong blur 512 54.8 63.6

SSCD DISC advanced 512 60.4 71.1

SSCD DISC adv.+mixup 512 61.5 72.5

SSCDlarge
† DISC adv.+mixup 1024 63.7 75.3

Table 2. Copy detection performance in µAP on the DISC2021

dataset. ∗: methods that use supervised labels. †: trunk larger than

ResNet50. DINO baseline uses ViT-B/16.

DISC results. Table 2 reports DISC2021 results from the

baseline methods published in [18] and SSCD. Our eval-

uation protocol obtains somewhat stronger results for the

Multigrain baseline (3rd row). The first observation is that

SSCD improves the baseline accuracy by 2⇥ to 5⇥ before
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score normalization, demonstrating that copy detection ben-

efits from specific architectural and training adaptations.

We present results on a few different SSCD models

trained on ImageNet or DISC2021, using the three aug-

mentation settings we propose. The intermediate model

SimCLRCD has all of our proposed changes except the en-

tropy loss. SSCDlarge model uses a larger descriptor size and

a ResNeXt-101 trunk.

We evaluate SimCLR using both trunk and projected

features, and find trunk features (µAP = 13.1) to outper-

form features from the projection head (µAP = 9.4) with

and without score normalization. Further experiments (Ap-

pendix A) show the reverse when training with entropy loss:

projected features have similar accuracy to trunk features,

despite a much more compact representation.

The gain of SimCLRCD (µAP = 39.8 without score

normalization) over SimCLR (13.1) is decomposed in Sec-

tion 5.5. Introducing the entropy loss in SSCD contributes

an additional 10% absolute of µAP , which is further in-

creased by stronger augmentations (+6.2%) and training on

a dataset with less domain shift (+4.7%). These findings are

confirmed after score normalization.

Copydays results. Table 3 reports results for baseline

methods using publicly released models, but omit Multi-

grain settings that we were unable to reproduce. We used

published preprocesing settings for baselines and whiten-

ing. Our DINO results outperform published results.

model trunk dims size mAP µAP

Multigrain [7] ResNet50 1500 long 800 82.3 77.3

DINO [9] ViT-B/16 1536 2242 82.8 92.3

DINO [9] ViT-B/8 1536 3202 86.1 88.4

SSCD ResNet50 512 short 288 86.6 98.1

SSCDlarge ResNeXt101 1024 long 800 93.6 97.1

Table 3. Copydays (CD10K) accuracy measured in mAP on the

“strong” subset, and µAP on the full dataset.

The first SSCD result is with all settings from our

DISC2021 experiments, where we resize the short side of

each image to 288 pixels. With no tuning on this dataset,

our method outperforms published results. We also show

results for SSCDlarge using a ResNeXt101 trunk and 1024

descriptor dimensions, at larger inference size. We report

more results on CD10K in Appendix B.

In addition to state-of-the-art accuracy using the custom-

ary mAP ranking metric, our method provides a significant

improvement in the global µAP metric, indicating better

distance calibration. On high-resolution images that are

common for image retrieval, we observe improved mAP
but degraded µAP . SSCD descriptors are more compact

than baselines.

5.5. Ablations

Comparison with SimCLR. We provide a stepwise com-

parison between SimCLR and our method in Table 4. Sim-

CLR projection features are not particularly strong for this

task until we apply several of our adaptations. SimCLR

is unable to exploit a R
512 descriptor, only slightly outper-

forming its R
128 setting. SimCLRCD represents our archi-

tectural and hyper-parameter changes before adding differ-

ential entropy representation. Differential entropy regular-

ization alone adds +17.4% µAP and +12.9% µAPSN , more

than any other step.

Score normalization: No Yes

name method dims µAP 256d µAPSN 256d

SimCLR trunk features 2048 13.1 7.3 33.9 26.8

+ GeM pooling 2048 21.5 12.1 45.3 35.8

SimCLR projection 128 9.4 9.4 17.3 17.3

+ GeM pooling 128 11.1 11.1 18.8 18.8

+ strong blur 128 14.1 14.1 26.0 26.0

+ low temp 128 26.0 26.0 41.5 41.5

+ 512d proj 512 27.5 27.5 43.5 43.5

SimCLRCD + linear proj 512 33.0 32.4 51.6 50.5

SSCD + entropy loss 512 50.4 44.0 64.5 57.8

SSCD + adv. augs 512 55.5 49.7 71.0 65.8

SSCD + mixup 512 56.8 51.1 72.2 67.1

Table 4. Ablation from SimCLR to our method, showing

DISC2021 µAP performance for models trained on ImageNet. To

compare descriptors of different sizes, we also show metrics after

PCA reduction to 256 dimensions.

Entropy weight. Table 5 compares how varying entropy

loss weight (�) affects copy detection accuracy, using

SimCLRCD as a baseline. Models for this experiment are

trained using the strong blur augmentation setting.

model µAP µAPSN recall@1 MRR

SimCLRCD 33.0 51.6 58.6 60.5

� = 1 33.1 51.9 58.7 60.9

� = 3 38.0 56.1 62.9 65.1

� = 10 45.3 61.5 67.7 69.5

� = 30 50.4 64.5 69.8 71.4

Table 5. DISC2021 accuracy metrics with varying entropy weight

λ for models trained on ImageNet.

As the entropy weight increases, we see a corresponding

increase in global accuracy metrics. We also see a similar

increase in per-query ranking metrics, such as recall at 1

and mean reciprocal rank (MRR). The increase in ranking

metrics demonstrates that differential entropy regularization

improves copy detection accuracy in general, beyond creat-

ing a more uniform notion of distance.
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In contrast to metric learning contexts where entropy

regularization has been used, copy detection benefits from

higher � values. Our standard setting is � = 30, while [19]

reports reduced accuracy with � > 1, and [42] uses values

< 0.1. At � > 40, training becomes unstable, and tends

to minimize the entropy loss at the expense of the InfoNCE

loss: embeddings are uniformly distributed, but meaning-

less because image copies are not near anymore.

Additional ablations. We explore how batch size, train-

ing schedule, descriptor dimensions, and score normaliza-

tion affect accuracy in Appendix A.

6. Discussion

Dimensional collapse. We find, similar to [29, 60], that

SimCLR collapses to a subspace of approximately 256 di-

mensions when trained in 512 dimensions. Table 4 shows

that SimCLR’s accuracy does not improve much when

the descriptor size increases from 128 to 512 dimensions.

SSCD’s entropy regularization resolves this collapse, and

allows the model to use the full descriptor space.

Entropy regularization and whitening. SSCD is much

more accurate than baselines when compared without

whitening or similarity normalization: 47.8 µAP for � =
30 when trained on ImageNet, versus 26.8 for an equivalent

� = 0 model. Both the entropy loss and post-training PCA

whitening aim at creating a more uniform descriptor distri-

bution. However PCA whitening can distort the descriptor

space learned during training, particularly when many di-

mensions have trivial variance. Differential entropy regular-

ization promotes an approximately uniform space, allowing

the model to adapt to an approximately whitened descriptor

during training, reducing the distortion whitening induces.

Uniform distribution as a perceptual prior. For most

experiments in this work we focus on the µAP metric that

requires a separation between matches and non-matches at

a fixed threshold. However Table 5 shows that ranking met-

rics also improve with increased the entropy loss weight,

i.e. better calibration across queries does not fully explain

the benefit of entropy regularization.

Differential entropy regularization acts as a kind of prior,

selecting for an embedding space that is uniformly dis-

tributed. We argue that, when applied to contrastive learn-

ing, this regularization is a perceptual prior, selecting for

stronger copy detection representations. An ideal copy de-

tection descriptor would map copies of the same image

together, while keeping even semantically similar (same

“class”) images far apart i.e. the descriptor distribution is

uniform. This differs from the ideal properties of a repre-

sentation for transfer learning to classification, where im-

ages depicting the same class should be nearby (a dense re-

gion) and well separated other classes (a sparse region be-

tween classes).

Visual results. Figure 2 shows a few retrieval results,

where SSCD outperforms the vanilla SimCLR. The two first

examples demonstrate the impact of more appropriate data

augmentation at training time: SSCD ignores text overlays

and blur/color balance. The two last examples show that

SimCLR falls back on low-level texture matching (grass)

when SSCD correctly recovers the source image.

Limitations. Our method is explicitly text-insensitive

when training with text augmentation, and we find that it

is somewhat text-insensitive even when trained without text

augmentation. For this reason, SSCD is not precise when

matching images composed entirely of text. Different pho-

tos of the same scene (e.g. of landmarks) may be identified

as copies, even if the photos are distinct. Sometimes, im-

ages are combined to create a composite image or collage,

where the copied content may occupy only a small region of

the composite image. “Partial” copies of this kind are hard

to detect with global descriptor models like SSCD, and local

descriptor methods may be necessary in this case. Finally,

matching at high precision often requires an additional ver-

ification step.

Ethical considerations. We focus our investigation on

the DISC2021 dataset, which is thoughtful in its approach

to images of people, using only identifiable photos of paid

actors who gave consent for their images to be used for re-

search. Copy detection for content moderation is adversar-

ial. There is a risk that publishing research for this prob-

lem will better inform actors aiming to evade detection. We

believe that this is offset by the improvements that open re-

search will bring.

This technology allows scaling manual moderation,

which helps protect users form harmful content. However,

it can also be used for e.g. political censorship. We still

believe that advancing this technology is a net benefit.

7. Conclusion

We presented a method to train effective image copy de-

tection models. We have demonstrated architecture and ob-

jective changes to adapt contrastive learning to copy detec-

tion. We show that the differential entropy regularization

dramatically improves copy detection accuracy, promoting

consistent separation of image descriptors.

Our method demonstrates strong results on DISC2021,

significantly surpassing baselines, and transfers to Copy-

days, yielding state-of-the-art results. Our method is ef-

ficient because it relies on a standard trunk, uses smaller

inference sizes than are typical for image retrieval, and pro-

duces a compact descriptor. Additionally, its calibrated dis-

tance metric limits candidates for verification. We believe

that these results demonstrate a unique compatibility be-

tween uniform embedding distributions and the task of copy

detection.
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lus. Deep image retrieval: Learning global representations

for image search. In Proc. ECCV, 2016. 2

[22] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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and Hervé Jégou. Spreading vectors for similarity search.

2019. 1, 3, 8

[43] Josef Sivic and Andrew Zisserman. Video google: A text

retrieval approach to object matching in videos. In null, page

1470. IEEE, 2003. 2

[44] NIST MediFor Team. Nimble challenge 2017 evaluation

plan, 2017. 2

[45] Bart Thomee, David A. Shamma, Gerald Friedland, Ben-

jamin Elizalde, Karl Ni, Douglas Poland, Damian Borth, and

Li-Jia Li. Yfcc100m: the new data in multimedia research.

Commun. ACM, 59:64–73, 2016. 6

[46] Giorgos Tolias, Yannis Avrithis, and Hervé Jégou. To aggre-

gate or not to aggregate: Selective match kernels for image

search. In Proc. ICCV, 2013. 2

[47] Giorgos Tolias, Yannis Avrithis, and Hervé Jégou. Image
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